
Full demonstration using simulated data
In the following, we will outline a complete demonstration of how to install
the CCA/PLS toolkit, and generate some of the results that are presented in
the accompanying tutorial paper (Mihalik et al. 2022). Computation time on a
single machine is about 1-3 hours.

For more details, please see the in-depth online documentation of the toolkit
available at https://anaston.github.io/cca_pls_toolkit/.

Installation and prerequisites
First, if you have Git already installed, clone the repository from Github using
the following command in a terminal window under MacOS and Linux or in a
power shell window under Microsoft Windows.
git clone https://github.com/anaston/cca_pls_toolkit

In case you don’t want to clone the repository via Git, you can also go to
https://github.com/anaston/cca_pls_toolkit and download all scripts as a zip
folder and unzip into a directory of your choice.

After the toolkit is downloaded, open MATLAB and go to the folder containing
the toolkit (e.g., double-click on the toolbox folder in MATLAB). To initialize
the toolkit, run the following lines in the MATLAB command window:
mkdir external
set_path;

Dependencies

For this demonstration, we need to add an additional MATLAB toolbox (PALM).
For this, download PALM manually using this link (https://fsl.fmrib.ox.ac.uk/f
sl/fslwiki/PALM/UserGuide), copy the PALM folder into the external folder of
the CCA/PLS toolkit, then finally add PALM to the MATLAB path using the
following line in the MATLAB command window:
set_path('PALM');

PALM is a toolbox that allows statistical inference using permutation testing
whilst taking into account the dependencies in your data (e.g., family structure
or diagnosis of subjects).

Analysis setup
In the following, we will run a Sparse Partial Least Squares (SPLS) analysis on
low-dimensional simulated data. In general, the CCA/PLS toolkit uses a nested
MATLAB structure to define all steps involved in a CCA/PLS analysis, which
includes the exact algorithm, the type of deflation, the validation and statistical
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inference and so on. We call this configuration structure cfg and we will set its
fields using the standard dot notation in MATLAB. For more information on all
possible configurations, see the toolkit documentation. You can either follow this
demo and copy and paste the relevant code sections into the MATLAB command
window one at a time or you can simply run the demo_simul_paper.m script
located in the demo folder of the toolkit.

Project definition

First, we specify the demo folder as our project directory in the cfg structure.
% Project folder
cfg.dir.project = fileparts(mfilename('fullpath'));

If you are working with your own data and from within a different folder, you
need to change this variable to contain the path to your project. It is important
that this folder you specify will also contain a ‘data’ folder where your data is
located.

Data

The data used in this demo has already been created and saved to a folder
under demo/data using the generate_data.m function with 1000 examples, 100
features in both data modalities (of which 10% include signal linking the two
modalities) and noise level 2. The two modalities of data are stored in X.mat
and Y.mat files. If you are using your own data, please make sure to create
files that will match the simulated data structure, i.e., create X.mat and Y.mat
files containing simple MATLAB arrays with rows for examples and columns for
features.

Machine

For this demo, we will use an SPLS algorithm. All CCA/PLS models and their
settings (e.g., amount or regularization) can be specified using the .machine
field of the cfg structure. In this case, we will set the machine.name field to
‘spls’ to run SPLS. The metrics used to evaluate the CCA/PLS algorithms can
be defined in the .machine.metric field of the cfg structure. Here, we specify
in-sample correlation (‘trcorrel’), out-of-sample correlation (‘correl’) measuring
the generalizability of the model, similarity of the X and Y weights (‘simwx’,
‘simwy’) measuring the stability of the model across different training sets of
data as well as the explained variance in the training set of X and Y (‘trexvarx’,
‘trexvary’). To select the best hyperparameter (i.e., L1-norm regularization
for SPLS), we will use generalizability (measured as average out-of-sample
correlation on the validation sets) as optimization criterion. This is set by
.machine.param.crit = 'correl'. Finally, .machine.simw defines the type
of similarity measure used to assess the stability of model weights across splits.
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We set this to ‘correlation-Pearson’ which will calculate Pearson correlation
between each pair of weights.
% Machine settings
cfg.machine.name = 'spls';
cfg.machine.metric = {'trcorrel' 'correl' 'simwx' 'simwy' ...

'trexvarx' 'trexvary'};
cfg.machine.param.crit = 'correl';
cfg.machine.simw = 'correlation-Pearson';

Framework

The .frwork field defines the general framework used in the analysis. We support
two main approaches in the CCA/PLS toolkit. In a ‘holdout’ predictive (or
machine learning) framework, the data is divided into training and test sets by
randomly subsampling subjects (see Monteiro et al. 2016). In a ‘permutation’
descriptive framework, the data is not splitted, focusing on in-sample statistical
evaluation (see e.g., Smith et al. 2015). In this demo, we use the holdout
framework with 10 inner and 10 outer data splits. For additional details, see the
reference above, the accompanying tutorial paper (Mihalik et al. 2022) or here.
% Framework settings
cfg.frwork.name = 'holdout';
cfg.frwork.split.nout = 10;
cfg.frwork.split.nin = 10;

Deflation

Next, we set the deflation of SPLS. In this demo, We will use PLS-mode A
deflation. For more details on deflation strategies, see the accompanying tutorial
paper or the online documentation of the toolkit.
% Deflation settings
cfg.defl.name = 'pls-modeA';

Environment

Next, we set the computational environment for the toolkit. As our data is
relatively low-dimensional (i.e., number of features is not too high) SPLS will
run quickly on a standard computer localy. For time-consuming analyses, this
can be changed to a computer cluster environment.
% Environment settings
cfg.env.comp = 'local';
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Statistical inference

In the last step, we define how the significance testing is performed. To repro-
duce the results reported in the accompanying tutorial paper, set this to 1000
permutations. If you need to save computation time, the number of permutations
can be reduced. Please be aware, however, that too few permutation runs will
make the precision of the calculated p-value low (e.g., 100 permutations allow to
have a p = 0.01 at most).
% Number of permutations
cfg.stat.nperm = 1000;

Run analysis

To run the analysis, we simply update our cfg structure to add all necessary
default values that we did not explicitly define and then run the main function.
After the analysis, we clean up all the intermediate files that were saved during
analysis to clean up disk space. This analysis will run for about 1-3 hours on a
standard computer.
% Update cfg with defaults
cfg = cfg_defaults(cfg);

% Run analysis
main(cfg);

% Clean up analysis files to save disc space
cleanup_files(cfg);

Results
After running the analysis, you will notice that a framework folder has been
automatically created by the toolkit inside the demo folder, containing all of
the results. Inside the framework folder, another folder called spls_holdout10-
0.20_subsamp10-0.20 has been created. This analysis folder should be unique
to your analysis and by default it is named depending on the exact algorithm
and analytic framework used. In this demo, it indicates that we have used an
SPLS analysis with 10 holdout sets and 10 validation sets, each containing 20%
of the data. As decribed in the accompanying tutorial paper, the associative
effects identified by CCA/PLS are calculated iteratively, for instance, to be
able to optimize the model’s hyperparameters separately for each associative
effect. These associative effects are called levels and the CCA/PLS toolkit
will continue calculating additional associative effects whenever the current one
reaches statistical significance. After running this demo, there are two folders
under res in our analysis directory for level 1 and level 2. Since level 2 did
not reach statistical significance, the toolkit stopped the computation at this
associative effect. A quick overview of the results of level 1 can be found in the
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results_table.txt file located in the level 1 folder. In that file the correlation,
associated p-value and, as this was an SPLS analysis, the number of selected
features for the two data modalities are displayed for all specified splits (see
Table below).

split correl pval nfeatx nfeaty
1 0.4355 0.0010 12 9
2 0.3963 0.0010 12 12
3 0.3564 0.0010 33 58
4 0.3517 0.0010 29 4
5 0.4748 0.0010 11 10
6 0.4837 0.0010 9 10
7 0.3389 0.0010 11 15
8 0.3996 0.0010 12 57
9 0.3865 0.0010 10 13
10 0.4334 0.0010 10 11

All the additional results are stored automatically within corresponding .mat
files. E.g., the results of the hyperparameter optimization are located in the grid
folder separately for each level. Likewise, the results of the permutation testing
are located in a folder called perm separately for each level.

Loading the results

To visualize the results of the SPLS analysis, a number of functions are provided
in the toolkit to plot, e.g., the weights or latent variables of the individual
associated effects. Before these functions can be called, they have to be added
to the MATLAB path. To do so, run the following command in the MATLAB
command window.
% Set path for plotting
set_path('plot');

Similar to the cfg structure that is used to define all analysis steps, a res
structure can be created and used to load and visualize the results. First, we
will load the results of the first level by specifying the directory of our analysis
and the level we want to analyze. This is most easily done by quickly loading
the cfg_1.mat file located in our results directory. The res_defaults function
will then load the necessary result structure automatically.
% Load res
res.dir.frwork = cfg.dir.frwork;
res.frwork.level = 1;
res = res_defaults(res, 'load');
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Plot projections

To plot the data projections (or latent variables) that has been learnt by the
SPLS model, the plot_proj function can be used (see Figure 1). In this demo,
we will add an x and y label to the res structure and will pass this as first
argument to the plot_proj function. Next, we specify the data modalities as cell
array and the level of associative effect. In this example, we plot the projections
of X and Y for the first associative effect. We set the fourth input parameter
to ‘osplit’ so that the training and test data of the outer split will be used
for the plot which is paired with the fifth argument defining the specific outer
split we want to use. We set this to the best data split (highest out-of-sample
correlation in the holdout set). The next argument specifies the colour-coding of
the data using the training and test data as groups. Then we specify the low-level
function that will plot the results. In this case it is 2d_group which will call
the plot_proj_2d_group function. All the other arguments of the plot_proj
function are optional. In this demo, we flip the sign of the projection. Note,
that that sign of the model weights or latent variables is arbitrary and can be
changed for convenience (e.g., to compare results across models). Finally, we set
the properties of the figure, axes and legends as Name-Value pairs.
% Plot data projections
plot_proj(res, {'X' 'Y'}, res.frwork.level, 'osplit', ...

res.frwork.split.best, 'training+test', '2d_group', ...
'gen.figure.ext', '.svg', ...
'gen.figure.Position', [0 0 500 400], ...
'gen.axes.Position', [0.1798 0.1560 0.7252 0.7690], ...
'gen.axes.XLim', [-5 4.9], 'gen.axes.YLim', [-4.2 5], ...
'gen.axes.FontSize', 22, 'gen.legend.FontSize', 22, ...
'gen.legend.Location', 'best', ...
'proj.scatter.SizeData', 120, ...
'proj.scatter.MarkerFaceColor', [0.3 0.3 0.9;0.9 0.3 0.3], ...
'proj.scatter.MarkerEdgeColor', 'k', 'proj.lsline', 'on', ...
'proj.xlabel', 'Modality 1 latent variable', ...
'proj.ylabel', 'Modality 2 latent variable');

Both the training and the test set show high correlations between the two latent
variables, indicating that the learnt associative effect generalizes well.

Plot weights

Plotting model weights heavily depends on the kind of data that has been used
in the analysis. In case of our simulated data, we are interested if the model
recovered the weights that were used for generating the data (these true model
weights were automatically saved in our data folder as wX.mat and wY.mat). We
will use a stem plot with the true and recovered weights in different colors (see
Figure 2 and 3). The res structure will need to be passed as first argument.
Next, we specify the data modalities and the type of the modality as strings. In
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Figure 1: Latent variables of the first associated effects (blue: training set, red:
test set).

this demo, we set these to X or Y and simul. The following argument defines
the outer data split we want to use and will be set to the best split (as above for
the data projections). Then we specify the low-level function that will plot the
results. In this demo, it is set to stem to call the plot_weight_stem function
and create a simple stem plot. Finally, we set the properties of the figure, axes
and legends as Name-Value pairs.
% Plot X weights as stem plot
plot_weight(res, 'X', 'simul', res.frwork.split.best, 'stem', ...

'gen.figure.ext', '.svg', ...
'gen.figure.Position', [0 0 500 400], ...
'gen.axes.Position', [0.1798 0.1560 0.7252 0.7690], ...
'gen.axes.YLim', [-1.1 1.2], ...
'gen.axes.YTick', [-1:0.5:1.2], ...
'gen.axes.FontSize', 22, 'gen.legend.FontSize', 22, ...
'gen.legend.Location', 'NorthEast', ...
'simul.xlabel', 'Modality 1 variables', ...
'simul.ylabel', 'Weight', 'simul.weight.norm', 'minmax');

The same plot can be generated for the Y data modality. All plots are automati-
cally saved inside the res/level1 folder.
% Plot Y weights as stem plot
plot_weight(res, 'Y', 'simul', res.frwork.split.best, 'stem', ...

'gen.figure.ext', '.svg', ...
'gen.figure.Position', [0 0 500 400], ...
'gen.axes.Position', [0.1798 0.1560 0.7252 0.7690], ...
'gen.axes.YLim', [-1.1 1.2], ...
'gen.axes.YTick', [-1:0.5:1.2], ...
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Figure 2: Weights of the first associative effect for modality 1 (blue: true model
weights, red: weigths identified by SPLS).

'gen.axes.FontSize', 22, 'gen.legend.FontSize', 22, ...
'gen.legend.Location', 'NorthEast', ...
'simul.xlabel', 'Modality 2 variables', ...
'simul.ylabel', 'Weight', 'simul.weight.norm', 'minmax');

Figure 3: Weights of the first associative effect for modality 2 (blue: true model
weights, red: weights identified by SPLS).

In this demo, we had only 1 significant associative effects. In case there are
multiple significant associative effects, the process for plotting the results can be
repeated for each level. Here, we plotted the results of the best data split, but
other data splits can be also visualized in a similar manner. For more information
on different algorithms, hyperparameter optimization, default parameters or
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additional plotting functions, see the CCA/PLS toolkit documentation.
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