PRoNTo Manual

The PRoNTo Development Group

(and honorary members)

John Ashburner
Carlton Chu

Andre Marquand
Janaina Mourao-Miranda
Joao M. Monteiro
Christophe Phillips
Anil Rao

Jonas Richiardi
Jane Rondina
Maria J. Rosa
Jessica Schrouff
Konstantinos Tsirlis
Tong Wu

This is a beta version and is subject to change.

Machine Learning & Neuroimaging Laboratory
Centre for Medical Image Computing

Computer Science Department, UCL

90 High Holborn, Holborn, London WC1V 6LJ, UK
September 28, 2021

http://www.mlnl.cs.ucl.ac.uk/pronto

http://www.mlnl.cs.ucl.ac.uk/pronto

Contents

1 Introduction

2

1.1
1.2

1.3

1.4

1.5
1.6
1.7
1.8

Background L e e e e e e
Methods L e e e
1.2.1 Inputs and preprocessing L L.
1.2.2 Machine learning algorithms e
Installing & launching the toolbox L
1.3.1 Installation L e
1.3.2 Launching and batching L Lo
1.3.3 Troubleshooting L
What’s new? L e e e e
1.4.1 Version 3.0 o e e e
1.4.2 Version 2.1 L e e e e
1.4.3 Version 2.0 oL e e e
1.4.4 Version 1.1 o e e e
1.4.5 Version 1.0 o o e e e e e e
How to cite e
PRoNTo History o o e e e
Main contributors L e e
Acknowledgements oL e e

Description of PRoNTo tools
Data & Design
2.1 Introduction
2.2 The PRT directory e
2.3 GIOUDS « .« ¢ v v o e e e e e e
2.4 Subjects/Sampleso
2.5 Modalities/runso
2.5.1 Select by samples o oL L e
2.5.2 Select by subjects oL e
2.6 Masks e
2.7 Review data and design L e e
2.7.1 HRF correction e e e
2.8 Load, Save and Quit L
2.9 Data & Design output L. e e e e
2.10 Batch interface L
2.11 PRT structure L e e e e e e
2.11.1 Imtroduction oL e
2.11.2 Changes o . vt e e e e e e e e

11
11
12
13
13
14
14
14
15
16
16
18
19
19
20
20
20
21
23

25

29

30

CONTENTS

Prepare feature set 41
3.1 Introduction L L e e e e e e 41
3.2 Feature extraction and pre-processing 42
3.3 Prepare feature set L 43
3.3.1 NIfTT and .mat data e 44
3.3.2 MEEG data o e e 45
3.4 Batchinterface 47
3.5 PRT structure o o o e 47
Model Specification and Estimation 49
4.1 Introduction L 49
4.2 Model specification Lo 49
4.3 Feature set L 50
4.4 Model type / pattern recognition algorithm o L 51
4.4.1 Classification o e 51
4.4.2 Regression. o L L e 52
4.4.3 Hyper-parameter optimization Lo oo 53
4.5 Cross-validation oL L e 54
4.6 Model estimation L e 57
4.7 Batch interface L e 58
4.8 Model: Specify from Lo e 60
4.9 Important changes from PRoNTo v3.0 60
Display Model Performance 63
5.1 Introduction L L e e e e e e 63
5.2 Launching results display L 63
5.3 The main results display window L L 64
5.4 Measuring model performance L. L oL 65
5.4.1 Classification e 65
5.4.2 Regression. L 65
5.4.3 Permutation testing Lo Lo 67
5.5 Visualizing the model performance L 67
5.5.1 Classification oL o e e 68
5.5.2 Regression o L L e e 71
5.5.3 Influence of the hyper-parameter on performance 73
Computing Feature and Region Contributions 75
6.1 Introduction oL e e 75
6.2 Feature weights e 76
6.3 Atlas-based weights L 7
6.4 Batch interface L T
Display weights 79
7.1 Introduction e 79
7.2 Displaying weights o e 80
7.2.1 Select image to display oL 81
7.2.2 Weights map o e e e 83
7.2.3 Anatomical image oL 83
7.2.4 Additional plots e 83

List of input files 87

CONTENTS

IT Batch interfaces

9 Data & Design
9.1 Directory . . . o . e e e e e e
9.2 GIOUDPS © v v v v e e e e e e e e e e e e
9.2.1 GIOUD .« -« v v ot e e e
9.3 Masks . . . o e e e e e e e
9.3.1 Modality o e e
9.4 Review o o e e e

10 Feature set/Kernel

10.1
10.2

10.3.1
10.3.2
10.3.3

Load PRT.mat
Feature/kernel name
10.3 Data format

Nifti
MEEG

.mat

11 Model: Specify new

11.1 Load PRT.mat o e e e e
11.2 Model name L e e e e e e
11.3 Feature sets L e e
11.3.1 Feature set name L e e e e
11.4 Model Type . . o o v o e e e e e e e e e e e e e
11.4.1 Classification 0 e
11.4.2 Regression v v v v i it e e e e e e e e e e e e
11.5 Cross-validation type o e e e e
11.5.1 Leave one subject out L L e
11.5.2 k-folds CV on subjects
11.5.3 Leave one subject per group out Lo Lo
11.5.4 k-folds CV on subjects per group o oo i e
11.5.5 Leave one block out L e
11.5.6 k-folds CVon blocks e e e
11.5.7 Leave one block per classout
11.5.8 k-folds CV on block per class
11.5.9 Leave one run/session out Lo
11.5.10 Custom o oo e e e e e e e
11.6 Include all scans oL e e
11.7 Data operations o oo e e e e e e e e e e e
11.7.1 Mean centre features i e e e e e e e e e e
11.7.2 Other Operations ot e e

12 Model: Run
12.1
12.2

Load PRT.mat
Model name

12.3 Do permutation test? L L e e

12.3.1
12.3.2

No permutation test
Permutation test

ITI Practical Tutorials

13 Block design fMRI dataset

13.1
13.1.1
13.1.2
13.1.3
13.1.4

GUTI analysis

Data & Design
Prepare feature set
Model: Specify new
Model: Specify from (optional step)

89

91
91
91
91
94
94
94

95
95
95
95
95
96
97

99
99
99
99
99
99
99
105
109
109
109
109
109
109
109
110
110
110
110
110
110
110
110

111
111
111
111
111
111

6 CONTENTS
13.1.5 Model: Run L o e e 123
13.1.6 Display model (optional step) o o o e 123
13.1.7 Display results 124
13.1.8 Compute weights (optional step) o 126
13.1.9 Display weights 126

13.2 Batch analysis L 126
13.2.1 Data & Design o e 127
13.2.2 Feature set / Kernel 128
13.2.3 Model: Specify newo 130
13.2.4 Model: Specify from (optional step) L 132
13.2.5 Model: Run oL e 132
13.2.6 Compute weights (optional step)o 132

14 Regression dataset 135

14.1 GUIL analysis o o o e e e e e e e 135
14.1.1 Data & Design o 135
14.1.2 Prepare feature set L e 136
14.1.3 Model: Specify new L e e e 136
14.1.4 Model: Specify from L 137
14.1.,5 Display results oL e e 137

14.2 Batch analysis o e e e e e e e 139
14.2.1 Data & Design o e e 139
14.2.2 Feature set / Kernel 139
14.2.3 Model: Specify new (KRR) 140
14.2.4 Model: Run (KRR) 141
14.2.5 Model: Specify and Run (RVR and GPR) 142

14.3 Removing confounds (optional) L 142

14.4 Within- and between- subject regression L Lo 143

15 Multiple Kernel Learning example 145

15.1 GUT analysis o o 0 o o e e e e e e e e 146
15.1.1 Data & Design o e 146
15.1.2 Prepare feature set 146
15.1.3 Model: Specify new e 147
15.1.4 Model: Specify from L 147
15.1.5 Model: Run oo e e e 148
15.1.6 Display model (optional step) L 148
15.1.7 Display results L e 149
15.1.8 Compute weights e 150
15.1.9 Display weights 150

15.2 Batch analysis oL e e 151
15.2.1 Data & Design o e 151
15.2.2 Feature set / Kernel 151
15.2.3 Model: Specify new 152
15.2.4 Model: Run oL e 154
15.2.5 Compute weights (optional step) 154

16 Removing confounds: a classification example 155

16.1 Introduction L e e e 155

16.2 GUIL analysis o o o o o e e e e e 156
16.2.1 Data & Design e e 156
16.2.2 Prepare feature set oL 157
16.2.3 Model: Specify new L 158
16.2.4 Model: Specify from e 159
16.2.5 Model: Run oL e e 159
16.2.6 Display results L e 160

16.3 Batch analysis o L e e e e e e e 160

CONTENTS

16.3.1 Data & Design o e
16.3.2 Feature set / Kernel
16.3.3 Model: Specify new
16.3.4 Model: Run o e e
16.3.5 Compute weights L e
16.3.6 Display weights L
16.4 Effects of removing covariateso oL e
17 Multi-modal face recognition example
171 GUIL analysis o o o0 o e e e e e e
17.1.1 Data & design oo e
17.1.2 Prepare feature set e e
17.1.3 Model: Specify newo
17.1.4 Model: Specify from L
17.1.5 Model: Run oo e e
17.1.6 Display results L e
17.1.7 Compute weights o e
17.1.8 Display weights o e e e
17.1.9 Using an atlas with .mat o
17.2 Batch analysis L e e
17.2.1 Data & Design o e e e e
17.2.2 Feature set / Kernel
17.2.3 Model: Specify new
1724 Model: Run o . e e
17.2.5 Compute weights oL
17.2.6 Display results & weights L
17.2.7 Using an atlas with .mat
18 Classification of semi-simulated ECoG data
18.1 GUIL analysis o o o o o e e e e
18.1.1 Data & design L
18.1.2 Prepare feature set L
18.1.3 Model: Specify new
18.1.4 Model: Specify from L
18.1.5 Model: Run oL e e e e
18.1.6 Display results e
18.1.7 Compute weights L e
18.1.8 Display weights e
18.2 Batch analysis L e e
18.2.1 Data & Design o e
18.2.2 Feature set / Kernel
18.2.3 Model: Specify new
18.2.4 Model: Run L o e
18.2.5 Display results L e
18.2.6 Compute & Display weights L
19 Non-kernel machine example
19.1 GUIL analysis o o e e e e e
19.1.1 Data & Design o
19.1.2 Prepare feature set L L
19.1.3 Model: Specify new e e e
19.1.4 Model: Specify from oL L
19.1.5 Model: Run o e e e
19.1.6 Display results L e e e e
19.1.7 Compute weights L e
19.1.8 Display weights L e
19.2 Batch analysis o e e e e e e e e e

160
161
162
163
163
164
164

167
168
168
172
175
175
177
178
178
178
180
181
182
185
186
188
190
190
190

191
192
192
192
194
195
195
196
196
196
197
197
199
200
202
202
203

8 CONTENTS
19.2.1 Data & Design o o e 208
19.2.2 Feature set / Kernel L 208
19.2.3 Model: Specify new e 208
19.2.4 Model: Specify from oL e 208
19.2.,5 Model: Run & Display results. Lo 210
19.2.6 Compute & Display weights L 210

20 Within-subject Regression 213

20.1 GUIL analysisS o v v i e e e e e e e e e e e 214
20.1.1 Data & Design e e 214
20.1.2 Prepare feature set L e e 215
20.1.3 Model: Specify new 215
20.1.4 Model: Run L e e 216
20.1.5 Display results 217

20.2 Batch analysis. L e 218
20.2.1 Data & Design oL 218
20.2.2 Featureset / Kernel L 218
20.2.3 Model: Specify newo e 219
20.2.4 Model: Run & Display results o 220

21 New Machine Tutorial 221

21.1 Introduction e e e e e e e e e e e e e e e 221

21.2 prtmew_machine.m oL L e e e e e e 222
21.2.1 Inputs oo 222
21.2.2 0utputs e 223

21.3 How to import and test your new machine in Batch 000000 223

21.4 How to import your new machine in GUL L L oL 227
21.4.1 pridefaultsam . .o oL oL e 227
21.4.2 prt_get_machineuim oL Lo 228
21.4.3 prtouiccopy-model.m ... Lo L oL e e 228
21.4.4 prtplotnested_cvam L oL 229
21.4.5 pricweights ™ m . . . L L L L 229
21.4.6 Running your new machine L Lo L 229

IV Advanced topics 231

22 Developer’s manual 233

22.1 Introduction L e e e e e e e 233

22.2 PRoNTo folder structure 0 e e e 234

22.3 Data & Design o oL 235
22.3.1 PRT fields created 235
22.3.2 Files created L e e e e e e 235
22.3.3 GUI behaviour 0 e 235
22.3.4 Batch behaviour e e e 236
22.3.5 Functions called L 236

22.4 Prepare feature set L e e e 237
22.4.1 PRT fields created e 237
22.4.2 Files created 237
22.4.3 GUI behaviour e 238
22.4.4 Batch behaviour Lo 238
22.4.5 Functions called 238

22.5 Model: Specify new/from 239
22.5.1 PRT fields created 240
22.5.2 Filescreated L 241
22.5.3 GUI behaviour e e e e e e e 241
22.5.4 Batch behaviour L e 241

CONTENTS 9

22.5.5 Functions called L e e e e e e e e 242

22.6 Model: Run e 243
22.6.1 PRT fields created e e e e 245

22.6.2 Functions called e e e 245

22.7 Compute weights o e e e e e 246
22.7.1 PRT fields created e e 247

22.7.2 Files created e e e e e e e e e e e 247

22.7.3 Functions calledo 247

23 PRoNTo functions and the PRT structure 249
23.1 List of PRoNTo functions o 249
23.2 The PRT structure e e e 249

V Appendix 251
24 Appendix 253
24.1 One data file per subject L. 253
24.2 Compute atlas for connectivity matrix oL o oL 255
24.3 Connectivity matrix from MEEG 0 0o 257
24.4 Connectivity ROI weights o o e 258

VI Bibliography 265

10

CONTENTS

Chapter 1

Introduction

Contents
1.1 Backgroundo 11
1.2 Methods o e 12
1.2.1 Inputs and preprocessing e e e 13
1.2.2 Machine learning algorithms Lo o L oo 13
1.3 Installing & launching the toolbox L L 14
1.3.1 Installation oL L 14
1.3.2 Launching and batching L o oo 14
1.3.3 Troubleshooting 15
1.4 What’s new? L e e e e e 16
1.4.1 Version 3.0 oL e e e e 16
1.4.2 Version 2.1 oL e e e 18
1.4.3 Version 2.0 oL e e e 19
1.4.4 Version 1.1 L 0 o e e e e e 19
1.4.5 Version 1.0 o o oL e e 20
1.5 How to cite o e 20
1.6 PRoNTo History o e 20
1.7 Main contributors L Lo 21
1.8 Acknowledgements L L e e e e e e e e 23

1.1 Background

Advances in neuroimaging techniques have radically changed the way neuroscientists address questions about
functional anatomy, especially in relation to behavioural and clinical disorders. Many questions about brain
function, previously investigated using intracranial electrophysiological recordings in animals can now be ad-
dressed non-invasively in humans. Such studies have yielded important results in cognitive neuroscience and
neuropsychology. Amongst the various neuroimaging modalities available, Magnetic Resonance Imaging (MRI)
has become widely used due to its relatively high spatial and temporal resolution, and because it is safe and
non-invasive. By selecting specific MRI sequence parameters, different MR signals can be obtained from differ-
ent tissue types, giving images with high contrast among organs, between normal and abnormal tissues and/or
between activated and deactivated brain areas. MRI is often sub-categorized into structural MRI (MRI) and
functional MRI (fMRI). Positron Emission Tomography (PET) is another example of neuroimaging modality
which measures metabolic processes. Examples of other of imaging modalities that measure brain signals are
ElectroEncephaloGraphy (EEG) recordings and MagnetoEncephaloGraphy (MEG) recordings. Neuroimaging
data are inherently multivariate, since each measure (scan or recording) contains information from thousands
of locations (e.g. voxels in MRI or electrodes in EEG). Considering that most brain functions are distributed
processes involving a network of brain regions, it would seem desirable to use the spatially distributed informa-
tion contained in the data to give a better understanding of brain functions in normal and abnormal conditions.

11

12 CHAPTER 1. INTRODUCTION

The typical analysis pipeline in neuroimaging is strongly rooted in a mass-univariate statistical approach,
which assumes that activity in one brain region occurs independently from activity in other regions. Although
this has yielded great insights over the years, specially in terms of function localization, and continues to be
the tool of choice for data analysis, there is a growing recognition that the spatial dependencies among signal
from different brain regions should be properly modelled. The effect of interest can be subtle and spatially
distributed over the brain - a case of high-dimensional, multivariate data modelling for which conventional tools
may lack sensitivity.

Therefore, there has been an increasing interest in investigating this spatially distributed information using
multivariate pattern recognition approaches, often referred to as multi-voxel pattern analysis (MVPA) (see [18§],
[11] and [19]). Where pattern recognition has been used in neuroimaging, it has led to fundamental advances in
the understanding of how the brain represents information and has been applied to many diagnostic problems.
For the latter, this approach can be used to predict the group membership of the patient scanned (healthy
vs. patients or disease A vs. B) and can provide the discriminating pattern leading to this classification. Pat-
tern recognition techniques can also be used to identify relationships between patterns of brain structure or
activity and continuous measures such as age or a clinical score. Such information can then be used to predict
individual-level measures for new individuals (i.e. regression models).

Several active areas of research in machine learning are crucially important for the difficult problem of
neuroimaging data analysis: modelling of high-dimensional multivariate time series, sparsity, regularisation,
dimensionality reduction, causal modelling, and ensembling to name a few. However, the application of pattern
recognition approaches to the analysis of neuroimaging data is limited mainly by the lack of user-friendly and
comprehensive tools available to the fundamental, cognitive, and clinical neuroscience communities. Further-
more, it is not uncommon for these methods to be used incorrectly, with the most typical case being improper
separation of training and testing datasets.

Note: PRoNTo (Pattern Recognition for Neuroimaging Toolbox) is first and foremost a machine learning tool
used for neuroimaging analyses, so throughout the manual we mostly refer to examples that focus on neu-
roimaging data. That being said, since from the current release PRoNTo supports MEEG (SPM) data as well
as any .mat file, one can use PRoNTo to analyze for example MEEG data in sensor space (2D, or even 1D),
or yet any kind of .mat file, such as behavior data. However, it is best to use PRoNTo primarily for neu-
roimaging data which is its original purpose or to build multi-modal predictive models including imaging and
non-imaging information. So from the current release, we will refer to our data with the general term ‘samples’
and ‘features’, instead of referring to ‘voxels’ as our features. The reason is that from the current release we have
expanded our functionalities to include data that are not 3D, and therefore they do not have ‘voxels’ as features.

1.2 Methods

PRoNTo (Pattern Recognition for Neuroimaging Toolbox) is a toolbox based on pattern recognition techniques
for the analysis of neuroimaging data. Statistical pattern recognition is a field within the area of machine learn-
ing which is concerned with automatic discovery of regularities in data through the use of computer algorithms,
and with the use of these regularities to take actions such as classifying the data into different categories [3].
In PRoNTo, brain images are treated as spatial patterns and statistical learning models are used to identify
statistical properties of the data that can be used to discriminate between experimental conditions or groups of
subjects (classification models) or to predict a continuous measure (regression models).

PRoNTo is MATLAB-based and includes six main modules: ‘Data & Design’, ‘Prepare feature set’, ‘Model:
Specify new’, ‘Model: Specify from’, ‘Model: Run’ and ‘Compute weights’. For a specific model PRoNTo can
display results in terms of performance as well as the model’s weights. Additional review options enable the
user to review information about the data, features and models. All modules were implemented using a graph-
ical user interface (GUI) and the MATLAB Batch System. Using the MATLAB Batch System the user can run
each module as batch jobs, which enables a very efficient analysis framework. All information about the data,
experimental design, models and results are saved in a structure called PRT. PRoNTo also creates additional
files during the analysis that are described in details in the next chapters.

1.2. METHODS 13

The toolbox code is distributed for free, but as copyright software under the terms of the GNU General
Public License as published by the Free Software Foundation.

1.2.1 Inputs and preprocessing

In terms of neuroimaging modalities, PRoNTo accepts NIfTT files, which are files mostly designed to analyse
structural and functional MRI as well as PET. In case of NIfTT files, it assumes that the neuroimaging data
has been previously pre-processed using SPM (http://www.fil.ion.ucl.ac.uk/spm/) or a similar software
for neuroimaging analysis. In general, raw fMRI data should be previously corrected for movement artefact
(realigned) and time difference in slice acquisition (slice time correction), mapped to a common template (nor-
malized) and spatially smoothed. The normalisation and spatial smoothing steps might not be necessary for
single subject analysis. In addition, the General Linear Model (GLM) can be applied as a pre-processing step
for pattern recognition analysis. In this case, the GLM coefficients (e.g. beta or contrast images from SPM)
will correspond to the spatial patterns. Using beta images should be preferred instead of raw data in the case
of event-related designs with short inter-stimulus time and/or event duration to better take into account the
Haemodynamic Response Function (HRF). Important note: Beta images output by SPM contain NaNs (Not
a Number) values in some voxels/features. For better performance of the model, a mask should be created to
exclude the corresponding voxels/features from the analysis. Practically, a mask should be built (e.g. using
SPM imcalc batch or a script provided in ‘utils’) to specify which voxels/features have scalar values (0 and
1 in mask) or NaN. The updated mask should then be input in the Data & Design window. To ease this
extra preprocessing step, a script is provided in the PRoNTo folder wutils. It takes as inputs the images (i.e.
beta images in NIfTT format), the mask to update (e.g. SPMnoeyes.nii provided in the PRoNTo folder mask)
and the directory to save the updated mask. Inputs are optional, and just typing in the MATLAB command:
prt_utils_update_mask will ask for the different inputs using file and path selectors.

Raw structural MRI data should be previously mapped to a common template (normalized) and spatially
smoothed. Raw PET data should be realigned, normalized and smoothed. PET data is also usually scaled.
This operation can be performed before hand or during the building of the feature set.

Another type of neuroscience data supported by PRoNTo is electrophysiological data. These can be 1D or
2D EEG, MEG, LFP or ECoG. PRoNTo accepts this type of data in the MEEG data format, which is the
standard data format created and used by SPM. PRoNTo assumes that this data format represents a within-
subject design and it will read all the information automatically. The data has to contain epoched trials, either
one per stimulus or one per condition. Only one MEEG file can be entered per subject and modality.

The third data format supported by PRoNTo is .mat files. For example, 1D or 2D psychometric data,
or connectivity matrices, can be built in .mat files, according to PRoNTo specifications, and analyzed. The
variables need to be numerical (no categorical inputs) and saved as an array or vector in the first variable of
the file, with no restriction on the dimensions.

A limitation PRoNTo has is that for some computational reasons it cannot accept the standard format
that is usually used for data of this type, i.e. #samples/subjects X #features. Instead, it required one .mat
file per sample/subject. PRoNTo provides scripts where one can easily do these operations. Furthermore, the
dimensionality of the data needs to be consistent across samples, i.e. same number of dimensions and variables
in the same order.

Finally, the model weights can be displayed only for 1D and 2D MEEG or .mat inputs. The display has not
been specialized for MEEG as there are many much better tools to explore such files, either directly in SPM or
converting back to your favourite software.

1.2.2 Machine learning algorithms

In PRoNTo different pattern recognition algorithms correspond to different machines. The machine library in
PRoNTo v3.0 includes three pattern classification algorithms: Support Vector Machine ([5], [17]), Gaussian
Process Classifier (binary and multiclass, [22], [14]) and L1 Multi-Kernel Learning [20]. There are also five
pattern regression algorithms available: Kernel Ridge Regression [26], Relevance Vector Regression [28], Gaus-
sian Process Regression [22], linear epsilon-insensitive SVM (e-SVM) regression, and L1 Multi-Kernel regression

http://www.fil.ion.ucl.ac.uk/spm/

14 CHAPTER 1. INTRODUCTION

[20]. From the current release there is also the option of using non-kernel machines in addition to the kernel
ones. So there are 5 available non-kernel classification algorithms: Binary SVM using L1 and L2 loss, Multiclass
SVM, as well as Logistic Regression using L1 and L2 loss ([4, 6]). Finally, for regression there is only the linear
epsilon-insensitive SVM (e-SVM) at the moment.

PRoNTo was developed with the aim of facilitating the interaction between machine learning and the neu-
roimaging communities. On one hand the machine learning community should be able to contribute to the
toolbox with novel published machine learning models. On the other hand, the toolbox should provide a variety
of tools for the neuroscience and clinical neuroscience communities, enabling them to ask new questions that
cannot be easily investigated using existing statistical analysis tools.

1.3 Installing & launching the toolbox

In order to work properly, PRoNTo requires 2 other softwares:

e A recent version of MATLAB. We used versions 7.5 (R2007b) to 9.4 (R2018a) to develop PRoNTo, and
PRoNTo will not work with earlier versions!. The statistics toolbox of MATLAB is also required. Note:
Windows and Mac users may encounter compiler issues when using R2016b and R2017b. Files may need

to be compiled again. Users can install the MATLAB required compiler from Add-Ons, or by manually
downloading MinGW.

e SPM12 [15] installed on your computer?. Users are recommended to have the latest updates by typing:
spm_update (check if there are new updates available) and spm_update update (start updating files).
Important note: if you already have a version of SPM on your computer, please update it. Various
bugs, especially in terms of weight visualization, arise from out of date SPM versions.

PRoNTo latest public version can be downloaded, after registration, from the following address: http:
//www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html.

1.3.1 Installation
After downloading the zipped file containing PRoNTo, the installation proceeds as follow:

1. Uncompress the zipped file in your favourite directory, for example C:\PRoNTo\;
2. Launch MATLAB;
3. Go to the “File” menu — “Set path”;

4. Click on the “Add folder” button and select the PRoNTo folder, i.e. C:\PRoNTo\ if you followed the
example;

5. Click on save.

Some routines, in particular the ‘machines’, are written in C++ (.cpp files) for increased efficiency. We are
trying to provide these compiled routines for the usual Operating Systems (OS’s) such as: Windows XP (32
bits), Windows 7/10 (64 bits), Mac OS 10 and Linux (32 and 64 bits). If your OS is not listed or routines do
not work properly then you should compile the routines for your specific OS.

1.3.2 Launching and batching

Once installed, there are three ways to call up PRoNTo functionalities. To launch the toolbox GUI, just type
prt or pronto at the MATLAB prompt and the main GUI figure will pop up, see Fig. 1.1. From there on
simply click on the processing step needed (see Part T of this manual). Most functions of PRoNTo have been
integrated into the matlabbatch batching system [8] (like SPM8) and the batching GUI is launched from the
main GUI by clicking on the Batch button (see Part IT of this manual). Of course most tools can also be called
individually by calling them directly from the MATLAB prompt, or for scripting in a .m file (see Part IV of this
manual).

L Any later MATLAB version should work, in principle.

2SPM12 can be dowloaded from the following website: http://www.fil.ion.ucl.ac.uk/spm/software/. You should install it
in a suitable directory, for example C:\SPM12\, then make sure that this directory is on the MATLAB path. No need to include the
subdirectories!

https://www.mingw-w64.org/
http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html
http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html
http://www.fil.ion.ucl.ac.uk/spm/software/

1.3. INSTALLING & LAUNCHING THE TOOLBOX 15

(4 PRONTO :: -] X

Pattern Recognition for Neuroimaging
data Toolbox

Main steps Review options

Data & Design Review data

Prepare feature set
Review kernel & CV

Model

Specify new
Display results

Specify from

Display weights
Ban play weigl

Compute weights

Figure 1.1: Main GUI interface: each button launches a specific processing step.

1.3.3 Troubleshooting

MEX files are provided for 64 bit Windows, MacOS and Linux (Ubuntu/Debian) systems. However, if your
system specifications do not align with those above, making new MEX files is necessary. In such cases you will
most likely hit an error. Please follow the instructions below in case this happens.

Compiling LIBSVM

Some problems when using SVMs might also arise due to LIBSVM, in which case, you might need to compile
it on your own. The first thing that needs to be done is to download the desired LIBSVM version (usually the
latest one) from the following website: http://www.csie.ntu.edu.tw/~cjlin/libsvm/. Then, the process
will depend on your operating system.

If the steps described bellow do not work, please refer to the README file that comes with LIBSVM.

Microsoft Windows
e Make sure you have a C++ compiler install. If not, you can install Microsoft Visual C/C++;

e Copy the libsvm folder to the ‘machines’ directory of your PRoNTo instalation
(e.g. C:\PRoNTo\machines\);

e Open a DOS command window and change to the libsvm folder in the previous step (cd C:\PRoNTo\machines\1ibsvm-3
If the environment variables of VC++ have not been set, run the following command:
C:\Program Files\Microsoft Visual Studio 10.0\VC\bin\vcvars32.bat. This command might be
different, depending on the path of your Visual Studio installation;

e In the libsvm folder run the command: nmake -f Makefile.win clean all
e If no errors appear, open MATLAB;
e Change to the ‘matlab’ folder inside the libsvm folder (e.g. C:\PRoNTo\machines\libsvm-3.17 \matlab\);

e Run make in the MATLAB Command Window. If there are no errors, you have just successfully compiled
LIBSVM to be used with MATLAB.

Remember, if you want to use the version that you have just compiled, you have to add the libsvm folder
to your path in MATLAB. If you have more than one libsvin folder inside the ‘machines’ folder, please remove
one of them from the MATLAB path. You should only have one libsvm folder in your path.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

16 CHAPTER 1. INTRODUCTION

Unix (Mac OS or Linux)

e Make sure you have a C++ compiler installed. If you are using Mac OS, please install ‘Xcode’. On Linux
systems, you should already have ‘gec’ installed;

e Copy the libsvm folder to the ‘machines’ directory of your PRoNTo instalation
(e.g. /home/<username>/PRoNTo/machines/);

e Open a terminal window and change to the ‘machines’ directory: cd PRoNTo/machines/

e Compile libsvm by running the following command: make

e If no errors appear, open MATLAB;

e Change to the ‘matlab’ folder inside the libsvm folder (e.g. PRoNTo/machines/libsvin-3.17/matlab/);

e Run make in the MATLAB Command Window. If there are no errors, you have just successfully compiled
LIBSVM to be used with MATLAB.

Remember, if you want to use the version that you have just compiled, you have to add the libsvm folder
to your path in MATLAB. If you have more than one libsvi folder inside the ‘machines’ folder, please remove
one of them from the MATLAB path. You should only have one libsvm folder in your path.

Compiling GPML

In case there are compiler problems when using GPs due to GPML, you will need to compile it on your own.
The instructions to do so are approximately the same as with LIBSVM.

e Inside MATLAB, change to the ‘util’ folder inside the gpml folder (e.g. PRoNTo/machines/gpml/gpml-
matlab-v3.5-2014-12-08 /util /);

e Run make in the MATLAB Command Window. If there are no errors, you have just successfully compiled
GPML to be used with MATLAB.

1.4 What’s new?

1.4.1 Version 3.0

This version of the toolbox has a new layout, and includes multiple new features and functionalities. Below is
a list of selected major changes and new functionalities:

File formats
PRoNTo now accepts multiple ‘Data formats’, i.e. NIfTT (as before), .mat and MEEG SPM data.

e MEEG: These can be 1D or 2D EEG, MEG, LFP or ECoG files converted to the MEEG SPM data format
and can be entered when choosing ‘Select by Subject’. PRoNTo assumes that this file format represents
a within-subject design that it will read automatically. The data has to contain epoched trials, either one
per stimulus or one per condition. Only one MEEG file can be entered per subject and modality.

e .mat: Any set of variables can be saved in a .mat and used in PRoNTo. The variables need to be
numerical (no categorical inputs) and saved as an array or vector (no restriction on dimension) in the first
variable of the file. One .mat needs to be provided per sample. The dimensionality of the data needs to be
consistent across samples (i.e. same number of dimensions and variables in the same order). The model
weights can be displayed only for 1D and 2D MEEG or .mat inputs. The display has not been fine-tuned
for MEEG as there are many tools available to display such files (either directly in SPM or converting
back to your favourite software).

1.4. WHAT’S NEW? 17

Combine multiple types of data

In previous versions of PRoNTo, modalities could only be combined if they had the same number of features.
The framework has been modified to allow the combination of modalities with different number of features at
the model level. The option for ‘building one kernel per modality’ in the ‘Prepare feature set’ module has
been removed. This means that, at the feature set step, only runs of a same data format can be concatenated
as samples. At the model step, multiple feature sets can now be included in a model. These will be either
concatenated (if a single kernel machine is selected) or used in multiple kernel settings during model estimation.

Important note: when combining multiple feature sets, the number (and the order) of the samples need to
be identical across feature sets. This means that if there are 3 conditions in the MEEG data saved as ‘condB’,
‘condA’, ‘condC’, then it is not enough for the equivalent beta images for fMRI to include the conditions ‘condA’,
‘condB’ and ‘condC’. These also need to be entered in the exact same order! It might not throw an error but
will lead to poor performance of the model.

Subsampling classes

PRoNTo now allows to subsample classes to match the number of samples in the smallest class (or as close
as possible) while taking into account the stratified structure of the data (e.g. blocks of scans in fMRI) as well
as potential pooling of multiple conditions (i.e. it will subsample equally from all pooled conditions). Related
to this option, a new module has been implemented: ‘Specify from’. This module (batch and GUI) allows to
choose a model that has been previously specified as a ‘basis’ for a new model. Some fields of this ‘basis’ model
will be copied into the new model, including class or regression sample selection and outer cross-validation.
This ensures that, when performing subsampling, the exact same samples are considered in the ‘basis’ model
and in the new model to ease performance comparison.

Important note: Subsampling uses the standard random number generator implementations of MATLAB.
Different issues have been reported about the generation of different random sequences across different Oper-
ating Systems, or even different versions of the same Operating Systems due to various reasons, which could
affect your results and their reproducibility. If total reproducibility is a must, the user is advised to set their
own random number generator. This can be done by modifying the script prt_model.m in line #338 where the
standard random number generator is set.

Machines

e Kernel machines: PRoNTo interfaces LIBSVM. However, only the SVM algorithm was used so far.
PRoNTo now interfaces LIBLINEAR as well and uses more algorithms from both libraries. In addition,
the ‘custom’ machine can now be optimized given hyper-parameters. PRoNTo also allows the optimization
of more than one parameter (entered as a cell array of values that is then transformed into a grid).

e Non-kernel machines: The non-kernel route has also been enabled, i.e. the ‘Use kernel’ radio button
can be ticked off to use primal formulations instead of kernel machines. This is intended for samples with
a low number of features. Please note that using these algorithms on typical neuroimaging datasets (i.e.
features >> # samples), will likely lead to time-consuming estimations and poor performance.

Regression targets

e Per subject: Multiple regression targets can be specified at the Data & Design level. When choosing
which samples to use for the regression model, the user can also specify which target to use. This avoids
the need for multiple PRT files when multiple regression targets might be of interest.

e Per trial: Regression targets can be input along the conditions of an experimental design to perform
within-subject regression.

Cross-validation

18 CHAPTER 1. INTRODUCTION

A ‘Leave-One-Block-per-Class-Out’ cross-validation scheme was added with its k-folds counterpart to allow
balanced train and test sets when performing within subject cross-validation.

Other important changes

e Model performance estimation: Model performance was computed based on the concatenation of
predictions across folds. This way to estimate model performance can however lead to over-optimistic
model performance estimations and further reflects a model that was not estimated (instead, we estimated
multiple models). We have hence modified the code to compute the average of performance across folds.
This is also reflected in the ‘Display results’ window where some plots have been replaced at the model
level (e.g. replacing the overall confusion matrix by a ‘balanced accuracy distribution’ across folds in the
plot). In general, the results will reflect more the average but also the deviation of the results across folds.
We encourage the users to report both values. Furthermore, there has also been a change in the way we
compute the normalized MSE. Until PRoNTo v2.1, the MSE was normalized by dividing it with the range
of values (max(targets) — min(targets)). The main disadvantage of this was that in the case of spurious
outliers, the results were not representative of how good the model fit the data. So from PRoNTo v3.0
the MSE is normalized by dividing the MSE with the variance of the target values.

e Gaussian Process Regression: Until PRoNTo v2.1, the covariance matrix used was k(z, z) = (2’ xz)/t2
with t2 being the optimizable hyperparameter controlling the scaling of the latent function. After some
empirical results showing that this covariance matrix was overparameterized, from PRoNTo v3.0 we change
the covariance matrix to k(z, z) = (2/ * z), which has no hyperparameters.

e Hyper-parameter optimization: This change only applies when multiple values of the hyper-parameter
lead to the same maximum value of model performance. In previous versions, PRoNTo was choosing the
median value. In v3.0, PRoNTo identifies the largest stable region (if the ‘Image Processing’ toolbox from
MATLAB is present) and chooses the center of gravity of this region in the hyper-parameter grid as the
best hyper-parameter. This change should have limited impact on the results.

e Increased flexibility: Many checks and errors have been simplified or discarded to allow more flexible
analyses. It however comes with the downside that it is easier to make mistakes in the analysis. Please
make sure you double-check every step and regularly load the PRT to verify the input information.

MATLAB important changes

We noticed a change between MATLAB versions R2017b and R2018a in the MATLAB norm function which is
used by PRoNTo when normalizing samples. And hence, users should be aware that when normalizing samples,
results might vary between MATLAB versions up to R2017b and from version R2018a and onwards.

1.4.2 Version 2.1

This version of the toolbox is released mainly to provide a bug-fixed version of v2.0. One new functionality is
added: removing confounds. A detailed description of this procedure can be found at http://www.cs.ucl.ac.
uk/fileadmin/UCL-CS/research/Research_Notes/RN_17_09_ARJMM.pdf.

Below is a list of selected bug fixes that might affect your use of the software or previously obtained results:

e HRF delay and overlap: In the Data&Design module users can define parameters to approximate the
HRF shape (namely HRF delay and overlap). In earlier versions, the values could only be entered once
and applied to all modalities. This has now been fixed to allow different values for different modalities, in
the batch and in the GUI.

e Freeze the Review Data window: In relation to the HRF delay and overlap bug fix, the Review data
is now ‘on wait’ until closed. This means that no operation (in PRoNTo or in MATLAB) can be done until
the window is closed. This ensures that values input in the Data review GUI are passed to the main Data
and Design window.

e ROC and AUC: There was a bug in how we computed the area under the curve (AUC) and plotted the
receiver operating characteristic (ROC) curve that we have now fixed. This means that different AUC
values and ROC plots might be observed, if comparing previously obtained results in older versions and
in v2.1. We hence recommend re-computing AUC and re-plotting ROC if needed.

http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_17_09_ARJMM.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_17_09_ARJMM.pdf

1.4. WHAT’S NEW? 19

k-fold CV: Before v2.1, when using k-fold cross validation (CV) and the number of samples was not
divisible by k, we re-allocated the remainder to the last fold by default. For example, a 4 fold CV with
43 samples would lead to 4 folds of size 10,10,10 and 13 respectively. In v2.1, the remainder is evenly
re-allocated to each fold, starting from the first. The above example would then lead to folds of size 11,
11, 11 and 10. This change affects all k-fold CV scheme and should then be taken into consideration if
comparing results from older versions with results from v2.1.

1.4.3 Version 2.0

This version of the toolbox (2015) aims at providing multiple new functionalities, including;:

Build one kernel per modality: When there are multiple modalities in the same dataset, it is now
possible to build one kernel per modality and use them in the same model later on. If this option is not
chosen, the selected modalities can still be concatenated as additional samples/examples or sessions (if
they have the same features) or used separately.

Build one kernel per region: It is also possible to specify an atlas, comprising regions of interest
(ROIs) as defined by values in the atlas ranging from 1 to number of ROIs. For each anatomically defined
ROI, a kernel will be built taking into account the multivariate pattern within the region. It is possible
to use this feature in combination with the previous one (e.g. one kernel per region and per modality, or
concatenate modalities as additional samples and build one kernel per region).

New machines: The list of available machines was extended, and now includes L1 Multi-Kernel Learning
(MKL, classification and regression). The latter corresponds to a hierarchical model defined by weights
at two levels: the feature level and the kernel level (i.e. ROI and/or modality).

Flexible cross-validation: A GUI is provided to manually specify a custom cross-validation matrix. It
allows to either specify a basis (e.g. leave-one-subject-out), load a .mat or specify the number of folds.
Then the user can, for each fold, select which examples are part of the training set, test set, or won’t be
used. The resulting matrix can be saved for further use.

Nested cross-validation for hyperparameter optimization: It is now possible to optimize the
hyperparameter(s) of some machines (e.g. the soft-margin parameter, C, in SVM) using a nested cross-
validation (CV) framework. The number of folds in the nested cross-validation, used only to estimate
the value of the hyperparameter leading to the highest performance, does not need to be the same as the
‘outer’ cross-validation (i.e. the one estimating the final model performance). For example, to decrease
computational expenses, the nested CV can be a 4-fold CV while the outer CV can be a leave-one-out.

Display results: The display of the results was divided into two modules (Display Results and Display
Weights). This allows to review the model performance in one window, with all the statistics. A new
graph displaying the effect of the hyperparameter (if optimized) was also included.

Weights per ROI: For each model it is possible to build images representing the weights per feature
and also images summarising the weights per regions of interest as defined by an atlas. If an MKL model
was built on ROIs, the contribution of each ROI (regional weight) is explicitly derived. On the other
hand, if a simple kernel model was selected (e.g. SVM on the whole brain), the weights per feature will
be averaged (in absolute value) within each region, as defined by an atlas specified by the user. In both
cases, an additional image, with weights per ROI, is created and saved.

Display weights: The weights of each model can be displayed at the feature level in this window. If
weights per ROI were derived (either summarized or from an MKL on ROIs), weights per region can be
displayed as an image, as well as in a sorted list of regions. The same applies for MKL models on multiple
modalities. A histogram is also displayed representing the contribution/weight of each ROI/modality to
the model. The table can be exported as text for future use in publications/communications.

1.4.4 Version 1.1

In 2012, PRoNTo v1.1 was released mainly to provide bug fixes for version v1.0. Two features were also added:

automatic compiling of the machines (in particular: no more issues with SVM, nor with MATLAB toolboxes
and paths).

20 CHAPTER 1. INTRODUCTION

o k-folds Cross-Validation (CV): specify the number of folds or set it to 1 for half-half CV (train on first
half, test on second).

1.4.5 Version 1.0

Launched in 2011, this version of PRoNTo allows to perform all the analysis steps, from Data & Design to
computing the weights for three classification machines (SVM, binary and multi-class GP) and two regression
machines (KRR, SVR).

1.5 How to cite

Please cite:

e Schrouff J, Rosa MJ, Rondina JM, Marquand AF, Chu C, Ashburner J, Phillips C, Richiardi J, Mourao-
Miranda J. PRoNTo: Pattern Recognition for Neuroimaging Toolbox. Neuroinformatics, 2013, 11(3),
319-337.

e Schrouff J, Mourao-Miranda J, Phillips C, & Parvizi J. Decoding intracranial EEG data with multiple
kernel learning method. Journal of neuroscience methods, 2016, 261, 19-28.

When using PRoNTo analyses in any type of publication. In addition, when using Multiple Kernel Learning to
combine signals from different Regions of Interest (ROIs) or modalities, one should also refer to the following
publication:

e Schrouff J, Monteiro, JM, Portugal L, Rosa MJ, Phillips C, Mourao-Miranda J. Embedding Anatomical or
Functional Knowledge in Whole-Brain Multiple Kernel Learning Models. Neuroinformatics, 2018, 16(1),
117-143.

And finally when using a posteriori weight summarization with atlas-defined regions of interest one should also
refer to:

e Schrouff J, Cremers J, Garraux G, Baldassarre L, Mourao-Miranda J, Phillips C. Localizing and Com-
paring Weight Maps Generated from Linear Kernel Machine Learning Models. International Workshop
on Pattern Recognition in Neuroimaging (PRNT), 2013, 124-127, DOI: 10.1109/PRNT.2013.40.

1.6 PRoNTo History

The first version of the ‘Pattern Recognition for Neuroimaging Toolbox’, aka. PRoNTo, was developed in 2011
by an international team of researchers (the PRoNTo development group) led by Prof Janaina Mourao-Miranda
and supported by the European Union through the PASCAL Harvest programme (PASCAL2).

The original development group included Janaina Mourao-Miranda, Christophe Phillips, Jessica Schrouff,
John Ashburner, Maria Joao Rosa, Jonas Richiardi, Andre Marquand, Jane Rondina and Carlton Chu. The mo-
tivation to develop PRoNTo stemmed from the unmet need of a flexible pattern recognition analysis framework
that would accommodate different types of neuroimaging data, could address various research questions, and
be safely used by neuroimagers who are non-expert in machine learning. As the team included SPM developers
(John Ashburner and Christophe Phillips) PRoNTo took advantage of many of the SPM existing functions,
such as those for file handling and image display, as well as the batch system (Glauch V.).

Over the years, new contributors have joined the development group and PRoNTo was further extended to
include new functionalities, such as flexible cross-validation frameworks, option to remove effect of confounds,
and atlas based multiple kernel learning (PRoNTo versions 1.1, 2.0, 2.1). In particular, Jessica Schrouff has
been a major contributor of PRoNTo from its inception till version 3.0. PRoNTo’s latest version (PRoNTo
v3.0) now accepts multiple data formats and enables the building of multimodal predictive models. The latest
versions of PRoNTo have been supported by the Wellcome Trust.

https://doi.org/10.1007/s12021-013-9178-1
https://doi.org/10.1016/j.jneumeth.2015.11.028
https://doi.org/10.1016/j.jneumeth.2015.11.028
https://doi.org/10.1007/s12021-017-9347-8
https://doi.org/10.1007/s12021-017-9347-8
https://doi.org/10.1109/PRNI.2013.40
https://doi.org/10.1109/PRNI.2013.40
https://cordis.europa.eu/project/id/216886
https://www.fil.ion.ucl.ac.uk/spm/
https://sourceforge.net/projects/matlabbatch/
http://www.wellcome.org/

1.7. MAIN CONTRIBUTORS 21

Currently, the PRoNTo project is led by Prof Janaina Mourao-Miranda and co-supervised by Prof Christophe
Phillips. Konstantinos Tsirlis supports the PRoNTo developments and is in charge of its management and
maintenance. Contributions (e.g. new features, debugging, manual, demonstration data) are mostly provided
by Prof Janaina Mourao-Miranda’s group and collaborators but external contributions are welcome.

1.7 Main contributors

PRoNTo is developed by the Machine Learning & Neuroimaging Laboratory, Computer Science department,
University College London, UK (http://www.mlnl.cs.ucl.ac.uk) and associated researchers.
The main contributors, in alphabetical order, are:

Dr. John Ashburner is a Professor of Imaging Science at the Wellcome Trust Centre for Neuroimaging at
the University College London Institute of Neurology. He is mainly interested in modelling brain anatomy
from MR scans, and more recently in applying pattern recognition methods to make predictions about
individual subjects. He is a co-developer of the SPM software (intra- and inter-subject registration,
tissue classification, visualization and image file formats), which is used internationally by thousands of
neuroimaging researchers. He has a Web of Science h-index of 98. He did not contribute any actual code
to PRoNTo, but he did attend many of the meetings;

Dr. Carlton Chu is a research scientist at Google DeepMind. Before joining DeepMind, he was a research
fellow in brain imaging at the National Institute of Mental Health (NIMH), NTH. He received the B.Eng.
degree (1% class Honours) from Auckland University, in 2002 and the master of Biomedical Engineering
from University of New South Wales, in 2004. Carlton obtained a PhD in Neuroimaging method from
University College London in 2009, working in the statistical methods group at the Wellcome Trust Centre
for Neuroimaging, creators of the famous “SPM” program. There he developed innovative pattern recog-
nition methods to automatically detect the early stages of neurodegenerative diseases such as Alzheimer’s
and Huntingdon’s from structural brain images. In 2007, Carlton won the first prize in the 2nd Pittsburgh
Brain Activity Interpretation Competition (PBAIC), a prestigious international competition involving the
application of machine learning to the problem of classification of brain activity. He led a small research
team to victory, acclaim from peers in the field, and the $10K first prize. His current research interests in-
clude image segmentation using convolutional neural networks and applications of deep-learning. Carlton
was involved in the development of PRoNTo v1.0;

Dr. Andre Marquand is a Principal Investigator and an assistant professor at the Donders Institute for
Brain Cognition and Behaviour. His research focuses on the application of probabilistic machine learning
techniques to neuroimaging data, particularly for clinical applications. His recent work includes the
development of multi-class, multi-task and multi-modality pattern classification methods that offer many
advantages over current techniques including more sensitive and specific detection of disease effects. He
did his PhD in Clinical Neuroscience, King’s College London, UK. Andre was involved in the developement
of PRoNTo v1.0;

Prof Janaina Mourao-Miranda is a Wellcome Trust Senior Research Fellow and a Professorial Research
Associate at the Centre for Medical Image Computing (CMIC), Computer Science Department, UCL.
Over the past years her research has involved developing and applying pattern recognition methods to
analyze neuroimaging data, in particular brain activation and structural patterns that distinguish between
controls and patients. Her current research focuses on developing machine-learning models to investigate
complex relationships between neuroimaging data and multidimensional descriptions of mental health
disorders. Janaina has been leading the PRoNTo project since 2011 and has contributed to PRoNTo v1.0,
v1.1, v2.0, v2.1 and v3.0;

Dr. Joao M. Monteiro is a former MPhil/PhD Student at University College London under the supervision
of Prof John Shawe-Taylor and Dr. Janaina Mourao-Miranda. His research focused on the application of
unsupervised machine learning methods to neuroimaging. He contributed to PRoNTo v1.1, v2.0 and v2.1;

Dr. Christophe Phillips is Research Director at the GIGA Cyclotron Research Centre in vivo imaging and
Associate Professor at the Department of Electrical Engineering and Computer Science, University of
Liege, Belgium. His research focuses on the processing of multi-modal neuroimaging data. Recent work
within the field of “brain decoding” aimed at distinguishing between levels of consciousness in unresponsive

http://www.mlnl.cs.ucl.ac.uk

22 CHAPTER 1. INTRODUCTION

patients or between typical and atypical Parkinson Disease patients using Positron Emission Tomography
(PET) imaging, as well as tracking mnesic traces in trained healthy subjects with fMRI. Christophe
contributed to PRoNTo v1.0, v1.1, v2.0, v2.1 and v3.0;

Dr. Anil Rao was a post-doctoral researcher in Centre for Medical Image Computing (CMIC) and Max Planck
University College London Centre for Computational Psychiatry and Ageing Research at the University
College London. He contributed to version 2.1, in particular to the removing confounds functionality.

Dr. Jonas Richiardi is currently Clinical Research Lead in the Department of Radiology, Lausanne Uni-
versity Hospital, with a joint affiliation to Siemens Healthcare Switzerland’s Advanced Clinical Imaging
Technology group. He was previously a Marie Curie Fellow with a project on ‘Modelling and Inference
on brain Networks for Diagnosis’, jointly affiliated to the FINDlab at Stanford University and LabNIC
at the University of Geneva. His research interests include the combination of imaging modalities with
other biological information sources including genomic data, learning with graphs, machine learning for
neuroimaging, brain connectivity / resting-state data analysis, interpretability of brain decoding results,
and functional biomarkers. Jonas contributed to PRoNTo v1.0 and v1.1;

Dr. Jane Rondina is a research fellow at the University College London Institute of Neurology. Previously,
she was a post-doctoral research associate at the Centre for Neuroimaging Sciences, King’s College London.
In the past years, her research has involved application of pattern recognition methods to neuroimaging
data and development of a stability-based method for feature selection and mapping in neuroimaging.
Her current research focuses on prognosis and prediction of treatment response, mainly addressing ap-
proaches to combine complementary information from different imaging modalities and other sources of
data (clinical, demographic and genetic). She contributed to the development of PRoNTo v1.0 and v2.0;

Dr. Maria J. Rosa is an Advanced Support Engineer at MathWorks. Before joining Mathworks, she was
an imaging scientist at IXICO, plc. Before, she was a Post-Doctoral Research Fellow at the Institute of
Psychiatry, King’s College London (KCL) and a Wellcome Trust post doctoral research associate at the
Centre for Computational Statistics and Machine Learning (CSML), UCL. Maria’s main area of work is
the development and application of machine learning and multivariate methods to neuroimaging data.
She did her PhD at the Wellcome Trust Centre for Neuroimaging, UCL. She contributed to PRoNTo v1.0,
v1.1, v2.0 and materials for v3.0;

Dr. Jessica Schrouff got her PhD from the University of Liege, under the supervision of Dr. C. Phillips.
She was a post-doctoral researcher at the Laboratory of Behavioral and Cognitive Neuroscience, Stan-
ford University before obtaining a Marie Curie fellowship with University College London. Her research
applied machine learning techniques to neuroimaging data (both cognitive and clinical neuroscience) and
investigated the limitations of such models, especially in terms of interpretation. Jessica now pursues
related work at Google Health. She contributed to PRoNTo versions 1.0, 1.1, 2.0, 2.1 and was a major
contributor to v3.0;

Konstantinos Tsirlis has a background in Physics, Neuroscience and Machine Learning. His M.Sc. Thesis
was in Causal Structure Learning where he implemented a novel hybrid method for learning the causal
structure of continuous data in the presence of latent confounders. Before joining CMIC he was involved
in various computational and experimental neuroscience projects, and two causal discovery and bioinfor-
matics projects. He is currently a Research Software Engineer in the lab, focusing on developments in
PRoNTo v3.0, as well as some machine learning projects.

Dr. Tong Wu got her PhD from the University of Queensland in Australia, under supervision of Dr. Tianzi
Jiang, Dr. David Reutens and Dr. Simone Bosshard. She was a post-doctoral researcher in Centre for
Medical Image Computing (CMIC) at University College London. Her research focus during PhD was
resting-state mouse fMRI in both wild type mice and a schizophrenia mouse model. She contributed to
PRoNTo v2.1 and was involved in PRoNTo v3.0.

We also want to thank the Laboratory of Behavioral and Cognitive Neuroscience at Stanford University for
their early adoption of v3.0 and their feedback, as well as the students and post-docs for their help in testing the
software and writing this manual: Fabio Ferreira, Dr Agoston Mihalik, Rafael Ramos, Dr. Juan E. Arco, Dr.
Liana Lima Portugal, Liane Canas, Dr. Ana Regia Neves, Rochelle Silva, Dr. Orlando Fernandes Junior, Dr.
Qinquan Gao. Finally, we would like to thank Prof Leticia de Oliveira from the Fluminense Federal University
in Brazil for her suggestions to the manual and helping us extensively test PRoNTo v3.0.

1.8. ACKNOWLEDGEMENTS 23

1.8

Acknowledgements

PRoNTo is the deliverable of a Pascal Harvest project coordinated by Dr. J. Mourao-Miranda and its develop-
ment was possible with the financial and logistic support of

PASCAL2 and its HARVEST programme.

The Department of Computer Science, University College London.

The Wellcome Trust under grants no. WT086565/Z/08/Z and no. WT102845/Z/13/Z.
The Fonds de la Recherche Scientifique (FNRS), Belgium.

Fundagao para a Ciéncia e Tecnologia (FCT), Portugal.

Swiss National Science Foundation (PP00P2-123438) and Center for Biomedical Imaging (CIBM) of the
EPFL and Universities and Hospitals of Lausanne and Geneva.

The EU Marie Curie Action under grant FP7-PEOPLE-2011-10F #299500 to Jonas Richiardi.
The EU Marie Curie Action under grant Horizon2020-2015-GF #654038 to Jessica Schrouff.

The Laboratory of Behavioral and Cognitive Neuroscience (LBCN), Stanford University.

https://cordis.europa.eu/project/id/216886
http://www.cs.ucl.ac.uk
http://www.wellcome.org/
http://www.fnrs.be
http://www.fct.pt
https://cibm.ch/
https://med.stanford.edu/parvizi-lab.html

24

CHAPTER 1. INTRODUCTION

Part 1

Description of PRoNTo tools

25

Chapter 2

Data & Design

Contents

2.1 Introduction L e 27
2.2 The PRT directory 28
2.3 GIOUPS « v v v e e e e e e e e e e 29
2.4 Subjects/Samples L. 29
2.5 Modalities/runs e e e e e 29

2.5.1 Select by samples 30

2.5.2 Select by subjectso 32
2.6 Masks . . L L e e 35
2.7 Review data and designo L L L 35

2.7.1 HRF correction o e 36
2.8 Load, Save and Quit L e e e e 37
2.9 Data & Design outputo 37
2.10 Batch interface L L 38
2.11 PRT structure o e 39

2.11.1 Introduction e e e e e e 39

2112 Changes o e e e 40

2.1 Introduction

The first step in a statistical analysis of neuroimaging data, whether it is in a pattern recognition or general
linear model (GLM) framework, usually entails providing to the analysis software all the information regarding
the data and experimental design. PRoNTo is no exception. After preprocessing the data (if required), the
analysis in PRoNTo starts with the ‘Data & Design’ module. It is important to note that PRoNTo does not
perform any standard pre-processing steps (except detrending), and if they are not performed with another
software, the pattern recognition analysis might be affected by misalignment and noise in the data.

PRoNTo provides two types of interfaces for entering the data and design information, a PRoNTo-specific
graphical user interface (GUI) and the matlabbatch system that is also currently used by SPM. These two
interfaces are also available for the other modules, as discussed in chapter 1.

The information that needs to be entered is almost exactly the same for both the GUI and batch (the small
differences are explained later in this chapter, in the matlabbatch section) and, more importantly, the output
is exactly the same. Therefore it is up to the user to decide which system is best suited for his/her analyses.
For instance, the GUI can be used as a first approach to the toolbox and by users not familiar with SPM, whilst
the batch can be used by more advanced or SPM users, who know how to take advantage of the batch system
to optimise their analyses.

27

28 CHAPTER 2. DATA & DESIGN

This chapter focuses specifically on the ‘Data & Design’ module. It presents the graphical user interface
(GUI) that is used to enter the various data and design information, how everything is organized and used
as well as what its main outputs are. It also mentions a few issues that need to be taken into consideration
when entering the information and how they affect subsequent steps. Finally, the chapter finishes by mention-
ing the corresponding ‘Data & Design’ matlabbatch module, and particular issues that do not apply to the GUIL.

In the ‘Data & Design’ module the user can enter the image/sample files, information related to experi-
mental conditions (TR, durations and onsets of events), as well as other parameters, covariates and regression
values. PRoNTo supports multi-modality datasets and therefore it allows the user to enter more than one data
modality, such NIfTT images (e.g. MRI, fMRI, PET), SPM MEEG objects and standard .mat files. This module
is therefore essential for the rest of the framework and stores all the information that is needed from the data to
be used by the rest of the software modules, such as feature set preparation, model specification and estimation.

To start with, the graphical user interface (GUI) to specify the data and design is presented in Figure 2.1.
This GUI can be launched by typing ‘prt’ in the MATLAB window and then clicking the first button on the left,
named ‘Data & Design’, in the ‘Main steps’ panel.

4. PRoNTOo : Data and design - m} X

Modalities/ runs

Figure 2.1: Data and design graphical user interface. This interface allows the user to enter all the information
relative to the data, including the experimental design and masks. After introducing all the fields, PRoNTo
creates the PRT structure, which is saved in the specified directory, as ‘PRT.mat’ file.

2.2 The PRT directory

The first thing the user should specify is the directory in which to save the PRT structure. This can be done
by browsing existing directories (previously created by the user) from the top of the Data & Design interface
(Figure 2.1). It is recommended to have different directories for different datasets (note that a dataset can
include different modalities in case of multimodal analysis) because PRoNTo overwrites an existing PRT in
the selected directory. The later modules in PRoNTo will then add more fields to this structure with further
information, such as the models, features and kernels used in subsequent analyses. The file created is called
‘PRT.mat’.

2.3. GROUPS 29

2.3 Groups

The group panel allows one to add or remove a group of subjects. The minimum number of groups is one,
but there is no maximum number. When ‘Add’ is clicked, the user should provide a name to the group. Any
alphanumeric string is sufficient and there should be no spaces in the string (this applies to all names throughout
the toolbox). The name of the group can be later modified by right clicking on the name. When ‘Remove’
is clicked, all the information relative to this group (including all subjects and corresponding data) is deleted.
PRoNTo does not restore the deleted information and it can only be re-entered again by clicking ‘Add’.

2.4 Subjects/Samples

The following panel after ‘Groups’ is ‘Subjects/Samples’. In neuroimaging datasets, it is common to have a few
subjects with a lot of images/samples per subject, such as the time-series in fMRI. However, the opposite is
also common: lots of subjects with one image per subject, such as those encountered in PET or MRI studies.
Therefore, for each group, PRoNTo provides two ways of entering the rest of the information, i.e. subjects,
modalities and design, which are referred to as the ‘select by subject’ or ‘select by samples’ option, respectively.
The former is chosen by clicking ‘Add’ under the ‘Subjects/Samples’ panel and filling in the fields for each
added subject at a time. The latter is done by clicking the tick box ‘Samples’ under the ‘Subjects/Samples’
panel. The subjects panel is then de-activated and the user can enter the modalities and files straight away.
Both options are presented side by side in figure 2.2.

Select by subjects: The ‘Subjects/Samples’ panel allows the user to add/remove subjects. This panel works
exactly like the groups panel, but the subject name is automatically generated. This name can be later modified
by right clicking on it. For each subject one can then specify the modalities in the next panel.

Select by samples: The ‘Select by samples’ option allows the users to skip the subject step. To identify that
this option has been selected, PRoNTo writes ‘Samples’ in the subjects panel, in the same way the subject names
were automaticaly generated when you are in the ‘Select by subjects’ option. It is important to remember that
when the ‘samples’ box is clicked all the information in the subjects panel is automatically deleted. Unselecting
the ‘samples’ box also deletes all the information!

Groups Subjects/ Samples Groups Subjects/ Samples
G1 - S1 A~ G1 ~ ‘Samples ~
S2
s3
Add | Remove | Ack:l Remove ‘ Add | Remove | Add | ‘
[]samples [Samples

Figure 2.2: The ‘Subjects/Samples’ panel under the ‘Select by subjects’ and the ‘Select by samples’ options.

2.5 Modalities/runs

The modalities panel works like the group and subjects panel, but allows one to add and remove modalities.
When a modality is added, a name needs to be provided (unless the modality has already been defined for a
previous subject or through the masks menu, see below). It is important to note that a different modality
can be a different type of data, such as fMRI and PET, or a different session of the same type of

30 CHAPTER 2. DATA & DESIGN

data, e.g. different runs/sessions of the same fMRI experiment. This way the different sessions
can be integrated later into the same model and analysis.

From PRoNTo v3.0 your data can have more than one formats, so there is a new field, called ‘Data format’,
which offers three input formats to choose from: NIfTI (as before), MEEG (electrophysiological data in the
SPM format) or .mat (any type of matrix).

Clicking ‘Add’ to add a new modality, and depending on whether the ‘Samples’ box was ticked or not, one
of the two windows of figure 2.3 will appear.

|4\ PRoNTO = Specify madality - O X ‘4. PRoNTo : Specify modality

Modality Modality

Name Enter new Enter new

nifti

select... |

Data format nifti

Files select. |

Design No design Design No design

Regression targets o targets Regression targets No targets

Covariates

Cancel Cancel

Figure 2.3: ‘Specify modality’ window under the ‘Select by subjects’ (left) and the ‘Select by samples’ (right)
options

The first things the user has to define is the name of the modality and the format of the data. Next, inde-
pendent of the way the user entered the information (by subjects or samples) the ‘Files’ option allows one to
choose which image files to use (Figure 2.4). This will open another window that shows all image files available
in each directory. These can be selected one by one or all at once, by using the mouse’s right button on the
right panel of the window (or shift key).

From that point on, just like in the ‘Subjects/Samples’, the steps to enter the modality information become
slightly different if the ‘Samples’ box is ticked or not.

2.5.1 Select by samples

Here the data is assumed to have been acquired without an experimental design (i.e. the data has no temporal
information and each subject has only one sample), and therefore the ‘No design’ option is automatically se-
lected and cannot be changed, as shown in figure 2.3.

The empty field below can be used to enter ‘Regression targets’. This option allows the users to introduce
a real number per subject to be used later for regression if that is the case. A file can also be selected, with all
regression target values stored in a variable called ‘rt_subj’ and of size #images x n (where n is the number of
regression targets).

Finally, the user can introduce ‘Covariates’, i.e. one or more variables that covary with the data (subjects)
but of no interest to the subsequent analyses. The covariates will be regressed out from the data if the operation
‘Regress covariates’ is selected in the ‘Specify Model’ module. This option is functional from v2.1 of PRoNTo.

2.5. MODALITIES/RUNS 31

4\ Select files for the modality — O x
Dir C:\Users\PRoNTo_DewIX\Data\aged\Guys

Up C:\Users\PRoNTo_Dev\IXI\Data\aged\Guys S
Prev C:\Users\PRoNTo_DewIXI\Data\aged\Guys v
Drive - il sa_rc1Xd028.Guve.038-T1.nii, 1

| select Al)737-T1. nii, 1
sa_rc11X1115-Guys-0738-T1.nii, 1
sa_rc11X1158-Guys-0783-T1.nii,1
sa_rc11X1164-Guys-0844-T1.nii,1
sa_rc11X1172-Guys-0982-T1.nii,1
sa_rc11X1185-Guys-0795-T1.nii,1
sa_rc11X1186-Guys-0796-T1.nii,1

¥ Isa re1IX1197-Guys-0811-T1.nii,1 ¥
ﬂEJ Done Filter Resetl o

Frames 1
Selected 0/[1-...] files. (Initial selection.)

Figure 2.4: This window is called when one clicks ‘Files’ and is used to select the samples/images for each
subject /modality.

It requires the input of a matrix, with one row per image/subject and one column per covariate. This matrix
can either be entered as a MATLAB command in the editable box, or as the full path to a .mat containing the
matrix (variable named ‘R’). This last option is recommended to input a matrix (i.e. more than one covariate).
The order of covariates in the rows should match the order the imaging files are selected. Please see below
(2.5.1) for important considerations on covariates.

If users want to modify covariates and/or targets, simply right-click on the modality name to amend. From
v2.1, we only display the entered value when reviewing single subjects while ‘Entered’ is displayed to indicate
that values have been filled (Figure 2.5).

4 PRoNTo : Specify modality

Modality

Name MRI_GM

Data format nifti

Files select...

Design No design

Regression targets Entered

Covariates Entered

Figure 2.5: When modifying a previously specified modality /run, input covariates and regression targets will

appear as ‘Entered’. Actual values are displayed when reviewing single subjects (i.e. after saving and reloading
the PRT).

32 CHAPTER 2. DATA & DESIGN

Covariates

The user can also input ‘covariates’ or ‘confounds’ in PRoNTo, i.e. one or more variables that covary with the
data (subjects) but are of no interest to the subsequent analyses. PRoNTo requires the input of a matrix, with
one row per image/subject and one column per covariate/confound. Before entering covariates in PRoNTo, we
recommend users to firstly check that their covariates do not correlate with the targets as this could lead to
biases (positive or negative) in the obtained results [16]. Furthermore, since the approach to remove confounds
in PRoNTo is based on a linear regression the covariate matrix can be seen as a design matrix and therefore
should respect the usual requirements of no-collinearity ([21]).

In addition, if users have categorical covariates, such as genders, scanner centres, handness et al., one
could use one-hot encoding for the covariates. One-hot encoding represents each value of a variable (for ex-
ample ‘centerl’, ‘center2’) as a boolean ‘True/False’ (i.e. 1/0) variable. In this case, a confound with 2
values is represented by 2 columns, a confound with 3 values by 3 columns and so on. This process en-
sures that all values of the categorical variable are treated with the same importance. When accounting
for categorical confounds we should be careful with the representations that imply order of values when
there is no relative other, for example representing ‘centerl’ by 1 and ‘center2’ by 2. In this last exam-
ple, we would assume that values in ‘center2’ are twice as big as values in ‘centerl’ although there is no
reason to encode an ordinal relationship between ‘centerl’ and ‘center2’. Here is an example code to per-
form one-hot encoding for an illustration covariate variable ‘cov’ for 12 samples/images and 4 possible values:

If multiple categorical variables need to be encoded, this process should be repeated and all obtained ma-
trices concatenated to obtain a #samples/images x #variables matrix.

Important note on one-hot encoding: While one-hot encoding is a useful way of recoding categorical co-
variates, great care has to be put in order to avoid the dummy variable trap, which essentially is an accidental
perfect multi-collinearity when the system of equations formed by the regression ends up not have a unique
solution. For further information regarding this, the user is referred to [27], as well as various informal sources
(for example https://www.algosome.com/articles/dummy-variable-trap-regression.html.

Important note on covariates: Regressing out covariates is still a matter of debate [16] and should be
considered with care. The procedure to remove confounds in PRoNTo is based on a linear regression and
wouldn’t account for more complex relationships between confounds and variables of interest or between multiple
confounds (e.g. all older patients recorded at one site). Balanced and careful experimental designs should be
preferred.

2.5.2 Select by subjects

When entering the data by subjects, the modality window allows one to specify the experimental design (Figure
2.3). Here there are three options. The first option is simply ‘No design’, which means that for this modality
there are no experimental conditions (this option is normally used when there is only one image per subject
e.g. structural MRI or beta images from GLM analysis). The last option is to load an SPM.mat with a
previously specified design. This option can be chosen if the user has created an SPM structure containing all
the experimental information using the SPM software. In this case, the user does not need to specify anything
else, only the files (samples/images) for this subject/modality. The design information is extracted directly from
the SPM structure and saved in PRT.mat. Finally, there is also ‘Specify design’ option, which allows one to
introduce all the conditions (durations and onsets), TR and other parameters corresponding to the experimental
paradigm used for this subject and modality (this option is normally used with time series data, e.g. fMRI).
After the design of the first subject has been specified, a new option will appear in the menu that allows to
‘Replicate design of subject 1’, for the same modality and group. This facilitates design specification for groups
of subjects with controlled (i.e. non-random) event onset and duration.

https://www.algosome.com/articles/dummy-variable-trap-regression.html

2.5. MODALITIES/RUNS 33

Design: The design field has different options according to the data format selected. This is because the
events should already be saved in the MEEG data (input: epoched signal). For NIfTT images, the options are
the same as v2.1. And for .mat, the options are the same as for NIfTT.

For NIfTT and .mat data formats, to create a new design one selects the option ‘Specify design’ as ex-
plained in the previous paragraph (Figure 2.3). Then there are 2 options, to either specify the design manually
(using the option ‘Specify’ in the ‘Conditions’ field), or to first load a pre-defined design from a .mat file (using
the option ‘From a .mat file’ in the ‘Conditions’ field) and modify it according to your needs.

In case you select the ‘Specify’ option, this will then open another window where you’ll be prompted to
choose how many conditions you have. If you select to load a pre-defined design from a .mat file then you will
be first prompted to load this .mat file, where PRoNTo will load the first variable of that .mat only. In that case
the main design window (described in the next paragraph) will be automatically filled with the events name,
onsets (in seconds) and duration (in seconds).

After choosing how many conditions you have or after selecting the .mat file with the pre-defined design,
another window will open (Figure 2.6), where in this window one can then write (or modify) the names, onsets,
and durations of each condition. From v3.0, for both neuroimaging and MEEG, there are 2 new columns where
regression targets and covariates can be entered per trial in each category. These need to have same number of
elements as the number of trial onsets.

The units in which this information is read is specified below. There are two options ‘Scans’ or ‘Seconds’.
If the unit ‘Scans’ is selected, it is good to bear in mind that PRoNTo follows the convention, adopted in SPM,
that the first scan is scan 0. In the durations field, one can introduce as many values as the number of onsets
or just simply one value, which assumes the events all have the same duration. In this window there is also the
option of introducing the Interscan Interval (TR), which corresponds to the intersample time (i.e. 1/sampling
rate) and is always read in seconds.

One issue to have in mind when specifying the design is the following: if there are more samples than
experimental events, these extra samples will not be used in later analyses. They are not deleted and the
corresponding indexes can be found in the PRT structure:
PRT.group(g).subject(s).modality(m).design.conds(c).discardedscans.

For MEEG data formats, there is only one available option in the ‘Design’ field, and that is the ‘Events in
file’ option. Clicking this option will automatically load the design and lead you to the ‘Specify design window.
From that point on you proceed the same way you would for NIfTT and .mat data.

Modify design: The user can later modify a design by loading a PRT.mat in the Data & Design window.
Please note that if feature sets or models have been previously computed, they will be discarded if changes are
performed to the dataset. If the user wants to keep those, he/she should change the directory before saving any
modification to the design.

After loading a previously saved PRT, any change can be performed: subjects, groups or files can be added or
removed. If the design needs to be modified, a right-click (ctrl+left-click in Mac) on the name of the concerned
modality proposes to re-open the modality definition window. To review or modify the onsets/durations/block-
s/regression targets/covariates, the user can access their definition via the ‘specify design option’. Similar
right-clicks (ctrl4left-click in Mac) allow renaming groups or subjects.

All that is needed for each group, subject and modality has been specified and can now be viewed on the
main window (Figure 2.7) under each panel. The last panel shows which files have been entered for each
modality and can be modified directly (click Modify). When Modify is clicked and no files are then selected all
the previous files are deleted! Figure 2.7 shows how the Data & Design interface should look like once all the
fields have been specified (using select by subject). The design and files for each modality can also be modified
by right clicking on the modality name in the modality panel. This option can be useful to visualise the design
(onsets and durations) that has been previously entered and change it if necessary. For instance, one can check
the design of the first subject and if changes are needed these can then be replicated for all other subjects as

34

CHAPTER 2. DATA & DESIGN

4 Enter number of conditions

Name

Onsets

Duration

Faces

Houses
Cats
Shoes
Bottles
Chairs

Scissors
Scrampix

21127334 426 533 6...
63213348 384 490 6...
35142 248 412576 6...
49 156 320 369 562 6...
92199 305455519 6...
106 170 291 398 547 ..
6184 277 469 505 71...
78227 263 441 580 6...

599999999999
9999599999999
999999999999
999999999999
9999999909999
9999599999999
9999999909999
9999599999999

Figure 2.6: Data & Design graphical user interface. The ‘specify conditions’ window is available from the
modality interface when the user chooses to enter the data by subjects and clicks ‘specify design’. This window
is used to enter the conditions (names, onsets and durations) as well as the units of design, TR and covariates.

explained above.

"4 Enter subject name

ni
xby_datasetfMRI'wrvol0002.ni
xby_datasetfMRI\wrvol0003.ni
xby_datasetfMRIwrvol0004.ni
xby_datasetfMRI'wrvol0005.ni
xby_datasetfMRIwrvol0006.ni
xby_datasetfMRI'wrvol0007 ni
xby_datasetfMRI\wrvol0008.ni
xby_datasetfMRIwrvol0009.ni

xby_datasetfMRI'wrvol0010.ni
xby_datasetfMRIwrvol0011.ni
xby_datasetfMRI'wrvol0012.ni
xby_datasetfMRI\wrvol0013.ni
xby_datasetfMRIwrvol0014.ni
xby_datasetfMRI'wrvol0015.ni o
< >

Modify

Figure 2.7: Data & Design graphical user interface. After filling in all the fields using the select by subject
option (the select by samples case is very similar) the Data & Design interface should look like this example
figure.

2.6. MASKS 35

2.6 Masks

This popdown menu on the bottom of the main Data & Design window is where the user enters a binary image
mask for each modality. This applies only to NIfTT data formats, since for .mat and MEEG data formats we
assume that the data have already been pre-processed to contain only the relevant features (and therefore there
is no need for a mask), as this can be easily performed during pre-processing. Hence the masks are set to ‘none’
for MEEG and .mat types. It is also vital that you ensure that your data (.mat or MEEG) do not contain NaNs.

Regarding the NIfTT data, this mask can be previously created by the user or simply chosen from a list of
default masks available in the masks directory of PRoNTo. Every modality based on NIfTI data has to have
a mask, which can be the same for all modalities. This is a first-level mask and is used simply to optimise the
prepare feature set step by discarding all uninteresting features, such as voxels outside the brain (for the case
of MRI data) or features in general.

Later in the analysis one can choose another mask (second-level mask) that is more relevant to the scientific
question and that can, for example, restrict the analysis to certain areas of the brain. To specify the mask one
needs only to select the modality and then enter an image file. If the modalities have not yet been created, then
one can create the modalities here, which will then appear in the modality panel.

Important note: If the first-level mask overlaps with voxels that do not have values in the specified images
(i.e. NaN), those areas will still be taken into account for further analysis and the NaNs will be replaced by
zeros. This might affect the results if those areas are not the same across images (typically, performance will be
lower). We therefore advise the user to check the overlap between the first-level mask and his/her data. This
issue would typically arise when using beta images estimated from a SPM GLM analysis. We provide a script
to update the mask automatically by removing voxels that contain NaN values from the mask. (see 1, Inputs
and preprocessing).

2.7 Review data and design

The ‘Data & Design’ module also allows the user to review the information that has been entered (through the
GUI, batch or manually). The main aim of the ‘Review’ function is to check if the data and design has been
correctly specified. It can also be used to inspect if the design is appropriate for subsequent analysis.

This is done by clicking the ‘Review’ button in the main ‘Data & Design’ window, and as we mentioned,
allows the user to review the Data & Design for each modality (Figure 2.8). On the top right is the information
relative to the number of groups and modalities that have been entered. The plot on the left displays the number
of subjects per group. It is particularly important to check if the design is too imbalanced in terms of subjects.
Then on the bottom right panel is the design information for each modality (if the selected modalities have an
experimental design). Here, the user can view the number of conditions and can also edit the parameters that
control the HRF delay and overlap (as explained above). The user can change the default value of 0 seconds
and the effect is immediately seen on the number of samples plotted on the left (number of selected samples and
number of discarded samples for each condition). The higher the value of the HRF peak and overlap, the higher
the number of discarded samples. One can also read on the main MATLAB window information regarding which
group/subjects have had some samples discarded. The information below the HRF parameters corresponds
to the interval between successive samples before and after the HRF delay/overlap correction. These values
also change according to the changes entered in the boxes above. For further information regarding the HRF
correction the user is referred to the following subsection (2.7.1).

To modify the HRF parameters (delay or overlap), there is no need to load the PRT in Data & Design.
Loading it within the Data Review allows the user to keep all previously computed feature sets and models.
However, if the HRF parameters are changed, feature sets have to be computed again since they do not corre-
spond to the modified design. Changing the desired parameter (e.g. replacing ‘0’ by ‘6’) and hitting the ‘return’
key updates the PRT directly in terms of samples selected for modelling.

Please note that the review window is frozen, waiting for users’ inputs. Hence other modules won’t continue
until this window is closed. This means that users who prefer to use the Batch to execute multiple modules

36 CHAPTER 2. DATA & DESIGN

together and choose Review in Data&Design need to close this window first to let the following modules run.

Furthermore, if you have previously computed feature sets and models, you have to recompute them because
they do not correspond to the data anymore (changing the HRF delay and overlap parameters changes the data).
The information regarding which samples have been removed or not from the analysis can be found in the PRT
structure:

PRT.group(g) .subject(s) .modality(m).design.conds(c) .hrfdiscardedscans.

{4 PRoNTo : Review data and design - m] X

Save ™

roups
Number of groups:

Number of modalities:

Design?

Number of conditions: 8
HRF delay correction (s) lIl

HRF overlap correction (s): III

Interval between successive scans (TRs):

before correction for HRF overlap
1.6674 +- 1]

after correction for HRF overlap
1.6674 +- 0

Figure 2.8: Data & Design graphical user interface - ‘Review’ window. This window allows the user to check
the data and design, including the number of subjects per group. It also allows the user to change the HRF
delay and overlap parameters that control the number of discarded samples (appropriate only for modalities
such as fMRI). When there is no experimental design only the top plot and information is shown.

2.7.1 HRF correction

When using raw fMRI data in PRoNTo, there is a very important issue that needs to be carefully addressed
when specifying the data and design. As is well known, the hemodynamic response function (HRF) is a delayed
and smoothed version of the underlying neuronal response to an experimental event (Figure 2.9). This means
that, depending on the TR, the effect of the HRF can be felt over multiple samples, and therefore the acquired
samples are not independent and might contain information from both past and present events. This can con-
found subsequent analyses and needs to be accounted for. For instance, in SPM, the stimulus time-series are
convolved with a canonical HRF. Although convenient in the GLM framework, the convolution approach is not
appropriate in the pattern recognition context. Therefore, the solution used in PRoNTo is to discard all samples
that might have overlapping information from more than one event. This is done as follows: PRoNTo allows
the user to input a delay (time it takes for the hemodynamic response to peak after the stimulus) and overlap
(width of the response) parameters that determine the shape of the HRF. As can be seen in Figure 2.9, the
delay means that the samples corresponding to a given condition are actually shifted in time, and the overlap
means that the number of non-overlapping samples, for which the signal corresponds only to a given event or
experimental condition, is smaller than the total number of acquired samples for each condition. Given the
delay, PRoNTo shifts the onsets of each condition to account for the specified delay. It then uses the overlap to

2.8. LOAD, SAVE AND QUIT 37

determine which consecutive samples contain information from only one condition (i.e. the response does not
overlap with the response from the previous condition) and discards the ones for which there is overlap (as shown
in Figure 2.9, bottom right). The discarded samples are not actually deleted but are not used in further analyses.

When using the GUI, the default value for the HRF parameters is 0 seconds and can only be changed in
the ‘Review” window (as shown below). Therefore, for fMRI, the user should review the data and design and
change these parameters to a more appropriate value (e.g. 6 seconds each). In the matlabbatch, the default
value for these parameters is also 0 seconds but can be changed directly within the batch (no need to open
Review window). Again, for fMRI raw signal, these values should be changed (e.g. to 6 seconds).

Importantly, if one wants to avoid discarding samples and having to correct for the shape of the HRF,
as explained in the above paragraph, one should use as input the beta (coefficients) images obtained by first
running a GLM analysis on the original data. The GLM analysis accounts for the HRF delay and overlap using
the convolution approach. This is normally the best approach in case of rapid event-related design experiments,
in which there can be a lot of overlap, i.e. the number of discarded samples can be very high.

delay
—

S - = -

verla

delay

0 overlap

Time (s) H H w

0 5 10 15 20 25 30

Figure 2.9: HRF correction. On the left is the standard HRF response. On the right is the effect of the delay
and overlap on the number of independent samples (C1, C2 and C3 correspond to three different experimental
conditions and the blue boxes correspond to various samples acquired during each condition). In fMRI datasets,
the nature of the HRF (i.e. being a delayed and dispersed version of the neuronal response to an experimental
event) might lead to less independent samples/events than the ones originally acquired. In PRoNTo, this issue
is accounted for by discarding overlapping samples.

2.8 Load, Save and Quit

The ‘Save’ button allows the user to create the PRT.mat file with the PRT structure containing all the information
that has been specified here (Figure 2.7). Incomplete information cannot be saved. At least one group should
have all the required fields so that PRT.mat can be created. ‘Load’ allows the user to load the data and design
information from a previously saved PRT.mat. The user can then edit the fields and update PRT by clicking
again the ‘Save’ button. It’s very important to click ‘Save’ because all the other steps in the analysis rely on
the PRT structure. Without this structure one cannot proceed. However, when the PRT.mat contains fields
that have been added by the ‘Prepare feature set’ or other modules, if the Save button is clicked, these fields
will be deleted. The option ‘Quit’ allows the user to leave the interface without saving the information. This is
also the case when the user closes the window without first using the Save button.

2.9 Data & Design output

The output of the ‘Data & Design’ module, as discussed previously, is the PRT structure. This structure
contains subfields with all the information that is needed from the data for the subsequent analysis steps and
is saved in a ‘PRT.mat’ file. For advanced users the fields of this structure can be edited directly and saved,

38 CHAPTER 2. DATA & DESIGN

therefore bypassing the need to use the GUI or matlabbatch to create the PRT. However, this structure is the
core of PRoNTo and should be carefully created because it affects everything else.

2.10 Batch interface

The ‘Data & Design’ module in the matlabbatch is called either by first typing ‘prt’ and clicking the ‘Batch’
button or by typing ‘prt_batch’. The user can then find on top of the batch a PRoNTo menu and under this
menu the first module corresponds to the Data & Design module.

The options presented in the ‘Data & Design’ GUI, mentioned above, are all available in the matlabbatch
interface (Figure 2.10). However, there are a few things in the batch that differ from the GUIL One issue to
note here is that, when using the batch one needs to be very careful with the names of the modalities specified
for each subject (or using select by samples) and specified for each mask. The number of modalities should be
exactly the same for each group and subject and the names should be consistent between groups/subjects and
correspond to the names of the modalities under the masks field. In the GUI the names are made automatically
consistent. The names of the conditions should also be the same across subjects and will be later used to define
classes in the ‘Specify model’ batch module.

Another difference is the HRF delay and overlap correction values. In the batch, the user can directly alter
these values (instead of having to use the ‘Review’ window) but the default is 0 seconds and should be changed
(e.g. to 6 seconds) for modalities that depend on the HRF, such as fMRI. In earlier versions, HRF delay and
overlap values couldn’t be changed separately for each modality. From v2.1, we have corrected this.

As mentioned in the Introduction, the batch job can be saved as a .mat, and loaded again whenever needed,
or as a .m that can be edited using the MATLAB editor. This is a powerful tool that can make the specification
of the data and design a lot easier and quicker, for example by editing and scripting existing batch files (for
further information see the matlabbatch chapter below).

All changes in v3.0 in the GUI, have been added to the batch. When choosing a modality, the ‘Data format’
field now allows you to choose between ‘nifti’, ‘MEEG’ or ‘.mat’, whether the user specified the design by scans
or by subjects. As the batch is not ‘dynamic’, the different design options specify for which data format they
are available. The help of each field was also revised.

Regression targets and covariates per trial: The option to enter regression targets and covariates per
trial were also added in the batch (Figure 2.11).

e For the specify design, it has been added within the conditions.

e For the SPM loading and the loading of the events in the MEEG, a new field has been added, where you
specify the condition name, and the regression targets and covariates for that condition.

e For loading of a multiple condition file, there is no explicit field because PRoNTo will automatically look
for the corresponding variables ‘rt_trial’ and ‘R’, as cell arrays per condition.

Multiple regression targets per subject: Specifying regression targets, when loading by ‘scans’ (i.e. one
image per subject per group) has been amended to allow the user to specify multiple regression targets. The
multiple regression targets, together with their values, are included in each subject’s structure, inside a sub-
structure named rt_subj. This structure has as many columns as the regression targets.

e rt_subj: [1 x n]

— .name: target name, default ‘Tar 1°.

— .tar: target values.

Besides the appropriate modifications to the code, we also added the script prt_data_targets to allow users to
specify targets by hand or from file, as well as review via a table.

2.11. PRT STRUCTURE 39

4] Batch Editor -] X

File Edit View SPM BasiclO PRoNTo ~

Ded P

Module List ‘Current Module: Data & Design
Directory =X "
Groups
. Group
.. Name <-X
.. Select by
... Subjects
.. .. Subject
...... Name <-X
...... Data format nifti
...... Interscan interval <-X
...... Files <-X
...... Data & Design
....... Load SPM.mat (for nifti inputs only) <-X
Masks <-X
Review No ~
v

Add new modality.

This branch contains 5 items:

* Name

* Data format

* Interscan interval hd

Figure 2.10: Data & Design module in matlabbatch. The matlabbatch contains two extra options relative to
the Data & Design interface. These options allow one to specify the delay and overlap of the HRF response (in
the GUI it can only be changed in the ‘Review’ window) separately for different modalities, and which are then
used to determine the number of discarded samples.

Masks and modalities: Regarding the masks, the user needs to specify a ‘mask’ for each modality, as
before. However they need to choose a file only for the ‘nifti’ input modalities. The need to specify masks for all
modalities is due to a coding requirement as the number of masks serves as a check for all the modalities that
are defined (i.e. checking if number of modalities is the same across subjects and so on). For MEEG or .mat,
the type of modality is displayed but not further action is required. In the code, checks make sure that the
right type of design is selected for MEEG (‘Events in MEEG file’) or for .mat (‘no design’). This can easily be
modified when extending the ‘.mat’ option to ‘new_design’ later on. There is also a restriction that the number
of files for either a MEEG or .mat modality should be 1 (everything should be contained in this specified file,
for each subject and modality). Different runs of EEG/MEG experiments can be entered as different modalities
and later concatenated in ‘trials’ at the feature set stage.

2.11 PRT structure

2.11.1 Introduction

As already mentioned, the ‘PRT.mat’ is a file that contains a MATLAB structure called ‘PRT’. The ‘PRT.mat’
(and the ‘PRT’ structure within it) is the core file (and structure) of PRoNTo associated with your analysis.
This is a fairly deep structure containing a range of subfields which are created and modified across different
steps, and which include all information about the data, experimental design, feature sets, models and kernels
used in subsequent analyses done with PRoNTo, as well as the results. This structure and its fields can also
be edited and saved directly from the MATLAB workspace, therefore bypassing the need to use the GUI or
matlabbatch.

The 5 main fields of the ‘PRT’ structure are the following:

e PRT.group: This field contains all the main information regarding the different groups and subjects

40 CHAPTER 2. DATA & DESIGN

"4 Batch Editor - O X
File Edit View SPM BasiclO PRoNTo k]
D >
Module List Current Module: Data & Design
...... Interscan interval <X ~
...... Files <-X
...... Data & Design
....... Specify design
........ Units for design Seconds
........ Conditions
......... Condition
.......... Name <-X
.......... Onsets <X
.......... Durations <-X

Current Item: Regression targets (per trial)

v Specify...

Regression targets (per trial)
Enter one regression target per trial onset. or enter the name of a variable.
This variable should be a vector [Ntrials x 1], where Ntrials is the number of
events for the selected condition.

Evaluated statements are entered.

t be entered hd

Figure 2.11: ‘Data & Design’ matlabbatch module.

included in them, together with their different modalities, regression targets and covariates.
e PRT.masks: This field contains the masks for the different modalities.

e PRT.fs & PRT.fas: These fields contain the different feature sets with all their supplementary infor-
mation, such as the ID matrices to link the data to the design matrix or the first-level atlases, as well as
the corresponding file array structure.

e PRT.model: This field contains the different models created, with all their parameters, the cross-
validation schemes and the operations, as well as the output/results when you run these models.

Throughout Part I and Part III you can find both dedicated subsections as well as mentions of the ‘PRT’
structure and its subfields that serve to familiarize the reader with it and give an idea of the subfields created
in each step of the process. Finally, Chapter 23 describes a way of creating and visualizing a full-breakdown of
the ‘PRT’ structure.

2.11.2 Changes

In this subsection, as well as in the same subsection in the chapters that follow, we will point out the changes
in the ‘PRT’ structure from PRoNTo v2.1 to the current version, PRoNTo v3.0.

From v3.0, PRoNTo accepts 2 new data formats, SPM MEEG file formats, and .mat file formats. Therefore
in the modality field, a ‘type’ subfield was added, to account for the modality type. The same field was added
to the ‘PRT.masks’ as well.

Chapter 3

Prepare feature set

Contents

3.1 Introduction L e e 41
3.2 Feature extraction and pre-processingo e 42
3.3 Prepare feature seto Lo 43

3.3.1 NIfTT and .mat data o o e 44

3.3.2 MEEG data e e 45
3.4 Batch interface L 47
3.5 PRT structure o e 47

3.1 Introduction

One of the main inputs of a machine learning algorithm consists in & Nsampies X Nfeatures data matrix, contain-
ing the feature values for each sample. This matrix can either be input directly into the machine or be used to
compute a ‘similarity matrix’, or kernel, of size Ngampies X Nsampies, Which is then input into the classification/re-
gression algorithm [see “kernel trick” [12, 1]]. PRoNTo computes a linear kernel (i.e. dot product) between the
samples. The ‘Prepare Feature Set’ step computes both the features and linear kernel matrices from one or more
modalities, as defined in the previously described ‘Data & Design’ module (see chapter 2). It allows detrending
the features in the case of time series (such as fMRI) and scaling each image by a constant factor (input by
the user) in the case of quantitative modalities (such as PET). Masks can be specified to select a subset of fea-
tures for later modeling (e.g. Regions of Interest for MRI or fMRI data or electrodes/channes for M/EEG data).

Multiple runs entered as different modalities (e.g. modality 1 is ‘fMRI_runl’, modality 2 is ‘‘MRI_run2’,...)
can be concatenated as samples during this step. In this case, the images from different runs should have the
same number of features. In addition, from v2.0 one is allowed to build multiple kernels, either from multiple
modalities, or based on different anatomically labelled regions as defined by an atlas. In case of multiple modal-
ities, it is required that the selected modalities have the same number of samples.

In ProNTo versions 2.X, modalities could be combined in 2 ways at this stage: either concatenated as sam-
ples (e.g. multiple runs of a same experiment), or combined as additional features by computing one kernel per
modality and storing them together. This had the limitation that combined modalities (in either way) had to
have the exact same number of features. From v3.0 we have decoupled those operations for more flexibility. At
the feature set stage, different modalities can only be concatenated as samples. In this case they still need to
have the exact same number of features.

41

42 CHAPTER 3. PREPARE FEATURE SET

3.2 Feature extraction and pre-processing

In order to combine different types of modalities (or data) as different types of features in the predicted models
from PRoNTo v3.0 it is necessary to build one feature set per modality. The different features sets can then be
combined later on the model specification step, either added/concatenated or using MKL.

In PRoNTo v3.0 the different data formats are handled in different ways: NIfTI images and .mat in a way
similar to versions 2.X, while MEEG is handled differently through a new window. This means that now, you
have to first load the ‘PRT.mat’ in the ‘Prepare feature set’” GUI in order for PRoNTo to track the different data
formats that exist in your PRT. So after clicking on the ‘Prepare Feature Set’ button in the main interface, a
second window will appear first, allowing the user to select a saved PRT.mat. If it has more than one different
data formats, figure 3.1 will appear prompting you to choose the feature set’s data format that you want to
build. Feature sets are built for each specific data format at a time. The buttons available on this interface will
reflect the data formats previously specified in the ‘Data & Design’ module. If only one type is present, this
step is skipped and PRoNTo launches directly the main ‘Prepare feature set’ window after the user has selected
a saved PRT.mat.

4. PRoNTo : Specify type of data - O X

Figure 3.1: ‘Specify type of data’ GUI

In case there are more than one data formats, if the ‘nifti’ option is selected to be included in the
feature set (further referred to as FS), the toolbox will extract information from the voxels/features contained
within the first-level mask that was selected for that modality (mask specified at the ‘Data & Design’ step,
see chapter ‘Data & Design’). This is performed by extracting ‘blocks’ of features, not to overload the RAM
(Random-Access Memory).

If the ‘MEEG’ or the ‘.mat’ options are selected, as mentioned in the previous chapters, the data
are assumed to have already been pre-processed to contain only the relevant features (and therefore there is no
need for a mask), as this can be easily performed during pre-processing.

In case of time-series data (e.g. fMRI), the user can specify detrending methods and parameters to apply to
the time course of each feature. Methods comprise a polynomial detrending (parameter: order of the polynomial)
or a Discrete Cosine Transform high-pass filter (SPM, parameter: frequency cutoff in seconds). An example of
a linear detrending (polynomial detrending of order 1) is shown in Fig. 3.2.

After you do that, the main ‘Prepare feature set’ window will appear (Figure 3.3), where you will be prompted
to specify the name of the FS and to define the number of modalities which should be included in the FS.

Note: If you have been using PRoNTo versions 2.X you will notice that the checkbox that used to be available
and allowed to build one kernel per modality (if multiple modalities were present/had been selected in the FS)
is not available anymore since from PRoNTo v3.0 different modalities can be combined at the model level.

To define the number of modalities to include, the user should click in the appropriate edit box, type the
number and then ‘enter’. This will launch a third window (Figure 3.4 for NIfTI and .mat, or Figure 3.5 for
MEEG), allowing the specification of the different options and parameters for each modality. When the dataset
contains only one modality, this window is launched directly and (Figure 3.3) is filled automatically and only
expect the feature set name. The two windows are further explained in the sections that follow.

So for each modality, the features are then written in a file array (with a ‘.dat’ extension) on the hard
drive (in the same directory as the dataset). Please note that in the case of large datasets, this operation may
require many Gb of free space on the hard drive and long computational times. Therefore, if the first condition

3.3. PREPARE FEATURE SET 43

[=in] T T T T

ot -
raw data
] -
— linear
]
detrended
1ok -
.10 1 1 1 1 !
] 50 100 150 200 250

Figure 3.2: Example of detrending: the original signal over time of one feature (in blue) was approximated by
a polynomial of order 1 (red line), which was then substracted from the original signal to give the detrended
signal (in green).

[PRONTo :: Prepare feature set - O X

Name of the feature set

Modalities

Number of modalities to concatenate

Selected modalities

Build kernel / data matrix

Figure 3.3: ‘Prepare feature set’ GUI

can’t be fulfilled, we recommend the use of external drives for the whole analysis. Regarding the computational
expenses, we tried to minimize their effect by extracting/computing the features only once per modality: when
preparing other feature sets using the same modality and detrending parameters, the built file array will be
accessed for the next steps.

Be careful that using the same modality but different detrending (for NIfTT) or averaging (for MEEG)
methods and/or parameters will force the re-computation of the file array for the considered modality. In the
same way, changing the dataset (PRT.mat) from directory might lead to the re-computation of the feature sets
if the file arrays were not moved accordingly.

3.3 Prepare feature set

After defining the name of the F'S and also, in case of multiple data formats, the number of modalities to include,
the ‘Specify modality’ window is launched to allow the user to specify the different options and parameters for
each modality.

44

CHAPTER 3. PREPARE FEATURE SET

3.3.1 NIfTI and .mat data

For NIfTT and .mat data formats, the window looks like figure 3.4.

4. PRoNTo :: Specify modality to include - O x

fMRI i

All scans ™

Parameters

Detrend ‘Potynomial

Order

Scaling Mo scaling

Features

‘ Additional (2nd level) mask for selected modality ‘

[Build one kemel per region

‘ Atlas defining regions of interest (ROls) ‘ |

Figure 3.4: ‘Specify modality’ GUI for NIfTT and .mat data.

In this window the user has to first choose which modality to include based on its name (first pull-down

menu) and which conditions to use to build the kernel. In ‘all scans’ the kernel matrix will be computed between
all scans within the time series of all subjects and in ‘all conds’ the kernel matrix is computed only between the
scans corresponding to the specified conditions of interest (see ‘Data & Design’). By default, the toolbox will
use all scans to compute the kernel. With large datasets however, computational expenses can be reduced by
selecting the last option. All other options are facultative.

Parameters

The first panel refers to operations to perform on the features:

e Detrend: By default, the parameter is set to ‘No detrending’. However, we recommend to perform

a detrending in the case of time series data such as fMRI (and only in that case). When selecting
polynomial, the ‘order’ parameter will appear, with a default value of 1. Changing this value will increase
the order of the polynomial used to fit the data. If ‘Discrete Cosine Transform’ is selected, the editable
parameter corresponds to the cutoff frequency (in seconds) of the high-pass filter. Please note that, when
including more than one run (‘modality’) into a feature set, nothing will prevent the user from using
different detrending methods/parameters. We however highly recommend to use a consistent detrending
in the same FS. Note: Since .mat files are assumed to have been pre-processed prior to using them with
PRoNTo, detrending is mainly required only for fMRI data.

Scaling: Allows the specification of constant values to scale each scan. ‘no scaling’ is the default option.
However, when dealing with quantitative modalities such as PET, the user should provide a .mat file
containing a variable vector called ‘scaling’ of the same size as the number of scans in that modality.

As previously mentioned, the detrending is performed before the features are saved in the file array, while

the scaling is performed only when building the kernel.

3.3. PREPARE FEATURE SET 45

Features

The second panel allows to select a subset of the saved features to build the kernel. Since the data in a .mat
file are assumed to have already been pre-processed to contain only the relevant features (and hence there is no
need for a mask), this panel is mainly useful for NIfTT data. Two options are available:

e Additional (2nd level) mask for selected modality: This option allows the specification of a ‘second-
level’ mask, which would for example define Regions of Interest (ROIs) on which the classification/regres-
sion can be performed. In this case, the features used to compute the kernel (and only the kernel) would
be the ones contained in both the first and second-level masks. Therefore, using one first-level mask and
two second-level masks would create two kernels but only one file array. The user has to type the full name
(with path) of the mask or browse to select the mask image. When left empty or untouched, features are
selected from the first-level mask specified in the ‘Data & Design’ step. Otherwise, features within both
the first and second-level masks will be selected to build the kernel.

e Build one kernel per region: Starting from v2.0, PRoNTo allows to build one kernel per region
as defined by an anatomically defined atlas, specified by the user'. One atlas (Anatomical Automatic
Labelling, AAL) is provided in your PRoNTo folder/atlas. Atlases can be generated easily through SPM,
or manually by the user. There are no constraints on how regions are built, as long as all the voxels
within each region have a specific integer value. The toolbox will identify the different regions based on
the values in the voxels. Each region will then act as a second-level mask and one kernel will be built for
each region. The kernels are all saved together and will then all be used at the modelling stage.

These options are performed at the kernel level only. This means that any change in one of these options
would lead to the computation of a new kernel but not to the (re)computation of the file arrays. The use of
different second-level masks or scaling parameters can therefore be easily envisaged.

From PRoNTo v2.0 one is allowed to build multiple kernels. These kernels can be derived from multiple
modalities or from multiple regions of interest as defined by an atlas within each modality. These two options are
not mutually exclusive and it is also possible to build multiple kernels within each modality and then combine
those modalities as multiple kernels. The number of kernels would hence become number of modalities X number
of regions. In the same way, it is possible to concatenate multiple runs of an experiment while building one
kernel per region.

3.3.2 MEEG data

This part is probably the most different from all other new functionalities in PRoNTo v3.0 (Figure 3.5). It
reflects the different dimensions of the data that features can be extracted from. There are 3 main panels,
corresponding to the 3 types of features (Channels, Time Points and Frequencies) an MEEG file can have.

Channels

First of all, the user can play on the channels, selecting them all or only some, as well as average the signal over
the selected channels, or build one kernel per channel. More specifically:

e The list of channels is displayed on the left panel, as unselected. To add a channel to the feature set, click
on it. It will then appear on the right panel. Alternatively, you can select ‘All’ channels or all ‘Good’
channels. On Windows OS, the ‘bad’ channels appear in red in the list.

e Average signal over channels: this option will average the signal over all selected channels. This might
be useful to obtain an average trace across a specific region of interest.

e One kernel per channel: whether to build one kernel per channel (ticked) or not. This option corre-
sponds to building an atlas with each channel as a ‘ROT’.

IThe atlas corresponds to a mask, except that the value of the features in each defined area correspond to a unique value, e.g.
for the case of fMRI data, all voxels in fusiform have the value 3, and all voxels in orbito-frontal have the value 50.

46 CHAPTER 3. PREPARE FEATURE SET

[4 PRoNTo = Specify modality to include - m} X

From | ‘Hzlo ‘

Average signal in specified band

One kernel per frequency bin

[[] Average signal over channels

[[] One kernel per channel

Time points
om0 et 600 mg
[Average signal over time points

] One kernel per:
time point

) window of l:lms

Figure 3.5: ‘Specify modality’ GUI for MEEG data.

Time points

Similarly, the user can select a subset of the whole time window by specifying which time points (milliseconds)
to extract features from. The signal can then be averaged over those time points, or the user could build one
kernel per time point or one kernel per time window of a specified amount of milliseconds). More specifically:

e Time window: The time window is displayed and can be modified to include specific time points. When
entering a value in milliseconds, PRoNTo will identify the closest corresponding time point.

e Average signal over time points: The signal can be averaged across all selected time points.

e One kernel per: One kernel can also be built, either per time point or per sub-windows of XX milliseconds
(user-specified).

PRoNTo does not discard kernels when they have time points less than the user’s specified time window,
so to avoid big imbalances in the feature numbers across kernels you should ensure you provide the right
window length. For example if you want to have 100ms subwindows between -100ms and 1100ms, the end
time point should be 1099ms (because of the time point at Oms). In this example, for balanced kernels,
please specify the end of your global time window (here 1100) as the end time point desired minus your
sampling interval in ms (here 1ms). So in that case the end of your global time window would be at
1099ms.

As a precautionary measure against a few time points ending up defining a whole kernel, whenever the
defined global time window is not properly divisible by the defined time window, PRoNTo will automati-
cally append the extra time points to the last kernel, if these extra time points account for less than 30%
of the defined time window, and will only create a new kernel to put the extra time points, if those are
more than 30%.

Frequencies

Finally, if the data set contain frequency information (i.e. multiple frequency bins), the user can select which
bins to analyze, average the signal within the band of interest or build on kernel per frequency bin. More
specifically:

3.4. BATCH INTERFACE 47

e Similar to time points, the range of frequency bins included in the data can be viewed and specific sub-
ranges selected.

e Average signal in specified band: This is where the user can specify the frequency band to be averaged,
as specified above. This is useful to test multiple frequency bands without having to manually perform
the averages as a pre-processing step.

e One kernel per frequency bin: This button will make PRoNTo build a kernel for each frequency bin.

Note 1: Features that are not present in the 1st file are greyed out and the corresponding panel cannot be
accessed (e.g. frequencies in the present case).

Note 2: It is not possible to average over one feature and select multiple kernels for that same feature (which
is logical). It is however perfectly acceptable to build multiple kernels on more than one feature (e.g. one kernel
per channel and per sub-time window of 50ms).

The PRT.mat structure saves all information linked to the file arrays in a fas field (standing for ‘File Array
Structure’), which size corresponds to the number of selected modality in all feature sets. The selected options
and the link to the kernel (saved on the disk as a .mat) are stored in a fs field (standing for ‘Feature Set’),
which size corresponds to the number of feature sets defined by the user.

Important note: When working with Graphical User Interfaces (GUIs), some messages might appear in MAT-
LAB workspace. These can display information about the operations currently performed or explain why the
toolbox does not do as the user expected (e.g. when a file could not be loaded or if information was input in
a wrong format). Therefore we strongly encourage the user to have a look at MATLAB prompt when using GUIs.

Finally, we want to remind the reader once more that in the main window, from PRoNTo v3.0 while it is
still possible to concatenate multiple modalities (i.e. runs) in samples, it is NOT possible to build one kernel
per modality anymore, as this functionality has been transferred to the model step.

3.4 Batch interface

The ‘Feature set / Kernel’ matlabbatch module (Figure 3.6) allows the input/selection of all parameters and
options aforementioned. Just note that the batch is based on the names of the modalities and/or conditions.
Therefore, for the batch to work properly, names should be consistent across all steps, starting from data and
design to the model specification and running.

Important note: Defining all important steps in one batch and running that batch will overwrite the PRT.mat
previously created and thus delete the links between the PRT.mat and the computed kernel(s) and feature set(s).
The file arrays would then be recomputed each time the batch is launched. For large datasets, we therefore
recommend splitting the batch in two parts: a data and design and prepare feature set part and a second
part comprising the model specification, run model and compute weights modules. This would indeed allow
changing, e.g. model parameters, without recomputing the feature sets and kernels.

3.5 PRT structure

The PRT structure has been affected by these changes for the fs and fas structures (MEEG example):

In PRT .fs.modality, the fields ‘aver’ and ‘multkern’ were added. They represent which features averaging
or multiple kernels were performed. This information is important for the construction of the weights later on.
The ‘dim_m’ field also keeps the indexes of which channels, frequency bins and time points were used. Again,
it is useful for the weights and the display of the weights (to obtain channel labels for example).

Regarding the file array structure, the hdr is the object of the first file for the first subject of the modality.
It allows to keep the channel labels, time points and frequency bins, as we would for image orientation or so.
‘idfeat_img’ is empty as it is not possible/useful to have a 1st level mask.

48

CHAPTER 3. PREPARE FEATURE SET

4. Batch Editor - m] X
File Edit View SPM BasiclO PRoNTo o
D& R P
Module List Current Module: Feature set/Kernel
Help on: Feature set/Kernel 2
Load PRT.mat <X
Feature/kernel name <X
Data format
. Nifti
. . Modality
. .. Modality name <-X
. . Samples / Conditions
... All samples
.. Voxels to include
... Allvoxels
. Detrend
... None
. Scale input scans
. . No scaling
. Use atlas to build ROI specific kernels v
v
< >
Feature set/Kernel
Compute feature set according to the design specified
This branch contains 3 items:
* Load PRT.mat
* Feature/kernel name
* Data format v

Figure 3.6: matlabbatch GUI for feature set building.

Chapter 4

Model Specification and Estimation

Contents

4.1 Introduction L e 49
4.2 Model specification L e e 49
4.3 Feature set L 50
4.4 Model type / pattern recognition algorithm 0oL 51

4.4.1 Classification o e e e 51

4.4.2 Regression 52

4.4.3 Hyper-parameter optimization Lo oo 53
4.5 Cross-validation e 54
4.6 Model estimation Lo e e e 57
4.7 Batch interface L L e 58
4.8 Model: Specify from L e 60
4.9 Important changes from PRoNTo v3.0 60

4.1 Introduction

In PRoNTo model specification is the core step of the pattern recognition analysis and entails setting up the
combination of the different components. For example, model specification is where you select which data
features to use as input (i.e. feature sets or kernels), what type of prediction to perform (e.g. classification
or regression), which machine learning algorithm to use (e.g. Support Vector Machines, Gaussian processes,
...), which cross-validation strategy to employ (e.g. ten-fold cross-validation, leave one run out, ...) and which
operations to apply to the data/kernel before the algorithm is trained/tested. The framework provided by
PRoNTo is highly flexible and supports most types of supervised pattern recognition analysis typically performed
in neuroimaging. This chapter provides an overview of each of the components making up a model in PRoNTo.
The presentation will focus on the user interface although it is important to note that the batch system provides
several advanced options not available in the user interface (described further).

4.2 Model specification

To begin a model specification with the PRoNTo user interface, select ‘Model: Specify new’ from the main
PRoNTo window. This will launch the model specification window (Figure 4.1). Next, select the PRT.mat con-
taining the data and design information as well as the feature sets and kernels. Note that at least one feature
set must be defined in this structure before a model can be created. See chapter 3 for details on constructing
feature sets.

Enter a unique name to identify the model, which is used internally in PRoNTo, by the batch system and for
display purposes. It is a good idea to select a meaningful but short name (without spaces). Note: the PRT.mat
data structure retains a permanent record of all models created but if a model with the specified name already
exists in the PRT.mat data structure, it will be automatically overwritten.

49

50 CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

|4 PRoNTo :: Specify model

Select PRT.mat _

Feature set

@ Yes
Selected feature set

A

Classification ~

Define classes

Binary support vector machine ~

Define range

Cross-Validation

Custom

Selected data operations

Sample averaging (within bio g
Sample averaging (within sut
Mean centre features using tr
Normalize samples

Regress out covariates

< >

Specify model Specify and run model

Figure 4.1: Model specification GUI

4.3 Feature set

The drop-down list titled ‘Feature set’ that existed in versions 2.X has now been changed to two lists, the
‘Feature set’ list which includes all the available features sets in that PRT, and the ‘Selected feature set’” which
includes the selected feature sets for the particular model that the user wants to build. This change serves
the fact that from v3.0 it is now possible to combine feature sets at the modelling level. If a Multiple Kernel
Learning (MKL) method is selected, the kernels will be used in the MKL (even if they themselves contain
multiple kernels). If a single kernel method is chosen, the kernels will be added, which in case of linear kernels
corresponds to the features being concatenated. This feature has been added to both the batch and the GUI.
As before, the kernels should have the same number of samples (e.g. number of subjects or number of trials)
to be combined, but not necessarily the same number of features.

Select the appropriate feature set(s) from the drop-down list. If more than one run/session are available for
each subject, each run could be input as an independent modality in the data and design step and a single-
subject classifier might be specified using leave-one-run-out cross-validation.

As already mentioned in the first chapter, PRoNTo interfaces LIBSVM. However, only the SVM algorithm
was used so far. In the current release PRoNTo now interfaces LIBLINEAR as well and uses more algorithms
from both libraries. In addition, the ‘custom’ machine can now be optimized given hyper-parameters. PRoNTo
also allows the optimization of more than one parameter (entered as a cell array of values that is then trans-
formed into a grid).

The non-kernel route has also been enabled, i.e. the ‘Use kernel’ radio button is now functional and can be
ticked off to machine learning algorithms that work directly with the features instead of kernel machines. This
is recommended for samples with a low number of features. Please note that using these algorithms on typical
neuroimaging datasets (i.e. # features >> # samples), will likely lead to time-consuming estimations and poor
performance.

4.4. MODEL TYPE / PATTERN RECOGNITION ALGORITHM o1

4.4 Model type / pattern recognition algorithm

In this part the model type should be chosen (i.e. classification or regression), in addition to the classes/samples
to be used and the specific machine learning algorithm. In the current release, three pattern classification algo-
rithms using kernels are supported, binary support vector machines, Gaussian processes (binary and multiclass)
and L1 Multi-Kernel Learning. There are also four pattern regression algorithms using kernels, Gaussian process
regression, kernel ridge regression', relevance vector regression and L1 Multi-Kernel Learning). From PRoNTo
v3.0 there is also a new pattern regression algorithm, linear epsilon-insensitive SVM (e-SVM) regression. Fi-
nally from PRoNTo v3.0 there are also 5 available non-kernel pattern classification algorithms: Binary SVM
using L1- and L2- regularization, Multiclass SVM, as well as Logistic Regression using L1- and L2- regularization.

Note: Be aware that since from PRoNTo v3.0 the option for ‘building one kernel per modality’ has been
removed from the feature step, and the option to combine kernels has been transfered to this step, for both
classification and regression models. The ‘L1 Multi-Kernel Learning’ machine becomes available as an option
in the drop-down list, only if more than one feature set have been selected.

Note: If you select more than one feature set, but the selected classification/regression technique is a single
kernel method (e.g. SVM or KRR), the kernels will first be summed before entering the classification/regression
modelling. This corresponds to concatenating the features before building the kernel. For regions of interest in
a single modality, the summed kernel is hence equivalent to a whole brain model. However, if the ‘Normalize
samples’ operation is included this equivalence will not hold.

The PRoNTo user interface provides a mechanism for flexible definition of which parts of the data or
experimental design should be used for each classification or regression model. Note that this will not necessarily
be the whole experiment; for example, in a complex fMRI experiment there may be several groups, each
containing multiple subjects, each in turn can have multiple experimental conditions (e.g. corresponding to
different subprocesses of a cognitive task). In such cases, it is usually desirable to ask several different questions
using the data, such as discriminating between groups for a given experimental condition (‘between group
comparison’), discriminating between experimental conditions for a fixed group (‘between-task comparison’) or
training independent pattern recognition models for different subsets of subjects. All of these can be easily
defined via the user interface by clicking the ‘Define classes’ button (for classification) or ‘Select subjects/scan’
(for regression).

4.4.1 Classification

The class selection panel is displayed in figure 4.2. First, define the number of classes, noting that some classi-
fication algorithms (e.g. support vector machines) are limited to binary classification, while other classification
algorithms (e.g. Gaussian processes) support more than two classes. Enter a name for each class - again, it is
a good idea to make these names informative but short. Notice that immediately after the number of classes
has been specified, the group-, subject- and condition selection panels are greyed out. To enable them, simply
select one of the classes from the drop-down menu.

For each class, select the subjects and conditions (if any) that collectively define that class. It is possible
to select multiple experimental conditions in the same class, but this complicates model interpretability and
potentially also model performance. If a condition or subject is erroneously selected, click on it in the ‘selected
subject(s)’ or ‘selected condition(s)’ panel and it will be removed from the list.

When specifying the classes, some of the restrictions we previously imposed were lifted. For example, it is
not needed that all the subjects have all the conditions. This is especially the case when the user wants to
pool multiple conditions together. The code will simply ‘skip’ that condition for subjects who do not have it.
It is also now possible to subsample the classes through a new button ‘Subsample according to smallest class’
in figure 4.2, such that they match (as close as possible) the number of trials/examples in the class with the
lowest number of samples. If multiples classes are pooled together, this subsampling takes care to include as
many trials/samples from each of the pooled categories as they are represented in the pooling.

1Kernel ridge regression is equivalent to a mazimum a posteriori approach to Gaussian process regression with fixed prior
variance and no explicit noise term.

52 CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

The performance of classification models is evaluated based on measures such as total accuracy, class accu-
racies and positive predictive values (representing the sensitivity and specificity).

|4 PRONTo = Specify classes - m] X

e

Subjects in group Conditions in modality

Groups in data set
G1 ~

Select all Select all

Selected subject(s) Selected condition(s)
S1
| .

Figure 4.2: Subject / condition selection panel for classification models

4.4.2 Regression

Regression is a generic term for all methods attempting to fit a model to observed data in order to quantify
the relationship between two groups of variables. Traditionally in neuroimaging massively univariate strategies
(e.g. GLM) have been largely used, where, for example, MRI data for each voxel are independently fitted with
the same model. Statistics test are used to make inferences on the presence of an effect at each voxel/feature
(e.g. t-test). Pattern regression, on the other hand, takes into account several input variables (voxels/features)
simultaneously, thus modelling the property of interest considering existing relations among the voxels/features.

Although most studies exploring predictive analyses in neuroimaging have been related to classification,
regression analysis has aroused interest in neuroscience community for its ability to decode continuous charac-
teristics from neuroimaging data. This approach has potential to be used when the examples (patterns) can
be associated to a range of real values. The objective is to predict a continuous value instead of predicting a
class to which the example belongs. These values usually refer to demographic, clinical or behavioural data (as
age, blood pressure or scores resulting from a test, for example). Different metrics can be used to compute the
agreement between the predicted values and the actual ones, such as Pearson’s correlation coefficient (r) and
Mean Squared Error (MSE).

The specification of which subjects and scans to include in regression models is similar to that for classifica-
tion, see Figure 4.3. In the current release, multiple regression targets can be specified at the ‘Data & Design’
level to perform between-subject regression, however only one regression target can be selected at the model
level as version 3.0 does not enable multi-output prediction. Moreover regression targets can be also input along
the conditions of an experimental design to perform within-subject regression.

The interface for selecting regression targets has also been modified to match that of the classes, as regression
targets can be entered within subject.

4.4. MODEL TYPE / PATTERN RECOGNITION ALGORITHM 53

[4] PRONTO : Select subjects/targets for regression - O x

Subjects in group Targets in modality
S1 age

Groups in data set
~

G2

Select all Select all |

Selected subject(s) Selected target(s)

Figure 4.3: Subject / condition selection panel for regression models

4.4.3 Hyper-parameter optimization

From PRoNTo v2.0, it is possible to optimize hyper-parameters of the machine learning models. For example,
the soft-margin (a.k.a. C) hyper-parameter in SVM can be optimized, using a nested cross-validation scheme.
In this case, there are two loops in the cross-validation scheme. The inner loop is used for parameter optimiza-
tion and the outer loop is used for assessing the model’s performance. More specifically, the data is divided
into training and testing sets according to the cross-validation scheme selected (outer loop). For each fold of
the outer loop, the training set is further divided into training and testing sets according to the cross-validation
scheme selected (inner/nested loop). The inner loop is used to train and test the model with each value of the
hyper-parameter specified by the user. The parameter leading to the highest performance in the inner/nested
loop (according to balanced accuracy for classification and Mean Squared Error for regression) is then used in
the outer loop. For each fold of the outer loop, the model is trained using the ‘optimal’ value of the hyper-
parameter and tested on the data that was left out (and which was not used for parameter optimization). This
nested CV procedure can lead to different values of the hyper-parameter to be selected in each fold. These are
stored in the outputs of the model and can be reviewed in the ‘Display Results’ panel.

Optimizing the hyper-parameter might lead to improved results compared to fixed values. This will usually
depend on the number of features in the data: for example, for whole brain models based on SVM classifiers,
with many more features than images/trials, it is reasonable to assume that changing the hyper-parameter will
not affect the model performance significantly due to the high dimensionality of the data with respect to the
number of examples. However, when using regions of interest (in a second-level mask or in a MKL model)
or .mat files, the ratio between the number of features and the number of examples might be much smaller.
In this case, different values of the hyper-parameter might lead to different performance and optimizing the
hyper-parameter is desirable.

Performing a nested cross-validation can be computationally expensive. For computational efficiency, PRoNTo
allows to specify different cross-validation schemes for the ‘outer’ and the ‘nested” CVZ.

2For example, the outer CV could have more folds, to use as much data as possible in each fold for prediction, while the nested
CV would not need as many folds to select the ‘optimal’ value of the hyper-parameter (e.g. k-folds CV).

54 CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

From PRoNTo v3.0, the optimization of more than one parameter (entered as a cell array of values that
is then transformed into a grid) is also allowed. For example, the soft-margin parameter can be optimized
for SVM and for MKL (classification and regression). In the same way, it is possible to optimize the A ridge
parame[ter ﬁor KRR. If no value is provided, those parameters will take the values 0.01,0.1, 1,10, 100 and 1000,
ie. 10.17%3l

4.5 Cross-validation

In the final part of the specify model input form, select the type of cross-validation to employ. Cross-validation
(CV) is a crucial part of the pattern recognition modelling and is used to assess the generalisation ability of the
model and to ensure the model has not overfit the data. Typically this is done by partitioning the data into
one or more partitions: a ‘training set’, used to train the model (e.g. fit parameters) and a ‘testing set’ used to
assess performance on unseen data. By repeatedly repartitioning the data in this way, it is possible to derive
an approximately unbiased estimate of the true generalisation error of the model.

The cross-validation schemes in neuroimaging applications are leave-one-subject out (LOSO; exclude one
subject for testing, train with the remaining), leave-one-run-out (LORO; leave one fMRI run out for testing,
train with the remainder) and leave-one-block-out (LOBO; leave out a single block or event and train with
the remainder). LOSO is suitable for multi-subject designs, while LORO and LOBO are suitable for single
subject designs, where the former is better suited to designs having multiple experimental runs and the latter
is appropriate if there is only a single run. From the previous release (PRoNTo v2.1), PRoNTo supports each
of these, and also supports leave-one-subject-per-group-out (LOSGO) for classification, which is appropriate if
the subjects in each group are paired or for repeated measures experimental designs. For all the aforementioned
cross-validation schemes, PRoNTo also includes its k-folds counterparts which have more recently been shown
to provide better estimates.

A new cross-validation option was added which is related to the new option ‘Subsample according to the
smallest class’. So from PRoNTo v3.0, PRoNTo also supports ‘Leave-One-Block-per-Class-Out’ (and its k-folds
counterpart). It gets complex with pooling and subsampling, as the code is selecting the trials condition by
condition. We added a random shuffling of the train/test division in the class containing pooled categories to
make sure that one category is not left aside entirely in one fold, another in another fold, etc. An example of
CV matrix after pooling the first 2 classes together and subsampling is shown in figure 4.4. Please note that
LOSGO is not appropriate for classes defined from a design. Versions 1.1 and later allows k-fold cross-validation
for each of the available schemes. This means that the user specifies the number of folds (‘k’) and that the
data is partitioned according to that number. For example, specifying k = 4 will use 25% of the data to test
the model, and 75% to train it. Note: k& = 1 splits the data in half, training the model on the first half and
testing on the second, i.e. there is no circular partitioning. We recommend using k-folds CV when possible as
Leave-One-Out has been shown to lead to over-optimistic model performance estimation.

From PRoNTo v2.0, a GUI allows the user to fully specify a customized cross-validation scheme. First, a
‘basis’ needs to be specified (Figure 4.5). Three options are available:

e Load a .mat containing a previously computed CV matrix (needs to contain the variable ‘CV’).
e Select a basis from the pop-down list (contains the same options as for the outer CV).

e Specify the number of folds.

When an option has been selected, a new window will appear (Figure 4.6). The top panel of this win-
dow is a table that can be edited. Each row refers to a sample selected in the definition of the classes (or
to perform regression on). Each column represents a fold. For each column, the different samples can have a
value of 2 (test set), 1 (train set) or 0 (unused in this fold). Setting a whole fold to 0 takes it out of the CV
matrix. Note: it is possible to change the value of multiple samples by changing the value of the last sample to
modify, then shift-select the first one to modify. This also works across folds. The bottom panel displays the
structure of the data selected for further classification or regression, along with a preview of the built CV matrix.

4.5. CROSS-VALIDATION 55

4. PRONTO : Review Cross-Validation - [m] X

Save ¥

Figure 4.4: Example of CV matrix after pooling the first 2 classes together and subsampling

4\ PRoNTo :: Specify CV — O %

[]Load from mat Browse |

[Select basis |Leave One Subject Out

[] Specify number of folds

Mumber of folds: I:l
Specify CV

Figure 4.5: Specify CV window to build custom cross-validation

The resulting CV matrix can be saved in a .mat, alongside the PRT (name: model name- CV.mat). This
matrix can be loaded as a custom CV in the batch, if exactly the same samples were selected for modelling.
Note: The ‘custom’ CV option is not available as a nested/inner cross-validation scheme.

Information concerning the cross-validation structure is stored internally in matrix format, and can be visu-
alised by clicking ‘Review Kernel and CV’ from the main ProNTo window (see 4.4 and 4.7 for two examples).
In the left panel, this figure indicates which group, subject, modality and condition each scan in the feature set
belongs to. On the right, each cross-validation fold (partition) is displayed as a separate column and each scan
is colour coded according to whether it is in the training or testing set (or if it is unused).

It should be emphasised that the type of cross-validation selected should be appropriate for the experimental
design. For example, it does not make sense to select a leave-one-subject-out cross-validation approach for single
subject designs. It is also important to ensure that the training and testing sets are completely independent
to avoid the cross-validation statistics becoming biased. This is particularly important for fMRI, where succes-
sive scans in time are highly correlated. For example, if a leave-one-block-out approach is employed and the
blocks are too close together then the independence of the training and testing set will be violated, and the
cross-validation statistics will be biased (technically this is governed by the autocorrelation length of the fMRI
timeseries and the temporal blurring induced by the haemodynamic response function). This can be avoided
if care is taken to ensure that overlapping scans are discarded from the design (see chapter 2), but it is a very

56 CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

[PRoNTo : Custom Cross-Validation

fold 1 fold 2 fold 3 fold 4 fold 5

Cross-Validation

Test
Train
1 2 3 4 5

Figure 4.6: Custom Cross-Validation Window. For each fold, the user can specify which samples (e.g. images/-
trials) are part of the training and test set, or are unused

Group Subject Modality Condition Block Scans

"4 PRONTO : Review Cross-Validation - O X

Save N

Figure 4.7: Review cross-validation window

important issue, and the user should still be careful to ensure that cross-validation folds are sufficiently far apart
in time (especially for LOBO cross-validation).

During the model specification, it is also possible to select one or more operations to apply to the data/kernel.
Each of these operations is described below:

1. Sample averaging (within blocks): Constructs samples by computing the average of all scans within
each block or event for each subject and condition.

2. Sample averaging (within subjects): Constructs samples by computing the average of all scans within

4.6. MODEL ESTIMATION o7

all blocks for each subject and condition.
3. Mean centre features using training data: Subtract the feature-wise mean from each sample vector.

4. Normalize samples: Scales each sample vector (i.e. each example) to lie on the unit hypersphere by
dividing it by its Euclidean norm.

5. Regress out covariates: Regresses out the covariates entered for each subject/sample using training
data only. If this operation is selected, PRoNTo will always remove confounds first before other data
operations are performed.

6. In case of non-kernel algorithms we have two extra data operations.

e Normalize features: Also called Min-Max scaling, is to rescale the features so that they lie in a
fixed range, with min=0 and max=1.

e Z-score features: Also called standardization, is to rescale the features so that they will have the
properties of a standard normal distribution with =0 and o=1, where p is the mean (average) and
o is the standard deviation from the mean.

A crucial point to note is that all operations are embedded within the cross-validation structure such that the
parameters of the operation (e.g. mean and standard deviation of the features) are estimated using the training
data only. This prevents a very common mistake in pattern recognition from occurring, whereby parameters
are computed using the whole data set prior to cross-validation. Observing a complete split between training
and testing sets during all phases of analysis ensures that accuracy measures are an appropriate reflection of the
true generalisation ability of the machine and are not biased because of improper applications of preprocessing
operations to the entire dataset.

Other points to note include:

1. The order of operations can make a difference. For example, subtracting the mean then dividing each
data vector by its norm is not the same as performing the operations the other way around.

2. Data operations (1) and (2) have no effect if no design is specified or for events with a length of one TR.

At a minimum, we recommend that features should be mean centered during cross-validation. In addition,
for multiple kernel learning, we advise the user to normalize each kernel after mean centering. This will com-
pensate for the fact that different kernels might be computed from examples/samples with different number of
features (e.g. different regions contain different numbers of features).

The different operations selected for a specific model can then be reviewed using the ‘Review Kernel and
CV’ (starting from v2.0). The selected operations will be listed below the kernels (‘Show kernel’).

4.6 Model estimation

Using the GUI, it is possible to either ‘Specify’ the model, or ‘Specify and Run’ the model. The first option saves
all the parameters of the model in the PRT structure. This information can be found in PRT.model(m) . input,
where m is the index of the model. The second saves all the parameters of the model and then runs the model.
In this case, the inputs, which include the cross-validation matrix, the target values or labels, and the machine
(e.g. binary SVM, Gaussian Process, etc.), are fed to the estimation routines, which will then add to the PRT
an output field (PRT.model (m) .output) containing the estimated parameters, statistics, and other information
from the learning process.

In some cases (e.g. multiple models to run or models with nested CV and/or slower machines), it would be
desirable to estimate models later on (e.g. just before lunch break or at the end of the day). The ‘Model: Run’
option allows to select multiple models and run them one at a time automatically (Figure 4.8).

From PRoNTo v3.0 running permutation tests to check the statistical significance of the results has been
transferred from the ‘Display results’ module, to the ‘Model: Run’ module. So from this version, one has to

58 CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

specify the permutation testing in this step of the process.

The first thing that needs to be done using this window is to specify which PRT we would like to work
with. PRoNTo will then read the available models from this structure and display the list of models on the left
panel. These models can be selected (the selected models will show on the right panel) by clicking each model
individually or by clicking the ‘Select all’ button in the middle of the panels. Then you also have to check the
options ‘Perform permutation test’ if you want to run permutation tests, specify the number of repetitions, and
also check ‘Save permutation parameters’ to perform further statistical tests if needed®. Finally, to estimate
the model(s), one needs only to click the bottom button ‘Run model(s)’.

4. PRoNTo :: Run model -] x

Select PRT.mat -

Models in PRT Models to run

Select all

Permutations

[] Perform permutation test Repetitions

[[] Save permutation parameters

Run model(s)

Figure 4.8: Choose models to be estimated

It is useful to have a look at what is displayed in the MATLAB command space while the model is being
estimated. Information such as the number of folds can help double-check that everything is going as ex-
pected. Furthermore, if some options were specified (e.g. using a feature set with multiple kernels) that are
not available at the modelling step (e.g. to be modelled with SVM), warnings will be displayed, as in Figure 4.9.

4.7 Batch interface

The batch module includes all the functionality provided in the user interface and allows complex analyses
to be scripted in advance. As noted, the batch module also provides functionality not available in the user
interface. The most important difference is that the batch module allows customised MATLAB functions to
be used as prediction machines. This functionality allows PRoNTo to be easily extended to allow many types
of classification and regression algorithms not provided under the current framework. This can be achieved by
selecting ‘Custom machine’ under the ‘Model Type’ heading. This allows a function name to be specified (i.e.
any *.m function in the MATLAB search path). The behaviour of this custom machine can then be controlled by a
free-format argument string. See the developer documentation and the examples in the machines/ subdirectory
of the PRoNTo distribution for more information. Another important difference between the batch and user
interfaces is that mean centering data vectors across scans is enabled by default in the batch. Also, flexible
CV is available in the batch only in the form of ‘load a .mat’. This .mat must contain a variable called ‘CV’,

3For further information regarding permutation testing the user is referred to 5.4.3.

4.7. BATCH INTERFACE 59

MATLAB R201¢ |

HOME 0 NS L & 5 ()] search Documentation p

New Variable Analyze Code os Preferences (o) (% Community

[E N oo e o = G O e (z) &

— [open variable ¥ {i> Run and Time [setpath =) Request Support
New MNew Open |{*|Compare Import Save Simulink Layout Help
Script v - Data Workspace |/ ClearWorkspace ~ |7/ Clear Commands ~ Library = [l Faralel ~ ~ opAddOns >
FILE VARIABLE cope SIMULINK
<> EHA » C: » PRoNTo_data » Haxby ¥ test_results - o

Workspace | Command History &
prt

Current Folder ®

Name Updating o e sesoisa0ns 0s m

R data_and_design.png 4| Model 'F_H_S GPMult_LOBO' not found in PRT.mat. Creating... e
| [Festure_set fMRLdat Updating P pre

[-H HaxbyFeatures_ffgyrus.mat 080 3-- 27/01/2015 02

[HaxbyFeatures_wbrain.mat 2 guide

|| mgpe_weights 1.hdr pre

ﬂmgp‘fwe'g:tsé“h’;‘g £ $-- 27/01/2015 02

|| mgpe_weights_2.hdr b ar ion)

€] mape_weights 2.img guide

|_| mgpe_weights_3.hdr *-- 27/01/2015 02

€} mgpe_weights_3.img o o guide

[MKL_ROIs.mat & (nopject, _Bi_model (*buildbutt Callback',nobject prt

B PRTomat Updating PRT.nmat. > o

|| svm_weights_1.hdr Model 'F_H_S GPMult_LOBO' found in PRT.mat.

) svm_weights_1img Model 'F_E_S_GPMult_LOBO' found in PRT.mat.
L] updated 1stlevel mask_mil Loading data files.....>>
5 but

edit prt_contents.m

edit pre.m

machine cannot deal with them, ind = get(source, ...

¢4 updated 1stlevel_mask_ml.i.
|| updated_2ndlevel_mask_mL...
| 1} updated 2ndlevel_mask_mi.

|| updated_2ndlevel_mask_ml...
¢4 updated_2ndlevel_mask_mL...

ind

get (source)

Details W

I

> running CV fold: 1
£ o z

< m r

Select a file to view details

Figure 4.9: MATLAB workspace displaying warnings when kernels are added

specifying the CV matrix for the selected trials/images. An example of the batch window for model specification
is provided in figure 4.10.

4\ Batch Editor - m] X 4\ Batch Editor - m] X
File Edit View SPM BasiclO PRoNTo] File Edit View SPM BasiclO PRoNTo]
Dsd P D d| b
Module List Current Module: Model: Specify new Module List Current Module: Model: Run
Data & Design Sl Help on: Model: Specify new & Data & Design S/ Help on: Model: Run &
Feature set/Kernel Load PRT.mat <-X Feature set/Kernel Load PRT.mat <-X
Model: Specify nex Model name <-X Model: Specify nev Model name <X
Feature sets Model: Run Do permutation test?
. Feature set name <-X . Permutation test
Model Type <-X .. Number of permutations 1000
Cross-validation type . . Save permutations parameters No
. Leave one subject out .. Copy permutations from model
Include all scans No ...No
Data operations
. Mean centre features Yes
. Other Operations
. . No operations
v v
v v
< > < >
Model: Specify new & Model: Run &
Construct model according to design specified Trains and tests the predictive machine using the cross-validation structure

specified by the model.
This branch contains 7 items:

* Load PRT.mat This branch contains 3 items:
* Model name v * Load PRT.mat v
Figure 4.10: Batch interface to specify a model Figure 4.11: Batch interface to run a model

As displayed in Figure 4.10, the batch does not allow to specify and run the model directly. Instead, the
user has to add a ‘Model: Run’ module. Just as in the GUI, it is in the ‘Model: Run’ batch module where
you specify whether you want to perform permutations along model estimation. Furthermore, it is possible
to save the predictions and the balanced accuracy (for classification) for each permutation, to perform further
statistical tests if needed. The ‘Model: Run’ batch module is presented in Figure 4.11. Note: Dependencies
on the model name are available when performing a ‘Model specification’ followed by a ‘Model: Run’ module.

60 CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

4.8 Model: Specify from

The main ‘Specify model’ interface has been modified to add a new module both in GUI and in Batch, which is
called ‘Model: Specify from’. This will launch a window in GUT or in Batch (Figures 4.12 and 4.13, respectively)
that is very similar to (and heavily based on) the ‘Model: Specify new’ window, but with a couple of changes:
there is an extra popup menu that allows to select which model to copy from. Some fields have also been
disabled to ensure comparability of the models: only the feature sets, the machine (with its hyper-parameter
optimization) and the operations can be modified. Classes/Regression selection and outer CV options cannot
be modified. This new module is intended to facilitate new analysis when the goal is comparing different feature
sets or different algorithms keeping the other model specifications fixed.

4 PRONTo : Specify model from - [m] X

Select PRT.mat I
"4\ Batch Editor - m] pd
File Edit View SPM BasiclO PRoNTo ¥
Feature set D | ‘ P
Use kemels ®Yes Module List Current Module: Model: Specify from
Feature set Selected feature set B B
. . Data & Design A | |Help on: Model: Specify from 2
Feature set/Kernel Load PRT.mat <X
Model: Specify ne\ Model name <X
[ModelSpecifyfisi | Model to copy <X
v v Fields to modify
.. Feature sets
.. . Feature set name <X
Model type
Machine
] Optimize hyper-parameter Define range
Cross-Validation Scheme | hd
Current ltem: Field
Cross-Validation *Feature sets ~
Model T
Cross-Validation Scheme \ ype
Data operations
Data operations Selected data operations o
D |~ o
Sample averaging (within su < > Specify...
Mean centre features using t
Normalize samples -
Rearess oif covariates v Field A~
S Field to modify in copied model. All choices performed should be consistent

with the selected model type, selected samples and cross-validation scheme.

One of the following options must be selected:
* Feature sets v

> -
Specify model Specify and run model

Figure 4.12: ‘Model: Specify from’ in GUIL Figure 4.13: ‘Model: Specify from’ in matlabbatch.

4.9 Important changes from PRoNTo v3.0

As described in ‘What’s new’ there are two important modifications in the PRoNTo code that will affect the
model estimation and performance measures.

The first one is how the parameters are optimized: This change only applies when multiple values of the
hyper-parameter lead to the same maximum value of model performance. In previous versions, PRoNTo was
choosing the median value. From v3.0, PRoNTo identifies the largest stable region (if the ‘Image Processing’
toolbox from MATLAB is present) and chooses the center of gravity of this region in the hyper-parameter grid
as the best hyper-parameter. This change should have limited impact.

The second one is how the stats are computed: Until PRoNTo v2.1 the predictions were concatenated across
fold and the overall performance was computed based on the concatenation of predictions. This way to estimate

4.9. IMPORTANT CHANGES FROM PRONTO V3.0 61

model performance can however lead to over-optimistic model performance estimations. So from PRoNTo v3.0
the performance measures are computed for each fold and then averaged across folds. This is also reflected in
the ‘Display results’ window where some plots have been replaced at the model level (e.g. replacing the overall
confusion matrix by a ‘balanced accuracy distribution’ across folds in the plot). In general, the results will
reflect more the average but also the deviation of the results across folds.

The reader is referred to [13] for further information regarding the justification for the two aforementioned
changes and more general for model performance estimation.

62

CHAPTER 4. MODEL SPECIFICATION AND ESTIMATION

Chapter 5

Display Model Performance

Contents
5.1 Introduction L 63
5.2 Launching results display o L 63
5.3 The main results display window e 64
5.4 Measuring model performance oL L Lo 65
5.4.1 Classification o e e e e 65
5.4.2 Regression L e 65
5.4.3 Permutation testing L L Lo 67
5.5 Visualizing the model performance, 67
5.5.1 Classification L e e 68
5.0.2 Regression e 71
5.5.3 Influence of the hyper-parameter on performance 73

5.1 Introduction

Once a machine (e.g. a classifier or a regression function) has been specified, its parameters have been esti-
mated over training data, and its performance has been evaluated over a testing set using cross-validation (or
nested-cross validation), it is necessary to examine the outcome of the whole procedure in detail. The results
windows enables the user to see the model’s performance evaluated by different metrics.

Examining model output and parameters is helpful in diagnosing the potentially bad performance of a
particular model. For example, if the machine cannot perform above chance, it could be due to lack of predic-
tive information in the data, inappropriate experimental design, large amount of noise in the data, insufficient
amount of data, wrong choice of features, or the wrong choice of machine. It is important to recognise that any
of these factors could cause the modelling to fail.

Model performance can be reviewed using the ‘Display Results’” GUI. Alternatively, all computed statistics
are saved within the PRT structure, in the PRT.model (m) . output.stats field, with m, being the index of the
model to review.

5.2 Launching results display

Make sure all previous steps have been performed (Data & Design, Chapter 2; Prepare feature set, Chapter 3;
and Model: Specify /Run, Chapter 4)

In the ‘Review Options’ panel of the main PRoNTo window, press ‘Display Results’. At the ‘Select PRT.mat’

window, navigate to where your ‘PRT.mat’ file is stored (using the left column), and select it. The main results
window will open and look as represented in Figure 5.1. In the ‘Model’ panel in the top-right corner, the list of

63

64 CHAPTER 5. DISPLAY MODEL PERFORMANCE

models that have been successfully estimated will appear. Note: there will be a ‘beep’ if one or more models
were specified but not estimated (‘Model; Run’) and their name will appear in the command window.

{4 PRONTO : Results -] X
Save Figure File Edit View Insert Tools Desktop Window Help -
DEade ROV L L- 2|08 | a0

PRoNTo: Results

Plot Model
Model ~
~
Fold R
Plot
Influence of the hyper-parame! v
< >
Stats

Copyright 2011 PRoNTo Edr'tplol| Help ‘ Quit |

Figure 5.1: Initial state of the results display main window.

5.3 The main results display window

The window is divided into three panels; going clockwise from top left to bottom left, they are:

Plot : This panel displays different result plots that can be visualized in PRoNTo for a specific model. With
the exception of the confusion matrix plot, these cannot be interacted with.

Model : This panel allows the user to select the model to visualize, whether to visualize a particular fold or
all folds at once, and which plot to produce.

Stats : The stats panel allows the user to visualize a variety of performance metrics (based on the selected
fold), including accuracy for classification models and MSE for regression models. In addition, p-values
for these metrics based on permutation tests can also be visualized.

To populate the ‘Plot’ panel, first click on a model in the ‘Model” selector, then on ‘All folds / Average’
(or a particular fold) in the ‘Fold’ selector, and finally on a plot in the ‘Plot’ selector. The next section details
the plots available. The window also comprises ‘Edit plot’, ‘Help’ and ‘Quit’ buttons. The ‘Edit plot’ button
exports the displayed plot in an extra window, such that it can be edited and easily saved. The ‘Help’ button
provides information on each panel of the window (not as detailed as in this manual) and the ‘Quit’ button
closes the results window. In addition, the GUI menu comports a ‘Save figure’ option (on the top left) that acts
as a ‘printscreen’ of this window (with white background), which can be saved for records/publications.

5.4. MEASURING MODEL PERFORMANCE 65

5.4 Measuring model performance

One of the main questions to ask is ‘how good is a predictive model?’. In regression, goodness-of-fit is often
assessed via mean squared error and coefficient of determination (R?). In classification, a common practice is
to compute prediction accuracy, both for each class and for all test data. Once a specific performance metric
has been obtained, it is also possible to obtain a p-value for the metric, reflecting how certain we are that the
result is not due to chance.

The statistics table gives a summary of the model’s performance. Model performance is estimated differently
for classification and for regression. In PRoNTo, classification performance is assessed using total accuracy
(TA), balanced accuracy (BA), class accuracies (CA) and class predictive values. For regression, the agreement
between the real and the predicted targets is computed based on the coefficient of determination (R?), the
mean squared error (MSE), the normalized mean squared error, and the correlation between the targets and
the predictions.

5.4.1 Classification

The accuracy acc is the total number of correctly classified test samples divided by the total number of test
samples N, irrespective of class. The accuracy is exactly equivalent to

acc =1— lezn:l(“(y”’ f(xn)), (5.1)

where lo1(yn, f(x,)) is a 0-1 loss function that counts each classification error as costing 1 and each classifi-
cation success as costing 0:

e F) = { 2 20 6:2)

Balanced accuracy takes the number of samples in each class into account, and gives equal weight to the
accuracies obtained on test samples of each class. In other words, the class-specific accuracy is computed by
restricting the sum of equation 5.1 to be taken over C disjoint subsets of the whole testing data, where each
subset contains only test samples from one class. This produces a set of class-specific accuracies {acey, . .., accc},
from which the balanced accuracy can be computed as

1
acc’® = ol Z acce. (5.3)

Balanced accuracy is the measure of choice when there is class imbalance (one class, called the majority
class, has much more data than others).

The stats panel also gives the class accuracies {accy, ..., accc}, useful to check whether the model favours
some classes over others. If class 1 represents control subjects, and class 2 represents patients, then class 1
accuracy is equivalent to specificity, and class 2 accuracy is equivalent to sensitivity. In the same way, the
figure displays class positive predictive value, which represents the number of false positives for each class. An
example of classification stats is displayed in Figure 5.2. Area Under the Curve (AUC) will be described later
in the chapter.

5.4.2 Regression

As previously mentioned, model performance for regression is assessed by the correlation between the predic-
tions and the targets (linear correlation), the coefficient of determination (R?), the mean square error (MSE),
and the normalized MSE. An example of such stats window is displayed in Figure 5.3.

The mean-squared error is calculated as:

MSE = % > (yn — F(x0))? (5.4)

n

Where y, is the real target for the examples/sample n and f(X,,) is the predicted target for the exam-
ples/sample n. This is the standard measure when assessing goodness-of-fit for regression models.

66 CHAPTER 5. DISPLAY MODEL PERFORMANCE

"4 PRoNTo :: Results - O X
Save Figure File Edit View Insert Tools Desktop Window Help >

NEde AU EL- S 0H eD

© Truelabels
| Permuted labels

Figure 5.2: Example statistics for all folds of a two-class problem modelled by an L1-MKL.

[4] PRoNTo & Results - o x |
Save Figure File Edit View |nsert Tools Deskiop Window Help ‘

FEF IR PRI EILT:)

L] s
Cd ,
°
e * ’
‘ v
° "o E .
.E'. t /9’ o0 ;
0 0% % 3 v
e o &
% . Prediction Errors -
e - .l & R2 Distribution
'? Influence of the hyper-parameter ¢
< >
Edit plot Help Quit

Figure 5.3: Example statistics for all folds of a regression problem modelled with a KRR.

5.5. VISUALIZING THE MODEL PERFORMANCE 67

Since the magnitude of the MSE depends on the scale of y, we also calculate the Normalised Mean Square
Error, ‘Norm. MSE’:

Norm.MSE = M5B (5.5)

var(y)

where we divide the MSE by the variance of the targets over the data. This gives a scale invariant measure
of prediction accuracy. In addition, the correlation coefficient of the targets and predictions are determined:

Zn(yn - Uy)(f(mn) - Uf)
{220 (n = 1y)? 22, (f(n) — 1p)?}2

where 1, and py are the sample means of the targets and predictions respectively. The resulting measure
—1 < CORR < 1 provides a measure of the strength of the linear dependence between the targets and the
predicted targets, with values close to zero indicating no relationship, values close to 1 indicating a positive
relationship, and values close to -1 indicating a negative relationship. Values of CORR less than zero would
imply that the model has performed poorly, as this would mean that targets with large values tend to be given
smaller predicted values than targets with small values. However, it should be remembered that a large positive
value of CORR does not necessarily mean that the model is giving accurate predictions, since a global scaling
and shifting of the predictions gives the same value for CORR. We would therefore recommend examining both
CORR and MSFE, as well as the scatterplots, to verify that the model is performing well. For completeness,
the statistics table also include the ‘coefficient of determination’ R?, which is given by

CORR = (5.6)

R? = CORR? (5.7)

5.4.3 Permutation testing

Much of statistical theory and machine learning theory rests on the assumption that the data is IID (indepen-
dently and identically distributed). However, in functional neuroimaging this assumption is often not met, due
to e.g. within-run correlations and haemodynamic effects. Therefore, classical estimates of confidence intervals
(such as the binomial confidence interval) may not be appropriate. Permutation testing is a non-parametric
procedure that allows to obtain p-values for the performance metrics in this case. Because it requires retraining
the model a number of times, which can be costly in computation time, this is not done by default.

If a user wants to run permutation test, this can be done in the ‘Model: Run’ module. In order to run
permutation test for a specific model the user needs to select the ‘Perform permutation test’ button in GUI,
or select the ‘Permutation test’ option in the ‘Do permutation test?’ field in matlabbatch. You also have to
fill in the repetitions field with the desired number of repetitions R. Having done this, when you run the
‘Model: Run’ module, PRoNTo will estimate the model for the specified number of repetitions with permuted
labels/targets, and produce a p-value for performance statistics (see Figure 5.2).

The smallest increment in p-value is equal to 1/R (e.g. 20 permutations gives you increments of 0.05),
with a minimum value of 1/R (i.e. running 10 permutations will never lead to statistically significant result
at the commonly used threshold of p < 0.05). Usually, we would recommend computing several hundreds to a
thousand permutations.

For both classification and regression models, the p-value associated with each performance measure can
be estimated using permutations. Until they have been estimated, ‘N.A.” will be displayed (standing for ‘not
available’).

Important note: This step is essential to assess model performance! It is not methodologically sound to
simply assume that the chance level is close to 50% and that any balanced accuracy higher than that threshold
is significant. Please report p-values as computed from permutations along with model performance.

5.5 Visualizing the model performance

Looking at a model output’s graphically can often yield insights into its performance. In PRoNTo, plots are
different for classification and regression. As previously described, from PRoNTo v3.0 there is a change in the

68 CHAPTER 5. DISPLAY MODEL PERFORMANCE

way we estimate a model’s performance. As mentioned in 1.4.1, model performance was typically concatenated
across folds (in the confusion matrix or ROC curve). The concatenation can however lead to over-optimistic
model performance estimations and further reflects a model that was not estimated (instead, we estimated
multiple models). We have hence modified the code to compute the average of performance across folds. This
is also, primarily, reflected in the ‘Display results’ window where some plots have been replaced at the model
level (e.g. replacing the overall confusion matrix by a the new ‘balanced accuracy distribution’ performance
measure across folds in a violin plot). In general, the results will reflect more the average but also the deviation
of the results across folds. We encourage the users to report both values.

5.5.1 Classification
Accuracy Distribution

From PRoNTo v3.0, a new performance measure that is being displayed in the ‘Plot’ panel of the ‘Display re-
sults’ is the ‘balanced accuracy distribution’ of the model, together with the mean. The balanced accuracy here
is defined as the average accuracy obtained on either class. So based on a typical confusion matrix notation, the
balanced accuracy is given by equation 5.3. The difference between the balanced accuracy and the conventional
accuracy is that the latter doesn’t take into account each class individually.

So the benefits of balanced accuracy over the conventional accuracy is that some times the conventional
accuracy can be high only because the classifier takes advantage of an imbalanced testing set, where in that
case the balanced accuracy would drop closer to chance, which would be much more representative of the
model’s performance. If on the other hand the classifier performs equally well on either class, then the balanced
accuracy reduces to the conventional accuracy (i.e. the number of correct predictions divided by number of
predictions). Figure 5.4 shows an example of such a plot for a binary classification (SPM EEG dataset, Faces
versus Scrambled).

Accuracy distribution

|

o o o o
@ N e © =
T T T T T

Model accuracy
[=]
[#)]
.

0.4

03

0.2r

01r Balanced accuracy
ol ‘ Mean

Figure 5.4: Example of a balanced accuracy distribution for a binary problem modelled by L1-MKL.

Histogram plot

The histogram plot is a smoothed density version of the predictions plot, showing how function values are
distributed. A good classifier would have minimal overlap between the densities. The error rate of the classifier
is proportional to the area of the overlap. The ROC curve can be thought of as the result of sweeping a
decision threshold over the range of functional values, and recording the joint sensitivity/specificity values for
each decision threshold setting. A typical linear SVM would have a decision threshold at 0. Figure 5.5 shows

5.5. VISUALIZING THE MODEL PERFORMANCE 69

an example of such a plot for a binary classification (SPM EEG dataset, Faces versus Scrambled, LOBO CV).
From PRoNTo v3.0 with the change in the way we estimate a model’s performance, this performance measure
is available only for within each fold.

1500 T T T T T T

1000 - E

0) .
-2 -1.5 -1 -0.5 0 0.5 1 15

function value %1072

Figure 5.5: Example function values histogram curve for a binary problem modelled by L1-MKL.

Confusion matrix plot

The confusion matrix shows counts of predicted class labels y, = f(x,) (in rows) versus true class labels y,
(in columns). An ideal confusion matrix is diagonal: all predicted class labels correspond to the truth. Off-
diagonal elements represent errors. It is important to check that none of the classes is “sacrificed” to gain
accuracy in other classes - in other words, if all classes are equally important to classify, no class should have
more off-diagonal than on-diagonal entries. Many summary statistics, including class accuracy, total accuracy,
sensitivity, and specificity, can be computed from the confusion matrix. Figure 5.6 shows an example of a
confusion matrix (Haxby dataset, Faces versus Houses versus Scissors, LOBO CV). From PRoNTo v3.0 with
the change in the way we estimate a model’s performance, this performance measure is available only for within
each fold.

Predictions plot

A prediction plot displays, for a particular fold (y-axis), the output value of the machine’s decision function for
each test sample (x-axis, e.g., the function value corresponds to the distance of the test example to the boundary
in case of an SVM or to the posterior probability of the test example belong to a specific class in case of GP). The
decision boundary /threshold is displayed by a vertical line at the centre of the plot. A well-performing classifier
will yield very different function values for samples of different classes, i.e. samples from different classes will
fall on different sides of the decision threshold. The inspection, in each fold, of the overlap of function values
between classes, can help to identify which of the test blocks/subjects/conditions is atypical with respect to the
training set. This plot is available for binary classification. On the plot, each class is represented by a different
marker and color, and indicated in the legend. Figure 5.7 shows an example predictions plot.

Receiver Operating Characteristic (ROC) plot

ROC curve is a commonly used measure to evaluate a binary classifier performance. It shows the trade off
between the true positive rate (TPR) (sensitivity, the number of correctly classified positive instances divided
by the total number of positive instances) and false positive rate (FPR) (1-specificity, the number of incorrectly
classified negative instances divided by the total number of negative instances) across a number of thresholds. An
ideal classifier would have an ROC passing through the top-left corner, depicting all true positives and no false
positives. The area under curve (AUC) is a summary measure of classifier performance, where higher is better (1

70 CHAPTER 5. DISPLAY MODEL PERFORMANCE

Confusion matrix: all folds

Predicted

Figure 5.6: Example confusion matrix for all folds of a three-class problem modelled by GP.

T
¥ Class 2
2 Class1
5t X o] 1
4 (OIS 4 B
2
g3 [i
2 o b4 B
1 ®o 0 B
1 1 1 1 1
1 0.5 o 05 1

function value

Figure 5.7: Example predictions plot for a two-class problem modelled by an SVM.

represents perfect performance, 0.5 represents random performance). Please note that there might be discrep-
ancies between AUC and balanced accuracy as AUC measures the relative ranking of positive and negative test
samples in terms of decision values while balanced accuracy reflects whether each decision value is correct or in-
correct [7]. For example: assume a testing set comprising 4 images, 2 of faces (our positive class) and 2 of houses
(our negative class) and an SVM binary classifier. The function values are [—0.5087 — 0.0371 — 2.2863 — 1.5753],
which corresponds to all scans being classified as ‘houses’ (since the decision threshold for SVM is 0). However,
we notice that the decision values for the positive scans (first 2 values) are higher than for the negative scans,
which leads to an AUC of 1. It is hence important to report both measures when assessing model performance
and/or comparing models.

In PRoNTo, the ROC and AUC are estimated within each fold if a specific fold is chosen. Users may notice
that sometimes AUC is ‘NaN’ (Not a Number) within fold. AUC is computed by using TPR and FPR, which
are both proportions. However, if at least one of the two proportions doesn’t exist, AUC cannot be computed.

5.5. VISUALIZING THE MODEL PERFORMANCE 71

For example, if users choose leave-one-subject-out as the CV scheme with one image per subject, there is only
one test target in each fold. Hence, there will be no positive instance or negative instance from which we can
compute TPR or FPR. AUC is therefore NaN. Another case leading to a NaN value is when there is only one
class in the test targets within one fold (e.g. leave-one-block-out with one class per block as in Haxby dataset),
even if there are multiple test targets. In all of those cases where AUC is NaN, we still display it, such that users

are aware of this limitation. Figure 5.8 shows an example of ROC plot (Haxby dataset, Faces versus Houses,
4-folds nested CV, LOBO outer CV, display All folds).

Receiver Operator Curve [Area Under Curve =1.00

True positives
=]
[4,]
1

0 L L L L L L L L L
o a1 oz 0.3 04 05 a6 o7 05 04 1

False positives

Figure 5.8: Example ROC curve for a two-class problem.

5.5.2 Regression

All plots that follow are from the regression tutorial in Chapter 14. That tutorial uses fMRI data from different
subjects and the target is to predict their age. For more detailed information the reader is advised to read the
tutorial.

Prediction Errors

As for classification, the plots have been modified according to reflect the fact that we are now estimating model
performance within each fold and then averaging the performances. A ‘Prediction Errors’ plot was added to
reflect, for each point, the difference between the target and the predictions. A perfect regression model would
lead to all points being located on the ‘0’ vertical axis. An example is shown in figure 5.9.

R2 Distribution

Similarly to the ‘Accuracy distribution’ plot, a ‘R2 Distribution’ plot displays the distribution of R2 across
the different folds in a violin plot. The plot is symmetric and displays the mean of the R2 distribution if no
permutations were performed while it will contain the ‘true label’ R2 distribution on its left and the ‘permuted
label’ R2 distribution on its right if permutations were estimated (Figure 5.10). The same thing applies to
classification problems (example in figure 5.2). Note: Since we are plotting the distribution of the R2s of
across the different folds, this performance measure is available only when you choose ‘All folds / Average’.

Predictions (scatter)

This plot represents the predicted values (x-axis) against the real values or targets (y-axis). A perfect corre-
spondence between targets and predictions would be represented by a diagonal on this plot. Figure 5.11 displays
such a plot, where each different color represents a different fold.

72 CHAPTER 5. DISPLAY MODEL PERFORMANCE

5F x x ¥ X KoMK DHHN M X X * %
4 MO HOBOC KX * WX KKK
h=
L3+ x X XX OXXHKOEX | X X XXX X
2 Xxx FROC M b * x
1r X XK S WK X ® X
1 | 1 | 1
-10 -5 0 5 10

Prediction Errors

Figure 5.9: Prediction Errors using a KRR model.

R2 distribution R2 distribution
T R2 tr True labels
Jr Mean Permuted labels

o 087 o 0.8
Q (3]
< =
] T
g 061 g 0.6
= =
) @
2041 204
) @
o °
0 =]
= 0.2 + = 0.2

or 0r i

Figure 5.10: R2 distribution plot without (left) and with (right) permutations.

e
85 -
0®
®
e
80 ©
®
%) @
= o °
&5t . @
g 0 7
° & Beo’ o0
L N
70 - ogve ’
e o : ° ...
e O 2
@ Cbpo g0
65 | . @ o
° xo‘”a 8
O 0% °® ()
60 e 2%® 8 & . . .
55 60 65 70 75 80 85
predictions

Figure 5.11: Scatter plot of target values and predictions modellled by KRR.

Predictions (bar)

This plot displays, for each image/sample, the target and the prediction in bar plots. An example plot is
displayed in Figure 5.12 for the same KRR model. From PRoNTo v3.0, this plot exists only for each fold.

5.5. VISUALIZING THE MODEL PERFORMANCE 73

[ie]
o

T
I Torget
I Fredicted | |

targets and predictions
N w B (%)) [=2] ~ (2]
o o o o o o o
T

-
(=]

2 4 6 8 10 12 14 16 18 20
subjects

Figure 5.12: Example of bar prediction plot for a KRR model with 25 subjects.

Predictions (line)

This plot displays, for each fold, the target and the prediction, each in line plots. An example plot is displayed
in Figure 5.13 for the same KRR model. From PRoNTo v3.0, this plot exists only for each fold.

85 T T T T T T T T T
% — 9 -Target
il — ©— - Predicted
i
L f
80 D ?
il i
;o @ ’ 7
o Pl /" ;! !
5 [it ! I& I'
> 75 |- \ /
g I NP /o ;o]
% £y ~Y! i \ | [
c ! R o ! ¢ |
ks 1 [T R R R | o
S I < U RN 1 I
s70r 0wy ! ;oo ! f;’ 1
o R i ® R » AP
a W } 0 i\ ;! & -)
\\\ I[/ b et S ‘\ &/ 9
W efﬂ \ 9!{(}@!/ \.‘i1 ;1
65 - \ I Loy P N ! |
o} 1 Vi Vol
LP ;)
| / &
& U
(5,
60 1 1 1 L ‘d 1 L 1 1 L ®\
0 2 4 6 8 10 12 14 16 18 20 22
folds

Figure 5.13: Example of line prediction plot for a KRR model with 25 subjects.

5.5.3 Influence of the hyper-parameter on performance

This plot will be present in the list if hyper-parameter optimization was performed. When displaying the average
across folds, for each value of the hyper-parameter, it displays the average model performance (balanced accuracy
for classification and MSE for regression, line on the plot) across nested folds, with an error bar representing
the standard deviation of model performance. The frequency of selection of a hyper-parameter value (i.e. the
number of times this value was returned as ‘optimal’ to the outer CV fold) is represented with a gray bar plot
on the right-side y-axis. An example of such a plot is displayed in Figure 5.14 for the optimization of the
soft-margin parameter in L1-MKL (Haxby dataset, Faces versus Houses, 4-folds nested CV, LOBO outer CV).

74 CHAPTER 5. DISPLAY MODEL PERFORMANCE

When selecting a specific fold, this plot displays the model performance for each value of the hyper-parameter,
and represents the optimal value (i.e. the one leading to highest performance) in red.

100 F -100

T T T

4 4 k4
)
g g
by g
g 2z
3 @

-
2 -
2 a0 480 =
g &
s g
B =
-] =
=
.
u F| 1 1 1 1 1 TR P 1 1 TR 1 1 1 | P D
2 A i} 1 2 3
C (log 10)

Figure 5.14: Example performance curve depending on the hyper-parameter value with frequency of selection
of each hyper-parameter.

Chapter 6

Computing Feature and Region
Contributions

Contents
6.1 Introduction L Lo 75
6.2 Feature weights e 76
6.3 Atlas-based weights e e 77
6.4 Batch interface L 77

6.1 Introduction

The previous modules allow the user to specify one or more models. These include the machine to be used,
the cross-validation scheme and the classification/regression problem. The estimation of those models led to
predictions on unseen/test data (in each fold), from which measures of performance of the model can be derived
and displayed.

In addition, as PRoNTo uses linear models it provides the option of recovering the model weights in the
original feature space, and transforming the weights vector into an image, or map. These maps contain at each
feature the corresponding weight of the linear model (that together define the predictive function), and which
related to how much this particular feature contributed to the classification/regression task in question. The
weights can later be displayed using the ‘Display weights’ modules (described below).

Furthermore, the MKL machine estimates contribution of each kernel to the predictive function. This means
that there will be one value per region of interest as defined by an atlas and/or per modality (depending on how
multiple kernels were built). Therefore, it is possible to build maps at the kernel level, in addition to the maps at
the feature level. Kernels (which can correspond to different regions, different channels or different modalities)
can then be ranked according to their contribution to the model. Since L1-MKL is a sparse algorithm, only a
subset of the kernels will have a non-null contribution to the model, this can facilitate model interpretation.

If the user wants to create images of the weights, using the GUI, the user first needs to click the ‘Compute
weights’ button on the main PRoNTo window. This will launch the window shown in Fig 6.1. To estimate the
weights and create the weight maps the user needs to select a PRT.mat file. The window is then divided in two
panels: a ‘Feature weights’ panel and a ‘Atlas-based weights’ panel which are further explained in the sections
below.

(0]

76 CHAPTER 6. COMPUTING FEATURE AND REGION CONTRIBUTIONS

4. PRoNTo :: Compute weights - O X

Feature weights

Models computed in PRT ConnEEG_atlas_MKL

weights_ConnEEG_atlas_MKL

Atlas-based weights
Compute average/kernel weight per region

3 _with_data\Multimodal_SPM _preprocessedldatalEEG_atr’as.mat‘

Compute weights

Figure 6.1: Weights computation in GUI.

6.2 Feature weights

For kernel methods the weights can be estimated as a linear combination of the training examples. For non-
kernel algorithms the weights are directly computed and saved in the PRT structure. For the kernel algorithms
PRoNTo saves the coeflicients of the training examples. These coefficients are then multiplied by the training
examples to obtain the model weights. The vector of model weights has the same dimensions of the original
feature space. In case of NIfTT and MEEG data the model weights can be converted to an image with the same
dimensions of the input images. This computation is done for each fold. If for example we have standard MRI
data which have 3 dimensions, then the weights can be converted to a 3D image. The resulting 3D images for
all folds are then assembled into a single 4D NIfTT file with dimensions [3D x (number of folds + 1)], where
1 corresponds to an extra 3D image with the averaged weights over all folds. The NIfTT file is saved in the
same directory as PRT.mat. In the case of multi-class classification, one image will be built for each class,
the index of the class being saved in the image name (e.g. image- name_ cl.img). In the case of multiple
modalities being considered as multiple kernels (i.e. not concatenated in samples), one image will be built for
each modality, the modality name being appended to the image name. In case of data of lower dimensions, for
example MEEG data in sensor space (2D), as well as data in a .mat file format, the procedure remains the same.

In the ‘Feature weights’ panel, PRoNTo will show the list of available models, and the user can choose one
model for which to estimate the weights. If the selected model is the MKL modelling of ROI-based kernels, the
‘Atlas-based weights’ panel will be automatically updated, and the name of the selected atlas at the feature set
step will appear. Otherwise, those fields will stay blank.

In this panel, it is also possible to define the name of the created image file, which is saved in the same
directory as PRT.mat. Alternatively, if left empty, PRoNTo will name the file according to the model name,
class (if multi-class machine) and/or modality (if MKL on modalities).

6.3. ATLAS-BASED WEIGHTS 7

6.3 Atlas-based weights

The ‘Atlas-based weights’ panel allows the user to estimate the contribution to the model, of each anatomically
defined region of interest (ROI), as defined by an atlas (same dimensions as for the feature weight images).
If the model refers to an MKL machine estimated on kernels per region, the ‘Atlas name’ field will be filled
automatically and the contribution of each region is derived from the contribution of each kernel (i.e. they
correspond to the kernel weights). If this is not the case (single kernel machine or feature set), an atlas should
be loaded (using the browse option). The weights will then be summarized for each region a posteriori.

Two options are available when estimating such contributions:

e Contributions of kernels estimated through MKL: In this case, the contributions of each region to the
model are derived from the contributions of each kernel. This option is available for MKL modelling of
feature sets containing multiple kernels based on ROIs defined by an atlas.

e Summarizing the weights according to ROIs: If, for example we have MRI data and a whole brain feature
set was used, or if the kernels were added to perform single kernel modelling (e.g. SVM, GP, KRR, RVR),
it is possible to select an atlas and summarize a posteriori the weights in each anatomically defined ROI.
The contribution of each region is then simply the sum of the absolute values of the weights within that
region, divided by the number of voxels (or features in general) in that region (see [23] for details). If
summarizing weights by using an atlas is desired, this atlas should be used as a second level mask in the
‘feature set’ step to ensure a perfect overlap between the atlas and the model features. Otherwise, any
voxels used as features (or features used in general) in the model but not present in the atlas will be
summarized in one extra region referred to as ‘other’ that will not correspond to any anatomical region.

In both cases, the contribution of each region is divided by the total contribution of all regions. The derived
values can then be seen as percentages of contribution of each region to the decision function. The contributions
can be ranked, leading to a list of regions sorted by descending contribution to the model. This list can also
be computed if multiple modalities were built and used in an MKL model. In this case, each modality has a
contribution to the model, that can be normalized and a sorted list can be derived.

Furthermore, for MKL models - which are sparse in the number of kernels contributing to the model - a bar
graph can be built, representing the number of kernels with a non-null contribution to the model. The same
graph bar will depict the contribution of each region to the decision function in the case of summarized weights.
In this case, the bar graph will not be sparse.

Finally, from PRoNTo v3.0, there is also a new button below the ‘Atlas-based weights’ panel, named ‘Build
weight images for permutations’ which when checked, enables to build weight images for each permutation
independently.

6.4 Batch interface

The matlabbatch module to compute the weights has the same options as the GUI. One main difference being
that instead of listing the available models in a given PRT, it will ask for the name (string) of the model to be
used. As for estimating models, the name of the model should be exactly the name given in ‘Model: Specify
new/from’.

CHAPTER 6. COMPUTING FEATURE AND REGION CONTRIBUTIONS

4 Batch Editor - O X
File Edit View SPM BasiclO PRoNTo -
Ded| P
Module List ‘Current Module: Compute weights
Data & Design il Help on: Compute weights ~
Feature set/Kernel Load PRT.mat <-X
Model: Specify ne\ Model name <-X
Model: Run Image name (optional) "
Compute weights Build weight images per ROI
. No weight per ROI
Build weight images for permutations No
v
< >
Compute weights @
Compute weights. This module computes the linear weights of a classifier and
saves them as a 4D image. 3 dimensions correspond to the image dimensions
specified in the second-level mask, while the extra dimension corresponds to
the number of folds. There is one 3D weights image per fold.
v

Figure 6.2: Weights computation in matlabbatch.

Chapter 7

Display weights

Contents
7.1 Introduction Lo 79
7.2 Displaying weights o 80
7.2.1 Select image to display oL 81
7.2.2 Weights map L 83
7.2.3 Anatomical image Lo 83
7.2.4 Additional plotso e 83

7.1 Introduction

In PRoNTo it is possible to visualize the weights for a specific model. There is a huge debate in the neuroimag-
ing field on how to interpret weights of linear machine learning models ([9, 24, 25, 29]). Nevertheless, the model
parameters or weights can provide some insights on which features are driven the predictions.

Some brain areas are probably more informative about class membership/regression targets than others. For
example, in a visual task, we would expect discriminative information in the occipital lobe. This can be seen
as information mapping, and it can be helpful to evaluate a specific model - if the discriminative weights of a
machine are concentrated in the eyes, for example, it is important to correct the mask used in the analysis to
exclude them. The weight map is a spatial representation of the decision function, i.e. every feature with non
zero weight contributes to the decision function. Pattern recognition models (classifiers or regression functions)
are multivariate, i.e. they take into account correlations in the data. Since the discrimination or prediction is
based on the whole pattern, rather than on individual regions or features, all features (with non zero weights)
contribute to the classification or regression and no conclusions should be drawn about a particular subset of
features in isolation.

Tt is also possible (starting from ProNTo v2.0) to derive weights at the region level (as anatomically defined
by an atlas, from MKL or from summarizing the weights). The ‘Display weights’ window allows to display
maps of voxels/features and of region contribution. Furthermore, the region contributions can be ranked in
descending order, yielding a sorted list of regions according to their contribution to the classification/regression
model. We hope this will help the interpretation of model’s weights.

Moreover, as mentioned in chapter 1, starting from PRoNTo v3.0, PRoNTo supports MEEG (SPM) data
as well as any .mat file, for example MEEG data in sensor space (2D, or even 1D), or any kind of .mat data,
therefore the models’ weights can have different dimensions (corresponding to the data used).

Important note: The implemented version of MKL ([20]) is sparse in the kernel combination. This means
that only a few kernels (which might correspond to different modalities, regions or channels, for example) will
contribute to the model. However, this selection of kernels might depend on the dataset, and small variations in
the dataset (as induced by cross-validation) might lead to different subsets of kernels begin selected. Therefore,

79

80 CHAPTER 7. DISPLAY WEIGHTS

care should be taken when reporting selected kernels and each fold should be looked at separately. We also
provide a quantification of the variability across folds of the ranking of the kernels (‘Expected Ranking’, see
further) to provide some insights on this issue.

7.2 Displaying weights

To launch the ‘Display weights’ window, make sure that weight maps have been computed for at least one
model (Compute Weights, Chapter 6) and press the ‘Display weights’ option. At the ‘Select PRT.mat’ window,
navigate to where your ‘PRT.mat’ file is stored (using the left column), and select it in the right column. The
display window then opens (Figure 7.1).

{4 PRONTO Weights

Savefigure File Edit View Insert Tools Desktop Window Help
FEF DY R P A EL
Display

Weights weights_mkiFacesHousesimg v | () weights per voxel
Model ' mkIFacesHouses > ot m
Fold All folds / Average M () weights per region

Weights map

Intensity

Load weights map Load anatomical img || _ - Resetimages |

Figure 7.1: Display weights main window after selection of PRT.mat.
The window is divided into four panels. Going from top left to bottom left, they are:

Display : This panel allows the user to choose which model and weights to display. As well as whether to
display the voxel/feature weights or the region contributions, whenever this is available. Finally the user
can also display the average weights across all folds, or the weights of a specific fold.

Weights map : This displays different weights (according to the type and dimension of data) of the selected
weight map and allows to navigate it.

Anatomical img : The user can also load an anatomical image, which if loaded, it will display three projec-
tions, and the cross-hair will be synchronised with the weight map. Note: This option only makes sense
for weights for NIfTI brain data, e.g. MRI or fMRI.

Additional plots : The blank area at the bottom of the window will display additional information about the
model weights, such as a sorted list of the kernels (e.g. regions or channels) according to their contribution
(if weights per region/channel were computed, in the form of a table) and a bar plot of the relative kernel
contribution. If MKL modelling was performed based on multiple modalities, the same table and bar plot
will display the relative contributions of each modality to the decision function.

7.2. DISPLAYING WEIGHTS 81

7.2.1 Select image to display

The ‘Display’ panel shows the models for which weights have been computed and weight images were found in
the same folder as the PRT. For each model, the list of images available is displayed in the ‘Weights’ pop-down
list. Typically, one image will be created for a binary classifier or regression with only one modality or multiple
modalities concatenated as samples (e.g. multiple runs). On the other hand, multiclass classification models
will return one image per class (with the index of the class appended to the name of the image). In the same
way, multiple modalities used in multiple kernels will lead to the building of one weight image per modality. For
each image, the weight map can be displayed for each fold or for their average. Starting from PRoNTo v2.0, in
case of NIfTT brain data, it is possible to display the contributions of each voxel (‘weights per voxel’) or of each
region (‘weights per region’, if previously computed).

Note: the weight images (per voxel and per region) are automatically detected in the list of files in the PRT
folder according to the name specified in the ‘Compute weights’ step (Chapter 6). Modifying the image name
afterwards or moving the images might lead to warning messages and the images will not be listed in the GUI.

To display a weight image, select a model, an weight image and a fold. If we have MRI data, and if only
weights per voxel were estimated, the window will look similar to Figure 7.2. Notice that the ‘weights per
region’ radio button is currently deactivated.

[4& PRoNTo : Weights - O X
Save Figure File Edit View Insert Tools Desktop Window Help ~
DEde kAN OTDLL- /A 08 D
Display

Model svmFacesHouses =

Weights weights_svmFacesHouses img (®) weights per voxel
Fold Allfolds / Average v "~ weights per region

___omn__|
MM 248448175

V& 353234235

Intensity 0.00208465

Tsil - Resetimages

Figure 7.2: Displaying weight image of a two-class SVM model.

As we mentioned before, from the current release (v3.0), PRoNTo also supports MEEG (SPM) data, as well
as data in simple .mat format. Therefore, weights maps can be built and displayed for all modality types, i.e.
for MEEG data, both directly from their original MEEG format, and also from the NIfTI images generated
from them inside SPM, and also from any generic .mat files that were analyzed. More specifically:

e For 1D data: For MEEG and .mat, weights are displayed as bar graphs (with the color of the bar
representing the amplitude of the weight) (e.g. vector with brain connectivity features used for .mat).
Example in figure 7.3.

82 CHAPTER 7. DISPLAY WEIGHTS

Figure 7.3: ‘Display weights’ for 1D MEEG or .mat data.

e For 2D data: The display shows the matrix, with y-axis as the 1st dimension and x-axis as the 2nd
dimension (after squeezing out dimensions of size 1), with the color of a (x,y) pair displaying the magnitude
of its weight. Example in figure 7.4. Finally, 2D NIfTT images (like MEEG data) are displayed as before,
except a small change in the color map. Example in figure 7.5.

Figure 7.4: ‘Display weights’ for 2D MEEG or .mat data.

000000
000000

C:\Users\Konstantinos Tsirlis\Drop Load anatomical img —

Figure 7.5: ‘Display weights’ for 2D NIfTT images derived from 2D MEEG data (using SPM).

e For 3D data: Displaying weights in 3D data in PRoNTo v3.0 is only available using NIfTI brain images,
as has been from versions 2.X. Examples in figure 7.2.

7.2. DISPLAYING WEIGHTS 83

7.2.2 Weights map

All the different types of weight maps are displayed with a colorbar. 2D and 3D NIfTT images are also displayed
with a cross-hair. The colorbar indicates the relative importance of the voxel/feature to the decision function.
This value is also indicated in the ‘intensity’ field of the ‘Anatomical img’ panel. Note that all voxels/features
with weight different from zero contribute to the decision function, since the analysis is multivariate. Contrary
to common practice in Statistical Parametric Mapping, which is a mass-univariate approach, it
is not recommended to threshold the weight map and report only on the peaks of the decision
function’s weight map, unless they have perfectly null contribution (as might happen with sparse
models such as L1-MKL modelling).

7.2.3 Anatomical image

By clicking on the [...] button next to the ‘Load anatomical img’ field, a dialogue opens that allows you to
select an anatomical images ‘.img’ file that was co-registered with the data images. In this panel, the cross-hair
position is displayed in voxels and in mm. It can also be reset to the origin of the image. For each position, the
corresponding voxel weight is displayed in the ‘intensity’ field.

The main reason behind displaying the anatomical image next to the weights map was to help users identify
which parts of the brain correspond to which weights in the weights map, therefore it only makes sense for
NIfTI brain data (e.g. MRI, fMRI). This correspondence is only used as an approximation and you should not
rely it.

Note: One should only use the co-registered anatomical images as a crude heuristic to help them navigate
through the weights maps only in the case of MRI (3D) NIfTT images. There is no real correspondence between
the anatomical image and other types of data (for example 2D MEEG data).

7.2.4 Additional plots

Additional information will be displayed in two main cases:

e Multiple Kernel Learning modelling: MKL modelling based on modalities, regions or channels, will
provide weights at two levels: the kernel level and the voxel/feature level. The kernel contributions, which
sum to 1, can then be ranked in descending order.

e Summarizing weights per region: Starting from PRoNTo v2.0, weights can be summarized within
regions of interest as defined by an atlas (user-specified). For each region, a normalized contribution can
be defined, and those contributions can then be ranked in descending order. If the atlas was not selected
as second-level mask at the feature set step, users might see one extra region in the ROI label column in
a table labelled as ‘other’ in case there are voxels/features that do not overlap with the selected atlas (see
Chapter 6).

In both cases, the kernel’s or region’s contributions will be displayed in a table as well as in a bar plot, for
each fold and for their average (according to the selected fold in the ‘Display’ panel). An example is displayed
in Figure 7.6, for weight summarization per region after MKL modelling.

In the case where kernels were built both at the modality and at the region level (i.e. multiple modalities
with each multiple regions as defined by an atlas), two tables will be displayed (one for regions, one for modal-
ities). The table for modalities will sum the contributions of each region within that modality.

Note: Everything mentioned above also applies to all the other types of data formats.

Sorted table of region/modality contributions

The displayed table comprises one row per region and 5 columns (for an example on ROIs, as displayed in
Figure 7.6):

e Index of the ROI: The first column displays the ranking of the region of interest in the selected fold,
according to its contribution.

84 CHAPTER 7. DISPLAY WEIGHTS

4 PRONTO : Weights - [m] X
SaveFigure File Edit View Insert Tools Deskiop Window Help ~
DS KRN RL-E 0B O

Display

Weights | eights_mkiFacesHousesimg O weights per voxel

Model | mkIFacesHouses

Fold Allfolds / Average v ® weights per region

Weights map Anatomical img

‘Crosshair Position
Origin

0.01
MM 00-250100

0.005 V& | 270300210

Intensity NaN
)

C:\Users\Konstantinos Tsirlis\Drop| Load anatomical img Resetimages

Label
Fusiform...
Occipital .~ 20.7087 839 1149580
Lingual _R 201918 642 114.583¢
Lingual L 13.8128 597 112.9161
Fusiform_. 11.0065 687 107 458!
Cingulu.. 6.0339 143 110.9161
Frontal_| 46163 373 101.1661
Parietal__ 13401 401 861661
Occipital... 0.3955 314 45125
Occipital . 02234 441 9.083:
Caudate L 0.1611 285 91250 v
< >

Export table Load labels

Weight (%) Size (feat) Exp. Ranking
21.3508 617 115.208: A

Figure 7.6: Displaying ROI contributions for a two-class MKL model.

e ROI Label: When using the atlas provided in your PRoNTo folder/atlas, the labels of each region will
be loaded automatically from a .mat, stored alongside the atlas. If using another atlas, the labels can be
loaded through the ‘Load Labels’ button. In this case, the user should select a .mat comprising a cell
array of size (number of regions,1), with the label for each region in the corresponding cell (in characters).
The cell array should be saved under the variable name ‘ROI_ names’. Otherwise, generic names will be
used (e.g. ROIL_1).

e ROI weight: The (normalized) contribution of each region is displayed in the third column (in %). The
rows of the table are sorted in descending order according to this value.

e ROI size: This column displays the size of the ROI in voxels/features. This gives indications on the
overlap between the atlas and the data.

e Expected Ranking: This measure reflects how stable the ranking of the region is across folds. It is
computed from the ranking in each fold (see [23] for details), and is therefore the same, whether the user
is displaying fold 1, or the average of all folds. If the Expected Ranking (ER) is close to the ranking in
the selected fold, then it reflects that this region has a similar ranking across folds. On the contrary, if
the ER is quite different from the ranking shown for the selected fold, this means that the ranking might
be variable across folds. This variability can come from the fact that the region did not have the same
contribution across the different folds. It might also happen that it is not selected at all in some folds (as
can happen with L1-MKL since it will not select kernels with correlated information).

When selecting a specific region label in the table, the weight map will only display colored voxel or region
weights (according to which plot was selected) for this region, the rest of the image being in grey scale. This
allows e.g. to look closely at the voxel weights within a region that highly contributes to the selected model
and fold (Figure 7.7). Finally, the table can be exported as a text file using the ‘Export Table’ button.

Bar plot of kernel

The bar plot displays the third column of the table, i.e. the contribution of each kernel to the decision function.
The x-axis represents the index of the ROI/channel/modality in the table (i.e. first column of the table), in the
selected fold, while the y-axis displays the contribution of each ROI/channel/modality. The bar graph provides
insights on how sparse or dense the kernel contributions are for the model.

7.2. DISPLAYING WEIGHTS

[4] PRONTO :: Weights
Savefigure File Edit View Insert Tools Desktop Window Help -
NEds bR ODEL- @08 ad

Display

Weights | weights_mkiFacesHouses.i v
Model mkIFacesHouses v 'ghts_ mg
Fedl Al folds / Average v

Crosshair Position
_oman |
MM | 330-46.0-17.0
VX 380230120

Intensity: -0.00095047

| Loadanatomicalimg || . Resellmagesl

<

Export table Load labels

Figure 7.7: Displaying fusiform weights for binary MKL model.

86

CHAPTER 7. DISPLAY WEIGHTS

Chapter 8

List of input files

In PRoNTo, different files need to be input by the user depending on the type of data that will be analyzed.
These typically need to include a specific variable or satisfy certain conditions. Here is a summary of input files
and their requirements:

Data & Design

e .mat inputs: For .mat modalities, PRoNTo expects one file per sample, as for nifti. This means that,
no matter the dimensionality of the data, one .mat file needs to be saved per subject for ‘Select by Scans’
or per trial ‘Select by Subject’. The first variable of this file will then be extracted as the data for that
sample. The data array can be of any dimensionality but needs to be consistent across samples and should
not contain missing values.

A script is provided (in Appendix and in PRoNTo/utils) to convert a matrix that contains all the data
for the different samples into separate .mat files. The script reads each row of the matrix and saves it as
a .mat file in a separate subdirectory.

e Regression target file - across subjects: A regression target file needs to have 2 variables:

— ‘names’: a cell array with the names of the regression targets, the first name corresponding to the
first column of the matrix, and so on. Example: ‘age’ ‘score’.

— ‘rt_subj’: a matrix of size # of subject x # of regression targets. For 3 subjects and the 2 regression
targets mentioned above, we would have:

>> rt_subj = [25, 6; 26, 8; 30, 7]

rt_subj =
256
26 8
307

e Covariate file - across subjects: The covariate file at the subject level should contain a matrix R, of
size # subjects x # covariates. It cannot contain missing or NaN values and cannot be a cell array. For
categorical variables, the values need to be one-hot encoded if no ordinal ranking is expected. For the 3
subjects above, a one-hot encoding of gender would be (2 males and 1 female, using the representation [0
1] for female and [1 0] for male):

>>R=1][1,0;1,0;0, 1]

R =
10
10
01

87

88 CHAPTER 8. LIST OF INPUT FILES

The same number of covariates should be provided across subjects.

e Conditions file - within subject: To specify the design of a subject using a .mat file, 5 variables
can be provided (this option is normally used with data types that have temporal information with an
experimental design happening during the data acquisition, e.g. fMRI, MEEG):

— names: cell array of conditions names, e.g. ‘A’ ‘B’
— omnsets: cell array of vectors on onsets for each condition, e.g. [1,4,8],2,5,7]

— durations: cell array of vectors or single values for each condition, e.g. 1,1. In the case of a single
value, this value will be repeated for all trials.

(optional) rt_trial: cell array of vectors containing one target per trial (including bad trials for
MEEG), e.g. [1.2, 1.3, 1.1],[2.1, 2.5, 2.3].

— (optional) R: cell array of matrices or vectors containing covariates per trial (including bad trials for
MEEG). Each matrix should have the size # trials in condition x # covariates. The same number
of covariates should be provided across conditions and subjects. E.g. [1,0;0,1;1,0],(0,1;1,0;1,0].

Feature set

e Atlas for .mat: When loading an atlas for a .mat modality, PRoNTo will extract the first variable of
that file. This first variable (which can have any name) should contain one array. This array should have
the exact same dimensions as the dimensions of the data from the first (and other) subjects. It should
include values between 1 and the number of ROIs. 0 and NaN values will be excluded from the feature
set (as the atlas is also forced as 2nd level mask).

To include labels of ROIs with the atlas, a separate file called ‘Labels_atlasname.mat’ needs to be found
along the atlas ‘atlasname.mat’. This file should contain the variable ‘ROI_names’; a cell array of ROI
labels. The structure of this file is the same as for nifti ROI labels. Alternatively, ROI labels can be
loaded at the ‘Display weights’ step.

A script that builds an atlas and its labels automatically from a list of networks for connectivity matrices
is provided in appendix and along the PRoNTo distribution (in /utils). If we assume that 2D connectivity
matrices are provided as input, estimated from a certain number of time series (e.g. 200). Among those
time series, some are thought to pertain to a same ‘network’ (e.g. ‘Default Mode’ or ‘Visual’). The script
will build a ROI for each ‘network’ within and between interaction. For example, ‘Visual-Visual’ will be
ROI1, ‘Visual-Default Mode’ will be ROI2 and ‘Default Mode-Default Mode’ will be ROI3.

e Channel selection file for MEEG in batch: The ‘channel selection’ module in the batch comes from
SPM directly. They accept a file containing a cell array called ‘label’, with each cell being a channel name
to include.

Model

e Custom cross-validation: Custom cross-validation allows to load a matrix. The name of the variable
in the .mat file should be ‘CV’ and the matrix should be of size #samples x #folds. The values in the
matrix need to be either 0 (sample not selected in fold), 1 (sample used for training) or 2 (sample used
for testing).

Display weights

e Labels for ROIs: For nifti and .mat, ROI labels can be loaded when displaying the weights (MEEG
comes with its own labelling). The loaded .mat file should contain a variable ‘ROI_names’, a cell array of
ROI labels. The number of labels has to match the number of regions as defined in the atlas.

Part 11

Batch interfaces

89

Chapter 9

Data & Design

Specify the data and design for each group (minimum one group).

9.1 Directory

Select a directory where the PRT.mat file containing the specified design and data matrix will be written.

9.2 Groups

Add data and design for one group. Click 'new’ or 'repeat’ to add another group.

9.2.1 Group
Specify data and design for the group.

Name

Name of the group. Example: 'Controls’.

Select by

Depending on the type of data at hand, you may have many samples per subject, such as a fMRI time series, or
you may have many subjects with only one sample per subject , such as PET images. If you have many samples
per subject select the option ’subjects’. If you have one sample for many subjects select the option ’samples’.

Subjects Add subjects/samples.

Subject Add new modality for this subject.

Modality Add new modality.

NaME Name of modality. Example: 'BOLD’. The names should be consistent accross subjects/groups and
the same names specified in the masks.

DATA FORMAT Data format for this modality. The different input files should be in either nifti, SPM MEEG
object or .mat format

INTERSCAN INTERVAL Specify interscan interval (TR). The units should be seconds.

FILES Select files for this modality. They must all have the same image dimensions, orientation, voxel size
etc. Only one file allowed for MEEG input format.

DatA & DESIGN Specify data and design.

91

92 CHAPTER 9. DATA & DESIGN

Load SPM.mat (for nifti inputs only) Load design from SPM.mat (if you have previously specified the
experimental design with SPM).This option is available for nifti inputs only. Not available for MEEG or .mat
input formats.

Specify design Specify design: samples (data), onsets and durations.

Units for design The onsets of events or blocks can be specified in either scans or seconds.

Conditions Specify conditions. This option is not available for MEEG. You are allowed to combine both
event- and epoch-related responses in the same model and/or regressor. Any number of condition (event or
epoch) types can be specified. Epoch and event-related responses are modeled in exactly the same way by
specifying their onsets [in terms of onset times| and their durations. Events are specified with a duration of 0. If
you enter a single number for the durations it will be assumed that all trials conform to this duration.For factorial
designs, one can later associate these experimental conditions with the appropriate levels of experimental factors.

Condition Specify condition: name, onsets and duration.

Name Name of condition (alphanumeric strings only).

Onsets Specify a vector of onset times for this condition type.

Durations Specify the event durations. Epoch and event-related responses are modeled in exactly the same
way but by specifying their different durations. Events are specified with a duration of 0. If you enter a single
number for the durations it will be assumed that all trials conform to this duration. If you have multiple
different durations, then the number must match the number of onset times.

Covariates Select a .mat file containing your covariates (i.e. any other data/information you would like to
include in your design). This file should contain a variable 'R’ with a matrix of covariates. Its size should be
#samples x #covariates.

Regression targets (per trial) Enter one regression target per trial onset. or enter the name of a variable.
This variable should be a vector [Ntrials x 1], where Ntrials is the number of events for the selected condition.

Multiple conditions Select the *.mat file containing details of your multiple experimental conditions.

If you have multiple conditions then entering the details a condition at a time is very inefficient. This option
can be used to load all the required information in one go. You will first need to create a *.mat file containing
the relevant information.

This *.mat file must include the following cell arrays (each 1 x n): names, onsets and durations. eg.
names=cell(1,5), onsets=cell(1,5), durations=cell(1,5), then names2="SSent-DSpeak’, onsets2=[3 5 19 222],
durations2=[0 0 0 0], contain the required details of the second condition. These cell arrays may be made
available by your stimulus delivery program, eg. COGENT. The duration vectors can contain a single entry if
the durations are identical for all events.

Time and Parametric effects can also be included. For time modulation include a cell array (1 x n) called
tmod. It should have a have a single number in each cell. Unused cells may contain either a 0 or be left empty.
The number specifies the order of time modulation from 0 = No Time Modulation to 6 = 6th Order Time
Modulation. eg. tmod3 = 1, modulates the 3rd condition by a linear time effect.

For parametric modulation include a structure array, which is up to 1 x n in size, called pmod. n must be
less than or equal to the number of cells in the names/onsets/durations cell arrays. The structure array pmod
must have the fields: name, param and poly. Each of these fields is in turn a cell array to allow the inclusion
of one or more parametric effects per column of the design. The field name must be a cell array containing
strings. The field param is a cell array containing a vector of parameters. Remember each parameter must be
the same length as its corresponding onsets vector. The field poly is a cell array (for consistency) with each cell
containing a single number specifying the order of the polynomial expansion from 1 to 6.

Note that each condition is assigned its corresponding entry in the structure array (condition 1 parametric
modulators are in pmod(1), condition 2 parametric modulators are in pmod(2), etc. Within a condition multiple
parametric modulators are accessed via each fields cell arrays. So for condition 1, parametric modulator 1
would be defined in pmod(1).namel, pmod(1l).paraml, and pmod(1).polyl. A second parametric modulator
for condition 1 would be defined as pmod(1).name2, pmod(1).param2 and pmod(1).poly2. If there was also
a parametric modulator for condition 2, then remember the first modulator for that condition is in cell array
1: pmod(2).namel, pmod(2).paraml, and pmod(2).polyl. If some, but not all conditions are parametrically
modulated, then the non-modulated indices in the pmod structure can be left blank. For example, if conditions
1 and 3 but not condition 2 are modulated, then specify pmod(1) and pmod(3). Similarly, if conditions 1 and
2 are modulated but there are 3 conditions overall, it is only necessary for pmod to be a 1 x 2 structure array.

EXAMPLE:

Make an empty pmod structure:

pmod = struct('name’,” ’param’,,’poly’,);

Specify one parametric regressor for the first condition:

9.2. GROUPS 93

pmod(1).namel = ’regressorl’;
pmod(1).paraml = [1 2 4 5 6];

pmod(1).polyl = 1;

Specify 2 parametric regressors for the second condition:

pmod(2).namel = ’regressor2-1’;

pmod(2).paraml = [1 3 5 7];

pmod(2).polyl = 1;

pmod(2).name2 = ’regressor2-2’;

pmod(2).param2 = [2 4 6 8 10];

pmod(2).poly2 = 1;

The parametric modulator should be mean corrected if appropriate. Unused structure entries should have
all fields left empty.

No design Do not specify design. This option can be used for modalities (e.g. structural scans) that do
not have an experimental design. Possibility to specify one regression target and/or covariatefor the considered
subject.

No conditions No conditions to specify for this subject.

Covariates Select a .mat file containing your covariates (i.e. any other data/information you would like to
include in your design). This file should contain a variable 'R’ with a matrix of covariates. Its size should be
#samples x F#covariates.

Regression targets (per trial) Enter one regression target per trial onset. or enter the name of a variable.
This variable should be a vector [Ntrials x 1], where Ntrials is the number of events for the selected condition.

Events in MEEG file (for MEEG inputs only) Events already in MEEG file. This option should be used for
MEEG object inputs. Possibility to add covariates or regression targets

Events in file Specify condition: name, onsets and duration.

Add regression targets/covariates Events already in MEEG file. This option should be used to add covariates
or regression targets for MEEG object inputs.

No regression targets/covariates No regression targets/covariates for this subject/modality.

Conditions Specify conditions for which to add regression targets and/or covariates.

Condition Specify condition: name, regression targets and covariates.

Name Name of condition (alphanumeric strings only).

Covariates Select a .mat file containing your covariates (i.e. any other data/information you would like to
include in your design). This file should contain a variable 'R’ with a matrix of covariates. Its size should be
#samples x Fcovariates.

Regression targets (per trial) Enter one regression target per trial onset. or enter the name of a variable.
This variable should be a vector [Ntrials x 1], where Ntrials is the number of events for the selected condition.

Samples Depending on the type of data at hand, you may have many samples per subject, such as a fMRI
time series, or you may have many subjects with only one or a small number of samples per subject, such as
PET images. Select this option if you have many subjects per modality to spatially normalise, but there is only
one sample for each subject. This is a faster option with less information to specify than the ’select by subjects’
option. Both options create the same 'PRT.mat’ but ’select by samples’ is optimised for modalities with no
design.

Modality Specify modality, such as name and data.

Name Name of modality. Example: '"BOLD’. The names should be consistent accross subjects/groups and
the same names specified in the masks.

Data format Data format for this modality. The different input files should be in either nifti, SPM MEEG
object or .mat format

Files Select files for this modality. They must all have the same image dimensions, orientation, voxel size
etc. Only one file allowed for MEEG and for .mat input formats.

Regression targets (subject) Add regression targets per subject. Only for nifti or .mat formats.

No TARGETS No regression targets.

FrROM FILE Select .mat file containing regression targets. It should contain the values in a matrix rt_subj of
size number of subjects times number of regression targets. Additionally, if the variable names is a cell of size
number of targets times 1 and contains strings, these strings will be associated with the targets as their names
and referred as such later on.

94 CHAPTER 9. DATA & DESIGN

SPECIFY Specify each regression target.

Target Subject regression targets. Specify name and values for each.

Name Name of regression target. Example: ’Age’. The names should be consistent accross subjects/groups.

Values Enter one regression target per subject. This vector should have the following dimensions: [Nsubjects
x 1], where Nsubjects is the number of subjects in group.

Covariates Select a .mat file containing your covariates (i.e. any other data/information you would like to
include in your design). This file should contain a variable 'R’ with a matrix of covariates. One covariate per
image is expected.

9.3 Masks

Select first-level (pre-processing) mask for each modality format. The name of the modalities should be the
same as the ones entered for subjects/scans.

9.3.1 Modality

Specify name of modality and file format for each mask. The name should be consistent with the names chosen
for the modalities (subjects/scans).

Name

Name of modality. Example: "BOLD’. The names should be consistent accross subjects/groups and the same
names specified in the masks.

Data format

Data format input. Either nifti, MEEG or .mat
Nifti Specify name of mask file for nifti modality.

File Select one first-level mask (image) for each modality. This mask is used to optimise the prepare data
step. In ’specify model’ there is an option to enter a second-level mask, which might be used to select only a
few areas of the brain for subsequent analyses.

HRF overlap If using fMRI data please specify the width of the hemodynamic response function (HRF).
This will be used to calculate the overlap between events. Leave as 0 for other modalities (other than fMRI).

HRF delay If using fMRI data please specify the delay of the hemodynamic response function (HRF).
This will be used to calculate the overlap between events. Leave as 0 for other modalities (other than fMRI).

MEEG No mask for MEEG object files

.mat No mask for .mat files

9.4 Review

Choose "Yes’ if you would like to review your data and design in a separate window. This window needs to be
closedbefore proceeding further.

Chapter 10

Feature set/Kernel

Compute feature set according to the design specified

10.1 Load PRT.mat

Select data/design structure file (PRT.mat).

10.2 Feature/kernel name

Target name for kernel matrix. This should containonly alphanumerical characters or underscores (-).

10.3 Data format

Data format for selected modalities. The different input files should be in either nifti, SPM MEEG object or
.mat format

10.3.1 Nifti

Add modalities in nifti format

Modality

Specify modality, such as name and data.
Modality name Name of modality. Example: 'BOLD’. Must match design specification

Samples / Conditions Which task conditions do you want to include in the kernel matrix? Select conditions:
select specific conditions from the design. All conditions: include all conditions extracted from the design. All
samples: include all samples for each subject. This may be used for modalities with only one sample per subject
(e.g. PET), if you want to include all samples from an fMRI timeseries (assumes you have not already detrended
the timeseries and extracted task components)

All samples No design specified. This option can be used for modalities (e.g. structural) that do not
have an experimental design or for an fMRI designwhere you want to include all samples in the timeseries

All Conditions Include all conditions in this kernel matrix

95

96 CHAPTER 10. FEATURE SET/KERNEL

Voxels to include Specify which voxels from the current modality you would like to include
All voxels Use all voxels in the design mask for this modality
Specify mask file Select a mask for the selected modality.

Detrend Type of temporal detrending to apply
None Do not detrend the data

Polynomial detrend Perform a voxel-wise polynomial detrend on the data (1 is linear detrend)
Order Enter the order for polynomial detrend (1 is linear detrend)

Discrete cosine transform Use a discrete cosine basis set to detrend the data.
Cutoff of high-pass filter (second) The default high-pass filter cutoff is 128 seconds (same as SPM)

Scale input scans Do you want to scale the input scans to have a fixed mean (i.e. grand mean scaling)?
No scaling Do not scale the input scans
Specify from *.mat Specify a mat file containing the scaling parameters for each modality.

Use atlas to build ROI specific kernels Select an atlas file to build one kernel per ROI. The AAL atlas
(named ’aal_79x91x69.img’) is available in the ’atlas’ subdirectory of PRoNTo

10.3.2 MEEG
Add modalities in SPM MEEG format

Modality

Specify modality, such as name and data.
Modality name Name of modality. Example: 'BOLD’. Must match design specification
Channels

Channel selection Channel selection.

All

Select channels by type Select channels by type.

Custom channel Enter a single channel name.

Regular expression Enter a regular expression for matching multiple channel labels.
Channel file

Average Average across selected.

Multiple kernels Build one kernel per selected feature in this dimension.
This will result in e.g. one kernel per channel, per time point, or

per frequency bin. Choosing multiple kernels on one dimension does not
exclude the computation of multiple kernels on other dimensions.

Time points

Time window Start and stop of the time window (ms).

10.3. DATA FORMAT 97

Average Average across selected.

Multiple kernels Build one kernel per selected dimension.

No Do not build multiple kernels

One kernel per time point Build one kernel per time point

One kernel per time window Build one kernel per time window

TIME WINDOW (MS) Length of time window to consider (in ms). E.g. 10
Frequencies

Frequency window Start and stop of the frequency window (Hz).

Average Average across selected.

Multiple kernels Build one kernel per selected feature in this dimension.

This will result in e.g. one kernel per channel, per time point, or

per frequency bin. Choosing multiple kernels on one dimension does not
exclude the computation of multiple kernels on other dimensions.

10.3.3 .mat

Add modalities in .mat format

Modality

Specify modality, such as name and data.
Modality name Name of modality. Example: 'BOLD’. Must match design specification

Samples / Conditions Which task conditions do you want to include in the kernel matrix? Select conditions:
select specific conditions from the design. All conditions: include all conditions extracted from the design. All
samples: include all samples for each subject. This may be used for modalities with only one sample per subject
(e.g. PET), if you want to include all samples from an fMRI timeseries (assumes you have not already detrended
the timeseries and extracted task components)

All samples No design specified. This option can be used for modalities (e.g. structural) that do not
have an experimental design or for an fMRI designwhere you want to include all samples in the timeseries

All Conditions Include all conditions in this kernel matrix
Scale input scans Do you want to scale the input scans to have a fixed mean (i.e. grand mean scaling)?
No scaling Do not scale the input scans
Specify from *.mat Specify a mat file containing the scaling parameters for each modality.
Features to include Specify which features from the current modality you would like to include
All features Use all features in the matrix for this modality
Specify mask file Select a mask for the selected modality.

Use atlas to build ROI specific kernels Select an atlas file to build one kernel per ROI. The atlas should
have the same dimensions as the input .mat data.

98

CHAPTER 10. FEATURE SET/KERNEL

Chapter 11

Model: Specify new

Construct model according to design specified

11.1 Load PRT.mat

Select data/design structure file (PRT.mat).

11.2 Model name

Name for model

11.3 Feature sets

Feature set(s) to include in this model.

11.3.1 Feature set name

Add onefeature set to this model. Click 'new’ or 'repeat’ to add another feature set.

Name

Enter the name of a feature set to include in this model. This can be kernel or a feature matrix.

11.4 Model Type

Select which kind of predictive model is to be used.

11.4.1 Classification

Specify classes and machine for classification.

Classes

Specify which elements belong to this class. Click 'new’ or 'repeat’ to add another class.
Class Specify which groups, modalities, subjects and conditions should be included in this class

Name Name for this class, e.g. ’controls’

99

100 CHAPTER 11. MODEL: SPECIFY NEW

Groups Add one group to this class. Click 'new’ or 'repeat’ to add another group.

Group Specify data and design for the group.

GROUP NAME Name of the group to include. Must exist in PRT.mat

SUBJECTS Subject numbers to be included in this class. Note that individual numbers (e.g. 1), or a range
of numbers (e.g. 3:5) can be entered

CONDITIONS / SAMPLES Which task conditions do you want to include? Select conditions: select specific
conditions from the design. All conditions: include all conditions extracted from the design. All samples:
include all samples for each subject. This may be used for modalities with only one sample per subject (e.g.
PET), if you want to include all samples from an fMRI timeseries (assumes you have not already detrended the
timeseries and extracted task components)Target: to specify which regression target to use. This may be used
when multiple regression targets were specified while having only one sample per subject.

Specify Conditions Specify the name of conditions or of the target to be

included. Multiple conditions can be combined.

Condition Specify condition to use.

Name Name of condition to include.

All Conditions Include all conditions in this model

All samples No design specified. This option can be used for modalities (e.g. structural) that do not have
an experimental design or for an fMRI designwhere you want to include all samples in the timeseries

Target Specify target to use.

Name Name of target to include.

Subsample examples based on class definition

Whether to subsample the example, or not. If Yes, the code will match the number of examples in each class
as close as possible. This operation takes the duration of the examplesinto account (i.e. will not cut an event).

Machine Type

Select whether a kernel or non-kernel method is to be used.
Kernel machine Choose a kernel prediction machine for this model

SVM Classification Binary support vector machine.

SVM string argument String argument for LIBSVM interfacing.

Machine optimization and parameters Choose whether to optimize machine or not

NoO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[—2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

11.4. MODEL TYPE

k Number of folds/partitions for CV. To create a 50

101

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate

for single subject designs with multiple runs/sessions.

Gaussian Process Classification Gaussian Process Classification
String arguments String arguments for GPML machine binary classification machine.

Multiclass GPC Multiclass GPC
String arguments String arguments for GPML multiclass classification machine.

L1 Multi-Kernel Learning Multi-Kernel Learning. Choose only if multiple kernels
were built during the feature set construction (either multiple modalities or ROIs).

It is strongly advised to "normalize” the kernels (in ”operations”).

Machine optimization and parameters Choose whether to optimize machine or not
NoO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[-2:5] or 1:100:1000 or 0.01 0.1

110 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds CV on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time.
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time.

repeated measures or paired samples designs.
k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration.

single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration
single subject designs.

k Number of folds/partitions for CV. To create a 50

Appropriate for

Appropriate for

Appropriate for

. Appropriate for

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate

for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate

for single subject designs.
k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate

for single subject designs with multiple runs/sessions.

Custom machine Choose another prediction machine
Function Choose a function that will perform prediction.
Custom machine string argument String argument for custom machine.

Custom machine optimization and parameters Choose whether to optimize machine or not

NO OPTIMIZATION Enter parameter fixed value if needed.
OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.
Regularization hyper-parameter Hyper-parameter range for prediction machine.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time.
repeated measures or paired samples designs.

k-folds C'V on subjects per group K-partitioning of subjects from each group at a time.

repeated measures or paired samples designs.
k Number of folds/partitions for CV. To create a 50

Appropriate for

Appropriate for

102 CHAPTER 11. MODEL: SPECIFY NEW

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

Non-kernel machine Choose a non-kernel prediction machine for this model

Binary L2-SVM Non-kernel L2-regularized L2-Loss support vector machine,can be used for multiclass
problem.

String arguments String arguments for LIBLINEAR interfacing.

Machine optimization and parameters Choose whether to optimize machine or not

NO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV. X

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[-2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

Multiclass SVM Multiclass support vector classification by Crammer and Singer, can also be used for
binary classification.

String arguments String arguments for LIBLINEAR interface.

Machine optimization and parameters Choose whether to optimize machine or not

NoO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV. R

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[-2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

11.4. MODEL TYPE 103

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

Binary L1-SVM Non-kernel Ll-regularized L2-Loss support vector machine.

String arguments String arguments for LIBLINEAR interface.

Machine optimization and parameters Choose whether to optimize machine or not

NoO oPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV. R

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[-2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds CV on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

L2-Logistic Regression Non-kernel L2-regularized Logistic Regression from LIBLINEAR.

String arguments String arguments for LIBLINEAR interface.

Machine optimization and parameters Choose whether to optimize machine or not

NoO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 1O.A[—2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

104 CHAPTER 11. MODEL: SPECIFY NEW

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

L1-Logistic Regression Non-kernel L1-regularized Logistic Regression from LIBLINEAR.

String arguments String arguments for LIBLINEAR interface.

Machine optimization and parameters Choose whether to optimize machine or not

NO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.A[—2:5] or 1:100:1000 or 0.01 0.1
110 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

Custom machine Choose another prediction machine

Function Choose a function that will perform prediction.

Custom machine string argument String argument for custom machine.

Custom machine optimization and parameters Choose whether to optimize machine or not
NoO OPTIMIZATION Enter parameter fixed value if needed.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

11.4. MODEL TYPE 105

Regularization hyper-parameter Hyper-parameter range for prediction machine.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

11.4.2 Regression

Add group data and machine for regression.

Groups

Add one group to this regression model. Click 'new’ or 'repeat’ to add another group.
Group Specify data and design for the group.
Group name Name of the group to include. Must exist in PRT.mat

Subjects Subject numbers to be included in this class. Note that individual numbers (e.g. 1), or a range
of numbers (e.g. 3:5) can be entered

Conditions / Samples Which task conditions do you want to include? Select conditions: select specific
conditions from the design. All conditions: include all conditions extracted from the design. All samples:
include all samples for each subject. This may be used for modalities with only one sample per subject (e.g.
PET), if you want to include all samples from an fMRI timeseries (assumes you have not already detrended the
timeseries and extracted task components)Target: to specify which regression target to use. This may be used
when multiple regression targets were specified while having only one sample per subject.

Specify Conditions Specify the name of conditions or of the target to be

included. Multiple conditions can be combined.

CONDITION Specify condition to use.

Name Name of condition to include.

All Conditions Include all conditions in this model

All samples No design specified. This option can be used for modalities (e.g. structural) that do not have
an experimental design or for an fMRI designwhere you want to include all samples in the timeseries

Target Specify target to use.

NAaME Name of target to include.

Machine Type

Select whether a kernel or non-kernel method is to be used.

106 CHAPTER 11. MODEL: SPECIFY NEW

Kernel machine Choose a kernel prediction machine for this model

Kernel Ridge Regression Kernel Ridge Regression.

Machine optimization and parameters Choose whether to optimize machine or not

NO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.A[—2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds CV on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds CV on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

epsilon-SVR Kernel epsilon Support Vector Regression from LIBSVM.

String arguments String arguments for LIBSVM interface.

Machine optimization and parameters Choose whether to optimize machine or not

NoO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[—2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds CV on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

11.4. MODEL TYPE 107

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate

for single subject designs with multiple runs/sessions.

Relevance Vector Regression Relevance Vector Regression. Tipping, Michael E.; Smola, Alex (2001).
”Sparse Bayesian Learning and the Relevance Vector Machine”. Journal of Machine Learning Research 1:

211-244.

Gaussian Process Regression Gaussian Process Regression
String arguments String arguments for GMPL machine prt_machine_gpr.

Multi-Kernel Regression Multi-Kernel Regression

Machine optimization and parameters Choose whether to optimize machine or not
NoO oPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 10.[-2:5] or 1:100:1000 or 0.01 0.1

1 10 100.
Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used
Leave one subject out Leave a single subject out each cross-validation iteration
k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration
k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for

repeated measures or paired samples designs.

k-folds C'V on subjects per group K-partitioning of subjects from each group at a time. Appropriate for

repeated measures or paired samples designs.
k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for

single subject designs.

k-folds CV on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for

single subject designs.
k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate

for single subject designs.

k-folds CV on block per class k-partitioning on blocks or events from each class each iteration. Appropriate

for single subject designs.
k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate

for single subject designs with multiple runs/sessions.

Custom machine Choose another prediction machine

Function Choose a function that will perform prediction.

Custom machine string argument String argument for custom machine.

Custom machine optimization and parameters Choose whether to optimize machine or not
NO OPTIMIZATION Enter parameter fixed value if needed.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Hyper-parameter range for prediction machine.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used
Leave one subject out Leave a single subject out each cross-validation iteration

k-folds CV on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for

repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for

repeated measures or paired samples designs.
k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for

single subject designs.

108 CHAPTER 11. MODEL: SPECIFY NEW

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

Non-kernel machine Choose a non-kernel prediction machine for this model

epsilon-SVR. Non-kernel epsilon-Support Vector Regression from LIBLINEAR.

String arguments String arguments for LIBLINEAR interface.

Machine optimization and parameters Choose whether to optimize machine or not

NoO OPTIMIZATION Getting default value.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Value(s) for hyper-parameter. Examples: 1O.A[—2:5] or 1:100:1000 or 0.01 0.1
1 10 100.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds CV on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

Custom machine Choose another prediction machine

Function Choose a function that will perform prediction.

Custom machine string argument String argument for custom machine.

Custom machine optimization and parameters Choose whether to optimize machine or not

NoO oPTIMIZATION Enter parameter fixed value if needed.

OPTIMIZE HYPER-PARAMETER Specify range of values and nested CV.

Regularization hyper-parameter Hyper-parameter range for prediction machine.

Cross-validation type for hyper-parameter optimization Choose the type of cross-validation to be used

Leave one subject out Leave a single subject out each cross-validation iteration

k-folds C'V on subjects k-partitioning of subjects at each cross-validation iteration

k Number of folds/partitions for CV. To create a 50

Leave one subject per group out Leave out a single subject from each group at a time. Appropriate for
repeated measures or paired samples designs.

11.5. CROSS-VALIDATION TYPE 109

k-folds CV on subjects per group K-partitioning of subjects from each group at a time. Appropriate for
repeated measures or paired samples designs.

k Number of folds/partitions for CV. To create a 50

Leave one block out Leave out a single block or event from each subject each iteration. Appropriate for
single subject designs.

k-folds C'V on blocks k-partitioning on blocks or events from each subject each iteration. Appropriate for
single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one block per class out Leave out a single block or event from each class each iteration. Appropriate
for single subject designs.

k-folds C'V on block per class k-partitioning on blocks or events from each class each iteration. Appropriate
for single subject designs.

k Number of folds/partitions for CV. To create a 50

Leave one run/session out Leave out a single run (modality) from each subject each iteration. Appropriate
for single subject designs with multiple runs/sessions.

11.5 Cross-validation type

Choose the type of cross-validation to be used

11.5.1 Leave one subject out

Leave a single subject out each cross-validation iteration

11.5.2 k-folds CV on subjects

k-partitioning of subjects at each cross-validation iteration

k
Number of folds/partitions for CV. To create a 50

11.5.3 Leave one subject per group out

Leave out a single subject from each group at a time. Appropriate for repeated measures or paired samples
designs.

11.5.4 k-folds CV on subjects per group

K-partitioning of subjects from each group at a time. Appropriate for repeated measures or paired samples
designs.

k
Number of folds/partitions for CV. To create a 50

11.5.5 Leave one block out

Leave out a single block or event from each subject each iteration. Appropriate for single subject designs.

11.5.6 k-folds CV on blocks

k-partitioning on blocks or events from each subject each iteration. Appropriate for single subject designs.

k
Number of folds/partitions for CV. To create a 50

110 CHAPTER 11. MODEL: SPECIFY NEW

11.5.7 Leave one block per class out

Leave out a single block or event from each class each iteration. Appropriate for single subject designs.

11.5.8 k-folds CV on block per class

k-partitioning on blocks or events from each class each iteration. Appropriate for single subject designs.

k
Number of folds/partitions for CV. To create a 50

11.5.9 Leave one run/session out

Leave out a single run (modality) from each subject each iteration. Appropriate for single subject designs with
multiple runs/sessions.

11.5.10 Custom

Load a cross-validation matrix comprising a CV variable

11.6 Include all scans

This option can be used to pass all the scans for each subject to the learning machine, regardless of whether
they are directly involved in the classification or regression problem. For example, this can be used to estimate
a GLM from the whole timeseries for each subject prior to prediction. This would allow the resulting regression
coefficient images to be used as samples.

11.7 Data operations
Specify operations to apply

11.7.1 Mean centre features

Select an operation to apply.

11.7.2 Other Operations

Include other operations?

No operations

No design specified. This option can be used for modalities (e.g. structural scans) that do not have an
experimental design or for an fMRI designwhere you want to include all scans in the timeseries

Select Operations

Add zero or more operations to be applied to the data before the prediction machine is called. These are
executed within the cross-validation loop (i.e. they respect training/test independence) and will be executed in
the order specified.

Operation Select an operation to apply.

Chapter 12

Model: Run

Trains and tests the predictive machine using the cross-validation structure specified by the model.

12.1 Load PRT.mat

Select PRT.mat (file containing data/design structure).

12.2 Model name

Name of a model. Must match your entry in the
"Specify model” batch module.

12.3 Do permutation test?

Perform a permutation test on accuracy, or not

12.3.1 No permutation test

Do not perform permutation test

12.3.2 Permutation test

Perform a permutation test.

Number of permutations

Enter the number of permutations to perform

Save permutations parameters

Set to Yes to save the parameterss obtained from eachpermutation.

Copy permutations from model

Set to Yes to copy the permutations from anothermodel. This option should be selected to correct for multiple
comparisons. The 2 models should contain the exact same samples.

No Do not copy permutation from another model.

111

112 CHAPTER 12. MODEL: RUN

Copy from Yes, copy permutations from a previous model.

Mdel name Name of a model. Must match your entry in the
"Specify model” batch module.

Part 111

Practical Tutorials

113

Chapter 13

Block design fMRI dataset

Contents
13.1 GUT analysis o e e e e e e 115
13.1.1 Data & Design o e e e e e e 116
13.1.2 Prepare feature set L L Lo 119
13.1.3 Model: Specify new L e 120
13.1.4 Model: Specify from (optional step) 122
13.1.5 Model: Run oL e 123
13.1.6 Display model (optional step) 123
13.1.7 Display results Lo 124
13.1.8 Compute weights (optional step) L 126
13.1.9 Display weights L 126
13.2 Batch analysis L e 126
13.2.1 Data & Design oL 127
13.2.2 Featureset / Kernel 128
13.2.3 Model: Specify new Lo e 130
13.2.4 Model: Specify from (optional step) 132
13.25 Model: Run oL e 132
13.2.6 Compute weights (optional step) L 132

This chapter will describe the steps necessary to perform a classification using PRoNTo. The dataset!' used
in this chapter can be found in PRoNTo’s website http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html
(data set 1) and the whole? dataset is available in http://data.pymvpa.org/datasets/haxby2001/.

This fMRI dataset originates from a study on face and object representation in human ventral temporal
cortex [10]. In this study, the subject was shown a set of grey scale images of 8 categories (faces, houses, cats,
chairs, bottles, scissors, shoes and scrambled pictures), with 12 runs/blocks. Each image was displayed for 500
ms and was followed by a 1500 ms rest interval. This experiment consisted of a block-design of 9 scans of each
category followed by 6 scans of inter-stimulus interval. Images were acquired with a TR of 2.5 s. The full-brain
fMRI data consisted of 1452 scans/volumes with 40 x 64 x 64 voxels. The dimensionality of each voxel was 3.5
x 3.75 x 3.75 mm.

For simplicity, in this example we will use PRoNTo to predict if the subject is viewing an image of a face
or a house based on the fMRI scans. We will classify the whole brain images using Support Vector Machines,
using a leave one block out cross-validation scheme.

13.1 GUI analysis

We will first analyse the data using PRoNTo’s GUI and then repeat the analysis using the matlabbatch system.

1Pre-processed (realigned and normalised) data from participant 1.
2Not pre-processed.

115

http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html
http://data.pymvpa.org/datasets/haxby2001/

116 CHAPTER 13. BLOCK DESIGN FMRI DATASET

To start, create a new directory in which to save the results of the analysis, then start up MATLAB and type
‘prt’ or ‘pronto’ in the MATLAB prompt (considering that the PRoNTo and SPM folders have been previously
added to the MATLAB path). This will open the main interface of PRoNTo (Figure 13.1).

4 PRONTO = -] X

Figure 13.1: Main interface of PRoNTo.

13.1.1 Data & Design

e In PRoNTo’s main window, click on ‘Data & Design’ and a new window will open, ‘Data and design’
(Figure 13.2). Then, browse the directory in which to save the PRT structure (saved as ‘PRT.mat’).

"4 PRONTo : Data and design - [m] X

Figure 13.2: ‘Data and design’ GUI.

e In the panel ‘Groups’, click on ‘Add’ and provide a name to the group (we only have one group/subject),
with no spaces or special characters, e.g. ‘G1°.

13.1. GUI ANALYSIS

117

e Add a subject in the ‘Subject/Samples’ option, e.g. ‘S1’, and leave the ‘Samples’ tick box below the panel
unchecked. See Chapter 2 of the manual for more information on this option.

e In the ‘Modalities’ panel, click on ‘Add’ and provide a name to the modality, e.g. ‘tMRI’. The ‘Specify
modality’ GUI allows one to specify the format of the Data and the design of the experiment. In the
‘Data format’, choose ‘nifti’ (Figure 13.3). In the ‘Design’ field, choose the option ‘Load SPM.mat’
(Figure 13.4). This file is available with the Haxby dataset on PRoNTo’s website® inside the folder
Haxby_dataset/design/. Finally, in this case leave ‘Regression targets’ as it is, in the ‘No targets’ option.

"4 PRONTOo :: Specify modality

Design

Modality

RI

nifti

MEEG
-mat

‘No design

Regression targets ‘Nu targets

OK I Cancel

Figure 13.3: ‘Specify modality’ GUI. First
we specify the format of our data (here nifti).

"4 PRONTOo :: Specify modality

Modality

Name RI ~|

Data format ‘nifti v ‘

select

No design

No design
Regression targets | Specify design

Load SPM mat

OK I Cancel

Figure 13.4: ‘Specify modality’ GUI. Here we
load a specified design from an ‘SPM.mat’ file.

— In case there is no ‘SPM.mat’ file available to use, create a new design by selecting the option ‘Specify
design’. Choose how many conditions you have, which in this case are 8 conditions (corresponding to
the 8 categories of images). This will open another window that allows the user to write the names,
onsets and durations of each condition (Figure 13.5). If the duration of each event is different, you
must specify the duration of all events as shown in the figure above. If however the duration is the
same for all events, specifying one value per class will suffice (Figure 13.6). The unit in which the
onsets/durations are read in this case is ‘scans’ and the interscan interval (TR) is 2.5 seconds. The
design information (names, onsets and durations) can be found inside the ‘Haxby_design.pdf’ file in
the Haxby dataset folder.

{4 Enter number of conditions

Name

Onsets

Duration

Faces
Houses
Cats
Shoes
Bottles
Chairs
Scissors

<

Figure 13.5: ‘Specify design’ GUI to enter the con-
ditions, the units of design, TR and covariates.

21127 334 426 533 6...

63213 3483844906
35142248 412 576 6
49 156 320 369 562 6.

92199 305455 5196...

106 170 291 398 547
6 184 277 469 505 71

Scrampix 78 227 263 441 590 6.

999999999999
999999999999
999999999999
999999999999
999999999999
999999999999
999999999999
999999999999

Shttp://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html

{4 Enter number of conditions - [m] X

Name Onsets
Faces 21127 334 426 533 6...
Houses 63213 3483844906
Cats 35142248 412 576 6.
Shoes 49 156 320 369 562 6.
Bottles 92 199 305 455 5196...
Chairs 106 170 291 398 547
Scissors 6 184 277 469 505 71
Scrampix 78 227 263 441 590 6.

<

Figure 13.6: If all events have the same duration,
you can specify this with only one number.

118 CHAPTER 13. BLOCK DESIGN FMRI DATASET

e Finally, load all the image files available in the fMRI directory (Haxby_dataset/fMRI/). You can select
all the files by using the right mouse button and clicking on the option ‘Select All’ (Figure 13.7). When
all the images are selected, click on the ‘Done’ button.

e In the ‘Masks’ field, on the bottom left of the ‘Data and design’ window, select the ‘whole_brain’ mask
for the modality specified (Figure 13.8). The mask is available in the masks directory inside the folder
Haxby_dataset/masks/. Once you have specified the mask for each modality, you will notice that the
color of the word ‘Masks’ changes from red to black. This tells you that you have defined a mask for each

modality.
(4 Select files for the modality - [m] X (4] Select mask for fMRI - [m] X
Dir C:\Users\PRoNTo_Dev\Haxby_dataset\fMRI Dir C:\Users\PRoNTo_Dev\Haxby_dataset\masks
Up C:\Users\PRoNTo_Dev\Haxby_dataset\fMRI 4 Up C:\Users\PRoNTo_Dev\Haxby_dataset\masks 4
Prev C:\Users\PRoNTo_Dev\Haxby_dataset\fMRI @ Prev C:\Users\PRoNTo_Dev\Haxby_dataset\masks @
Drive C: I \rv0l0000 nii 4 ~ Drive fusiform_gyrus.img, 1 ~
- whole_brain.img, 1
wrvol0002.nii,1 "
wrvol0003.nii, 1
wrvol0004.nii, 1
wrvol0005.nii, 1
wrvol0006 .nii, 1
wrvol0007 .nii,1
| lwrvol0008.nii, 1 A4
e] Done Filter Reset o
Frames 1 J
0/[1-...] files. (Unselected all files.)
~ v v
A o |
Frames 1
Selected 0/[1-1] files. (Unselected 1 file.)
~
v v
Figure 13.7: ‘Files’ field is used to select the scan- Figure 13.8: This window is called when one clicks
s/images for the selected subject. ‘Masks’.

e Click on ‘Review’ button to check the data and the design inserted in this modality (Figure 13.9). For
more information on what one can do with the Review option please see Chapter 2.

{4 PRONTO :: Review data and design

Save

Groups
Number of groups:

Number of modalities:

Design?

Select modality:
Number of condiitions: 8
HRF delay correction (s): |I|

HRF overiap correction (s): |I|

Interval between successive scans (TRs):

before correction for HRF overlap
16674 +- 0

after correction for HRF overlap
1.6674 +- 0

Figure 13.9: ‘Review’ GUI allows the user to check the data and design.

e Click on ‘Save’ button to create ‘PRT.mat’ file with the structure containing the information that has
been previously specified. If there is no error, the ‘Save’ button changes color, from red to black; which

13.1. GUI ANALYSIS 119

also tells you that everything has been properly saved right up until that moment. The ‘Data and design’
window after you click ‘Save’ should look similar to the Figure 13.10. If ‘Save’ turned black and no errors
are shown in the MATLAB command window, leave the ‘Data and design’ window by clicking ‘Quit’.

4 PRoNTo : Data and design

Modalities/ runs

xby_datasetiMRIwvol0000.n{Ey
xby_dataset'fMRIwrvol0001.ni
xby_dataset'fMRIwrvol0002.ni
xby_dataset'fMRIwrvol0003.ni
xby_dataset'fMRIwrvol0004.ni
xby_dataset'fMRIwrvol0005.ni
xby_dataset'fMRIwrvol0006.ni
xby_dataset'fMRIwrvol0007 ni
xby_dataset'fMRIwrvol0008.ni
xby_dataset'fMRIwrvol0009.ni
xby_dataset'fMRIwrvol0010.ni

xby_dataset'fMRIwrvol0011.ni
xby_dataset'fMRIwrvol0012.ni
xby_dataset'fMRIwrvol0013.ni
xby_dataset'fMRIwrvol0014.ni
xby_dataset'fMRIwrvol0015.ni «,
< >

Modify

Figure 13.10: ‘Data and design’ GUI final configuration.

13.1.2 Prepare feature set

e Next we have to prepare the feature set, so click on ‘Prepare feature set’ in PRoNTo’s main window.
A new window will open prompting you to select a PRT.mat file. Select the ‘PRT.mat’ file previously
created in the ‘Data & Design’ step (Figure 13.11).

4\ Select PRT.mat - [m] X
Dir C:\Users\PRoNTo_Dev\Testing_Scripts
Up C:\Users\PRoNTo_Dew\Testing_Scripts ~
Prev C:\Users\PRoNTo_Dew\Testing_Scripts >
Drive ‘C: v‘ PRT.mat ~
P
v v
2lE] Filter _Resa
Selected 0/[1-1] files. (Initial selection.)
~

Figure 13.11: ‘Prepare feature set’ GUI.

e Once you click ‘Done’ another window will appear, ‘Specify modality to include’ (Figure 13.12). Here you
set the specification of different parameters and options for each modality, which are:

‘Modality’ field: select the modality previously specified in the ‘Data & Design’ step, ‘tMRI’.
— ‘Conditions’ field: select ‘All scans’.
— ‘Parameters box’: select the polynomial detrend with order 1 and the 'No scaling’ option.

— ‘Features box’: leave the additional mask field as it is and the ‘build one kernel per region’ tick box
unchecked. Then, click on the ‘Done’ button.

120 CHAPTER 13. BLOCK DESIGN FMRI DATASET
x As an optional step, in the ‘Additional mask for selected modality’ field, the user can specify a
‘second-level’ mask, which can be used to select regions of interest (ROIs) on which the classi-
fication can be performed. For instance, we can enter the ‘fusiform_gyrus’ mask available with

this dataset.

e Once you specify the modality to include and click ‘Done’, yet another window will appear, ‘Prepare
feature set’. Here you provide a name for the feature set, e.g. ‘HaxbyFeatures’ and finally you click on
‘Build kernel / data matrix’ to build the kernel. If everything was done correctly, a progress bar will pop
up, marking the start of the procedure (Figure 13.13), which can take a few minutes.

"4 PRoNTo : Specify modality to include - m] X
fMRI @
Parameters |4\ PRONTO :: Prepare feature set - [m) X
Detrend ‘ Polynomial
Qrder
Modalities
Scaling o scaing Number of modalities o concatenate
Features Selected modaliies
‘ Additional (2nd level) mask for selected modality ‘
Wz vz e Please wait while preparing feature set
‘ Atlas defining regions of inferest (ROIs) ‘ ___
Build kernel / data matrix
Figure 13.12: ‘Specify modality to include’ GUI. Figure 13.13: Preparing feature set.

13.1.3 Model: Specify new

Next

open,

we have to specify a model. In PRoNTo’s main window, click on ‘Specify new’ and a new window will
‘Specify model’ (Figure 13.14).

Select the ‘PRT.mat’ file and provide a name to the model, e.g. ‘svmFacesHouses’.

Select from the list one of the ‘Feature Set’ previously defined. In this case, there is only one ‘HaxbyFea-
tures’, but in general from v3.0 you are free to choose more than one feature set that can be combined
using Multiple Kernel Learning.

Leave the option ‘Use kernels’ tick box as it is, i.e. ‘Yes’.

Select the ‘Classification’” model type and click on ‘Define classes’ button. A new window will open,
‘Specify classes’ (Figure 13.15), to define the number of classes and a name for each class. We will define
2 classes. First click ‘Class 1’ on the tab ‘Class’. For ‘Class 1’ select subject ‘S1’ and the condition ‘Faces’
and, similarly, for ‘Class 2’ select subject ‘S1” and the condition ‘Houses’. Leave the ‘Subsample according
to smallest class’ as it is for now. Once you have appropriately specified everything, click ‘Done’.

Select the ‘Binary support vector machine’ option, in the ‘Machine’ field.

Leave the option ‘Optimize hyper-parameter’ tick box unchecked and ‘Cross-Validation Scheme’ (internal
loop) as it is.

Select the ‘Leave One Block Out’ cross-validation scheme (external loop).

In the ‘Data operations’ box, select the ‘Sample averaging (within block)’ option, which corresponds to
a temporal compression of the data within each block, and ‘Mean centre features using training data’
option. Then, the ‘Specify model’ window should look similar to Figure 13.16.

13.1. GUI ANALYSIS 121

[PRONTo : Specify model

Select PRT.mat —

l:
Classification =

Define classes

Binary support vector machine ~

Regress out covariates

< I

Specify model Specify and run model

Figure 13.14: ‘Model: Specify new’ GUI. Figure 13.15: ‘Specify classes’ GUI.

@ PRoNTo :: Specify model

C:AUsers\PRoNTo_DeviTesting_Scripts\PRT.mat —

Classification

Binary support vector machine

Leave One Block Out

Leave One Block Out b

Sample averaging (within blo ~
Normalize samples W g ti}
Regress out covariates

Specify model Specify and run model

Figure 13.16: ‘Model: Specify new’ GUI final configuration.

122 CHAPTER 13. BLOCK DESIGN FMRI DATASET

e Click on ‘Specify and run model’ and the model will be immediately estimated, therefore there is no need
to use the ‘Run model’ module in this case. However if you wish to run permutation tests you need to
specify this in the ‘Run model’ module.

e If you do not wish to average the scans within each block (i.e. to do temporal compression), go back
to the ‘Specify model’ window, give another name to the model and select the same options mentioned
above, except in the data operations part. Here, choose only the ‘Mean centre features using training
data’ option. Finish by clicking on the ‘Specify and run model’ button.

13.1.4 Model: Specify from (optional step)

e The ‘Specify from’ window is the same as the ‘Specify new’ window, except that some fields have been
disabled to ensure comparability of the models, and there is also an extra popup menu that allows to select
which model to copy from (Figure 13.17). For more information on what one can do with the ‘Specify
from’ option please see Chapter 4.

e Select the ‘PRT.mat’ file we have been using so far and provide a new name for the model. It’s recom-
mended giving a meaningful name to the model so that there is no confusion later on. We previously
used SVMs, so now we can try a different machine for comparison, for example the Gaussian Process
(GP) classifier, so we can name it ‘gpFacesHouses’. Alternatively, assuming you had previously created a
second feature set called ‘HaxbyFeatures2’ or another more meaningful name according to your preference,
you could now try also deselecting ‘HaxbyFeatures’ and selecting for example ‘HaxbyFeatures2’ as your
selected feature set.

e Notice that Classes/Regression selection and outer CV options cannot be modified. Only the ‘Machine’
(with its hyper-parameter optimization), the feature sets and the ‘Data operations’ can be modified when
using specifications from a previously defined model.

e After you have specified everything, the final configuration would look like the one in Figure 13.18. Now
click ‘Specify and run model’ to create a second model comparable to ‘svmFacesHouses” model.

4 PRONTo Specify model from - [m] X 4 PRONTo Specify model from - [m] X

Select PRT.mat I C:lUsers\PRoNTo_DeviTesting_Scripts\PRT.mat I

svmFacesHouses

Model type Model type |Classiﬁcamn

Machine Machine |Binary support vector machine

] Optimize hyper-parameter Define range] Optimize hyper-parameter
Cross-Validation Scheme Cross-Validation Scheme |Leave One Block Out

Cross-

Cross-Validation Scheme Cross-Validation Scheme ‘Lgave One Block Out

Data operations Selected data operations Data operations Selected data operations

Sample averaging (within bidial Sample averaging (within bl ~
Sample averaging (within su Normalize samples Mean centre features using {
Mean centre features using t Regress out covariates

Normalize samples
Rearess oif covariates
<

> v < > < >
Specify model Specify and run model Specify model Specify and run model

Figure 13.17: ‘Model: Specify from’ GUI. Figure 13.18: ‘Model: Specify from’ GUI final configuration.

v

13.1. GUI ANALYSIS 123

For further information the reader should look at the tutorial of Chapter 4.

13.1.5 Model: Run

e From the ‘Run model’ window you can run the model(s) you have specified in the previous section. It
is useful when you have specified some model(s) but did not run it/them, and also if you want to run
permutations for multiple models (Figure 13.19).

{4 PRONTO : Run model - [m] x

Select PRT.mat |

Models in PRT Models to run

.

Repetitions

Run model(s)

Figure 13.19: ‘Model: Run’ GUIL

e If you want to run permutation tests, check the options ‘Perform permutation test’ and ‘Save permutation
parameters’, and also specify the number of repetitions. Keep in mind that in order to check the signifi-
cance of the results you must run permutation tests. It has been shown that 1000 repetitions approximate
well the null distribution, so it’s best if you are as close to that number as possible.

13.1.6 Display model (optional step)

e To review the model specification, in the main PRoNTo GUI, click on ‘Review kernel & CV’ and after you
select the ‘PRT.mat’ file to review, a new window will open, ‘Review Model Specification’ (Figure 13.20).

{4 PRONTO :: Review Model Specifi.. — [m} X

svmFacesHouses i

Show kemel

Figure 13.20: Review CV & kernel window.

e Select the model, ‘svmmFacesHouses’, from the list at the top and click on ‘Review model’; then, select
one class from the list of ‘Class’ to see which groups, subjects and conditions this class comprises (Figure
13.21).

124 CHAPTER 13. BLOCK DESIGN FMRI DATASET

4 PRONTO = Specify classes - O =

Subjects in group Conditions in modality

Cats
Shoes
Bottles
Groups in data set Chairs

" Scissors
Scrampix

Select all Select all

Selected subject(s) Selected condition(s)

Figure 13.21: Review model specification window for Class 1.

e To review the data and cross-validation matrix click on ‘Review CV’ (Figure 13.22). For more information
on what these matrices mean, please consult chapter 4.

"4 PRONTo : Review Cross-Validation - [m] X

Save ~

Figure 13.22: Data and cross-validation matrix from ‘Review CV’ option.

e To review the kernel, click on ‘Show kernel’ (Figure 13.23).

13.1.7 Display results

e In PRoNTo’s main window, click on ‘Display results’ and select the ‘PRT.mat’ file. This will open the
main results window. In the ‘Model’ panel, select the model that you want to view, ‘svmFacesHouses’.
The main results window together with the performance stats should be similar to the one in Figure 13.25.

13.1. GUI ANALYSIS 125

4 PRONTO :: Review kernel - a X
File Edit View Insert Tools Desktop Window Help el

NEde kN 09RL- Q08 g

@ PRONTo = Compute weights - [m] X

Image name (optional)

~
Mean centre features using training da «,

< I

Figure 13.23: Kernel matrix used for classification. Figure 13.24: ‘Compute weights’ GUIL.
[PRONTO = Results - a X
Save Figure File Edit View Insert Tools Desktop Window Help -~
NEde |} W UDEL G 0E =D

True labels
| Permuted labels 1

Figure 13.25: ‘Results’ GUI.

e In the ‘Results’ window, one can select specific folds in the ‘Fold’ list and also check their performance
with different plots in the ‘Plot’ list.

e Keep in mind that if you have not run permutation tests, the values of ‘BA p-value’ and ‘CA p-value’
would be ‘N.A.".

A very important change in v3 is that model performance is computed within folds, and then the stats are
averaged across all folds. In v2, stats were computed within folds but then predictions were concatenated across
folds to produce the model-level stats. This has been advised against as being over-optimistic. For further

126

CHAPTER 13. BLOCK DESIGN FMRI DATASET

information regarding that the reader is referred to chapter 4. This change is reflected in the ‘Display results’
window: the list of plots available across folds is not the same as the list of plots available within folds.

Across fold the user can display:

‘Accuracy distribution’: The balanced accuracy in each fold plotted as a violin plot, with its mean displayed
in red. If permutations were estimated, the left side of the violin corresponds to the accuracy distribution
(with additional histogram), while the right side corresponds to the distribution of average balanced
accuracy with permuted labels.

‘Predictions’: Same as v2.

‘ROC’: In v2, the ROC was built from the concatenated function values. In v3, we now build the average
ROC curve and display its standard deviation across folds as shaded area.

‘Influence of the hyper-parameters’: Similar to v2, but added scatter plot representing the balanced
accuracy within each fold for each value of the hyper-parameter.

Within folds, the plots are the same as in v2. Minor changes were performed to improve their appearance.

13.1.8 Compute weights (optional step)

In PRoNTo’s main window, click on ‘Compute weights’ and a new window will open, ‘Compute weights’
(Figure 13.24).

Select the ‘PRT.mat’ file.
Select the model from the list of ‘Models computed in PRT’, ‘svmFacesHouses’ model.

If you previously run permutation tests and want to review and display the weights for the permutations,
check the option ‘Build weight images for permutations’. Note that this option will create one weight
image for each permutation.

Leave the option ‘Compute average/kernel weight per region’ unchecked.

Click on ‘Compute weights’ button. Computations will be displayed on the MATLAB command window.

13.1.9 Display weights

In PRoNTo’s main window, click on ‘Display weights’ and select the ‘PRT.mat’ file. This will open the
‘Model interpretation’ window.

By clicking on ‘Model’, svmFacesHouses, an image will appear in the ‘Weights map’ box. To show the
‘Anatomical img’ you have to load an anatomical image for reference. A template image can be found
in SPM’s canonical folder (‘single_subj_T1¢ file). The final window will look similar to the one shown in
Figure 13.26.

13.2 Batch analysis

This tutorial will now show how to analyse the same data but using the matlabbatch system.

Once again, create a new directory where you wish to save the results. On the main interface of PRoNTo
click on the ‘Batch’ button to open the ‘matlabbatch’. Alternatively, type ‘prt_batch’ on the MATLAB command
window. On the menu bar of the batch, there is a PRoNTo menu with the 6 options shown in the main steps
interface (Figure 13.27).

13.2. BATCH ANALYSIS

127

"4 PRONTo = Weights

Save Figure File Edit View Insert Tools Desktop Window Help

ﬂaﬂiﬁ‘ [}"ﬂ.'ﬂ.ﬂ@@ﬂ'

Display

Mode! |svaacesHouses = ‘

Weights ‘weighlsimeacesHouseSJ,,,
Fold

EIR):

(®) weights per voxel

‘AII folds / Average () weights per region

Weights map

Anatomical img

Crosshair Position

Origin
-257-452-92
356233146

Intensity 00333073

mm
v

C:\Users\Konstantinos Tsirlis\Drop|

| Resellmagesl

C:\Users\Konstantinos Tsl“

Figure 13.26: ‘Model interpretation’” GUI with results.

13.2.1 Data & Design

e Click on ‘Data & Design’ in the PRoNTo menu. Figure 13.28 is the starting ‘Data & Design’ module menu
and Figure 13.29 is the full drop-down list of options. All modules follow the same general structure with
some initial options appearing at first, that have a variety of sub-options that appear once you specify
them. Figure 13.30 is the final configuration of the matlabbatch ‘Data & design’ module.

Figure 13.27: Menu PRoNTo
matlabbatch window.

{4 Batch Editor - o X 4 Batch Editor - u] X
File Edit View SPM BasiclO PRoNTo N File Edit View SPM BasiclO PRoNTo ¥
DB"E" Data & Design Dﬁﬂ‘h
Module List I =aneksetiiemel Module List Current Module: Data & Design
. Model: Specify new . .
No Modules in Batdal ﬂ A ———— _ Data & Design<-X [l Help on: Data & Design ~
i <
O Directory X
Compute weights Groups <X
<,
Edit Defaults MﬁS.kS X
Review No
v v
v
< > v
MATLAB Batch System @D
Matlahhatrh | leer Interfare Cranrifiu tha Aata and Aacian far aanh Arann (miniminm Ana Arann)

in the main

Figure 13.28: ‘Data & design’ module in matlabbatch
window.

e In the ‘Directory’ field, select a directory where the ‘PRT.mat’ file will be saved. There are three ways of
editing all fields in matlabbatch: (i) by using the right mouse button and clicking on the current option,
(ii) clicking on current button in the window or (iii) by double clicking.

128 CHAPTER 13. BLOCK DESIGN FMRI DATASET

Current Module: Data & Design

Help on: Data & Design

Directory <X Directory ... Scriptsiv3
Groups Groups

. Group . Group

.. Name <-X .. Name G1
.. Select by .. Select by

.. . Subjects ... Subjects

. ... Subject Subject

..... Modality Modality

...... Name <XName fMRI
...... Data format niftiData format nifti
...... Interscan interval <-XInterscan interval 25
...... Files <-XFiles 1452 files
...... Data & DesignData & Design

....... Load SPM.mat (for nifti inputs only) <-XLoad SPM.mat (for nifti inputs only) ...\SPM.mat
Masks Masks

. Modality . Modality

.. Name <-X .. Name MRI
.. Data format .. Data format

... Nifti ... Nifti

....Fie <-X File ... _brain.img,1
... . HRF overlap 0 HRF overlap 0
... . HRF delay 0 HRF delay 0
Review No Review No

Figure 13.29: Drop-down list of options in the Figure 13.30: Final configuration of the matlabbatch
matlabbatch ‘Data & design’ module. ‘Data & design’ module.

e In the ‘Groups’ field:

Add one group.

In the field ‘Name’, provide a name without spaces to that group, e.g. ‘G1°.

In the field ‘Select by’, select the ‘Subjects’ option and add one subject.

Add one modality for this subject and provide a name, e.g. ‘fMRI’; choose the appropriate data
format (here nifti); define the interscan interval of 2.5 seconds; and in the field ‘Files’, select all the
image files available in the fMRI directory of the Haxby dataset.

In the ‘Data & Design’ field, since our data are in nifti format, choose the ‘Load SPM.mat’ option.
This file is available with the Haxby dataset on PRoNTo’s website inside the folder Haxby_dataset /design/.

— In case our data were in MEEG format, we could choose the ‘Events in MEEG file’ option, where we
could also further specify regression targets/covariates.

x In case there is no ‘SPM.mat’ or ‘MEEG Events’ file available to use, create a new design by
selecting the option ‘Specify design’. Choose the units (scans in our case), how many conditions
you have, which in this case are 8 conditions (corresponding to the 8 categories of images) and
also write the names, onsets, durations and any covariates and/or regression targets of each
condition (Figure 13.31). For further information on how to enter covariates and/or regression
targets the reader should look at the tutorial of Chapter 14.

e In the ‘Masks’ field, add a new modality and provide the same modality name, ‘MRI’, choose the appro-
priate data format and finally select the ‘whole_brain’ mask available in the masks directory of the Haxby
dataset. The name of the modality here has to be exactly the same as in ‘Modalities’, otherwise it will
not work.

e Leave the ‘HRF overlap’ and the ‘HRF delay’ fields as default.

e In the ‘Review’ field, select ‘Yes’ if you would like to review your data and design in a separate window.
Otherwise, leave as it is, i.e. ‘No’. Keep in mind that the procedure pauses while you review the data and
that you have to close the ‘Review’” window for the procedure to continue.

13.2.2 Feature set / Kernel

e Click on ‘Feature set / Kernel” option on PRoNTo’s matlabbatch menu.

4http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html

13.2. BATCH ANALYSIS 129

"4\ Batch Editor -] ped
File Edit View SPM BasiclO PRoNTo El
D& d| >

Module List Current Module: Data & Design
Data & Design ~ Data & Design 2
....... Specify design
........ Units for design Seconds
........ Conditions
......... Condition
.......... Name <-X
.......... Onsets <X
.......... Durations <-X
.......... Covariates
.......... Regression targets (per trial) il
........ Multiple conditions

;a1

. Modality

Current iorm: Data & Design
Load SPM.mat (for nifti inputs only) &
*Specify design
No design
Events in MEEG file (for MEEG inputs only)

< > Specify....

Data & Design &
Specify data and design.

One of the following options must be selected:
* Load SPM.mat (for nifti inputs only)
* Soecifv desian

Figure 13.31: ‘Data & design’ module. The ‘Specify design’ option.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Data & Design’ step or click on the ‘Select files” button to browse where ‘PRT.mat’
file was saved. The window of Figure 13.32 is called to establish a dependency connection with the previous
‘Data & design’ module.

[#] Batch Edito - o X
| File Edit View SPM BasiclO PRoNTo]
DEd b
Module List Current Module: Feature set/Kernel
‘ Data & Design ~| Help on: Feature set/Kernel &
Feature set/Kernel Load PRT.mat <X
Feature/kernel name <X
Data format
. Nifti <X
4 Load PRTmat ~ — X
| Data & Design: PRT.mat filefgl
Help on: Feature set/Kernel
v Load PRT.mat ... Data & Design: PRT.mat file
Curref Feature/kernel name HaxbyFeatures
2 Data format
. Nifti
.. Modality
... Modality name ...Data & Design: Mod#1 name
L9 hd ... Samples / Conditions
v 1 All samples
< > 1 ... Voxels to include
M All voxels
Load PRT.mat < > | I " Detrend
Select data/design structure| Select all Polynomial detrend
..... Order 1
Cancel ... Scale input scans
. No scaling
. Use atlas to build ROI specific kernels

Figure 13.32: ‘Feature set / Kernel’ module in Figure 13.33: Final configuration of the matlabbatch
matlabbatch. ‘Feature set / Kernel’ module.

e Provide a name to the ‘Feature/kernel’ set, e.g. ‘HaxbyFeatures’.

e Select the ‘nifti’ option for a data format, add one modality and select the modality name with the

130

CHAPTER 13. BLOCK DESIGN FMRI DATASET

‘Dependency’ button®(Data & Design:Mod#1 name).

— In the ‘Samples/Conditions’ field , select the ‘All samples’ option.

In the ‘Voxels to include’ field, select ‘All voxels’ option, this means we are not entering an additional
second-level mask.
* This is an optional step. In the ‘Voxels to include’ options, the user can specify a ‘second-level’
mask, which would define regions of interest (ROIs) on which the classification can be performed.
In this case, select the ‘fusiform_gyrus’ mask.

In the ‘Detrend’ field, select ‘Polynomial detrend’ option with order 1.

— In the ‘Scale input scans’ field, select ‘No scaling’ option and finally leave ‘Use atlas to build ROI
specific kernels’ as default.

Figure 13.33 is the final configuration of the matlabbatch ‘Feature set / Kernel’ module. For the other
Data formats please refer to Chapter 17.

13.2.3 Model: Specify new

Click on ‘Model: Specify new’ option on PRoNTo’s matlabbatch menu.

With ‘Load PRT.mat’ field selected, click on ‘Dependency’ button to associate the ‘PRT.mat’ file created
in the previous ‘Feature set / Kernel’ step, or alternatively either double-click on ‘Load PRT.mat’ option
or click on ‘Specify’ button to browse where ‘PRT.mat’ file was saved.

Provide a name to the model, e.g. ‘svmFacesHouses’.
In the ‘Feature sets’ field, select the feature set name with the ‘Dependency’ button®.
Select the ‘Classification’ model type:

— Add 2 new classes.

— For Class (1) write ‘Faces’ on the name field and add one group. Select the group name from the ‘Data
& Design’ module (‘Data & Design:Group#1 name’) with the ‘Dependency’ button’. Similarly, for
Class (2) write ‘Houses’ on the name field and add the group created in the ‘Data & Design’ module,
‘Gl

— In the ‘Subjects’ field, type ‘1’ (only subject 1 is selected).

— In the ‘Conditions / Scans’ field, select the ‘Specify Conditions’ option and add a new condition.
Provide a name for this condition, i.e. for Class (1) ‘Faces’ and for Class (2) ‘Houses’. Note that this
name needs to be spelled exactly as specified in the ‘Data & Design’ module: if you simply loaded
an ‘SPM.mat’ file for the design, you must know the names of the conditions.

Leave ‘Subsample examples based on class definition’ as it is, i.e. ‘No’.
In the ‘Machine Type’ field:

— Select the ‘Kernel machine’ and the ‘SVM Classification’ options.
— Leave the ‘SVM string argument’ as it is, i.e. ‘-q -s 0 -t 4 -c’.
— Finally, on the ‘Machine optimization and parameters’ field select ‘No optimization’.

In the ‘Cross-validation type’ field, select ‘Leave one block out’ option.
Leave the ‘Include all scans’ field as it is, i.e. ‘No’.
In the ‘Data operations’ field:

— Leave the ‘Mean centre features’ field as it is, i.e. ‘Yes’.

— Leave the ‘Other Operations’ field as it is, i.e. ‘No operations’.

Figure 13.34 is the final configuration of the matlabbatch ‘Model: Specify new’ module.

50r type it in manually, MRI’, but the name needs to be exactly the same as the one specified in the ‘Data & Design’ module.

Sor write it ezactly as previously defined in the ‘Feature set / Kernel’ module (option ‘Feature set/Kernel: Feature/kernel
name’), here ‘HaxbyFeatures’.

7Or write it ezactly, as previously defined in the Data & Design’ module, here ‘G1’

13.2. BATCH ANALYSIS

131

Help on: Model: Specify new
Load PRT.mat ...t/Kernel: PRT.mat file
Model name svmFacesHouses
Feature sets

. Feature set name
.. Name .. Feature/kernel name
Model Type
. Classification
.. Classes
... Class —
© Name Faces 4 Batch Editor - u] X
... . Groups File Edit View SPM BasiclO PRoNTo ~
..... Group DEld P
------ GrU.UP name ...esign: Group#1 name Module List Current Module: Model: Specify from
""" gg?;:i:)sns 1 Samples 1 Data & Design ~| Help on: Model: Specify from 2
: Specify Conditions Feature seUKerneI Load PRT.mat <-X

" Condition Model: Spem_fy ne\ Model name <X

o " “Name Faces Model: Specify frol Model to copy <-X
" Class F|els to modify
....Name Houses Skck
... Groups . . Feature sets
lllll Group . .. Feature set name <-X
...... Group name ...esign: Group#1 name
...... Subjects 1
...... Conditions / Samples
....... Specify Conditions
........ Condition v
......... Name Houses Current ltem: Field
. . Subsample examples based on class definition No *Feature sets &
.. Machine Type Model Type
... Kernel machine Data operations

. ... SVM Classification

..... SVM string argument -q-s0-t4-c hd

..... Machine optimization and parameters v

...... No optimization 1 g > Spectty..

Cross-validation type .

. Leave one block out Field 2
Include all scans No Field to modify in copied model. All choices performed should be consistent
Data operations with the selected model type, selected samples and cross-validation scheme.

. Mean centre features Yes

. Other Operations One of the following options must be selected:

. . No operations * Feature sets 2

Figure 13.34:
‘Model: Specify new’ module

Final configuration of the

Figure 13.35:
matlabbatch.

‘Model: Specify from’ module

4 Batch Editor

D d P

Module List
Data & Design 2
Feature set/Kernel
Model: Specify nev
Model: Run

Model: Run
Trains and tests the predictive machine using the cross-validation structure
specified by the model.

* Load PRT.mat

* Model name

File Edit View SPM BasiclO PRoNTo

Current Module: Model: Run

Help on: Model: Run

Load PRT.mat

Model name

Do permutation test?

. Permutation test

. . Number of permutations
. Save permutations parameters

.. Copy permutations from model
.. No

...new: PRT.mat file
...new: Model name

100
No

This branch contains 3 items:

Figure 13.36:

Final configuration of the ‘Model: Run’ module in matlabbatch.

in

132

CHAPTER 13. BLOCK DESIGN FMRI DATASET

13.2.4 Model: Specify from (optional step)

Click on ‘Model: Specify from’ option on PRoNTo’s matlabbatch menu. Figure 13.35 is the full drop-down
list of options.

The ‘Specify model from’ module is similar to the ‘Specify model new’ module, with the appropriate
fields disabled to ensure comparability between models. As in the ‘Specify model new’ module first with
the ‘PRT.mat’ file selected, click on ‘Dependency’ button to associate the ‘PRT.mat’ file created in the
previous step, or alternatively either double-click on ‘Load PRT.mat’ option or click on ‘Specify’ button
to browse where ‘PRT.mat’ file was saved.

Choose a ‘Model name’, e.g. ‘gpFacesHouses’, and then specify the name of an existing model from which
the previous specifications will be loaded, here ‘svmFacesHouses’.

There are three different options you can change in your new model. The feature set, the model type and
the data operations. For further information regarding these options the user is referred to 4.

13.2.5 Model: Run

Click on the ‘Model: Run’ option on PRoNTo’s matlabbatch menu.

With the ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Specify model’ step.

Select the model name from the ‘Model: Specify new’ module with the ‘Dependency’ button, or write it
ezactly, as previously defined in the ‘Model: Specify new’ module, here ‘svmFacesHouses’.

In the field ‘Do permutation test?’, select ‘Permutation test’ with 1000 repetitions, or as many as you can
closer to 1000.

Leave both ‘Save permutations parameters’ and ‘Copy permutations from model’ as they are, i.e. ‘No’.
‘Copy permutations from model’ should be set to ‘Yes’ if one wants to make sure the same permutations
are run for the different models, this will enable applying statistical tests to compare the models. In that
case the two models should have exactly the same samples in each fold and use the same cross-validation
scheme.

Figure 13.36 is the final configuration of the matlabbatch ‘Model: Run’ module.

13.2.6 Compute weights (optional step)

Click on the ‘Compute weights’ option on PRoNTo’s matlabbatch menu.

With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Run model’ step.

Select the model name from the ‘Model: Specify new’ module with the ‘Dependency’ button.
It’s optional to define a name for the image.

Leave the ‘Build weights images for permutations’ field as it is, i.e. ‘No’.

Finally, save the batch (e.g. as batch_run_all.m) and click on the ‘Run Batch’ option, in the ‘File menu’.
The batch file created can then be opened and edited for further analyses. The results will be the same as those
obtained using the GUI (see Section 13.1.7 of this chapter). Please note that in this case the ‘Sample averaging
(within block)’ operation was not selected when specifying the model. In order to obtain the same results as
before, the model has to use the same data operations.

Figure 13.37 is the final configuration of the matlabbatch ‘Compute weights’ module.

13.2. BATCH ANALYSIS

Figure 13.37: Final configuration of the ‘Compute weights’ module in matlabbatch.

[4\ Batch Editor

File Edit View SPM BasiclO PRoNTo

DS b

Module List

Data & Design
Feature set/Kernel
Model: Specify nev
Model: Run
Compute weights

~

Compute weights

Current Module: Compute weights

Help on: Compute weights
Load PRT.mat ...n: PRT.mat file
Model name ...w: Model name
Image name (optional) "
Build weight images per ROI

. No weight per ROI

Build weight images for permutations

No

Compute weights. This module computes the linear weights of a classifier and

saves them as a 4D image. 3 dil P to the image dil

This branch contains 5 items*

specified in the second-level mask, while the extra dimension corresponds to
the number of folds. There is one 3D weights image per fold.

133

134 CHAPTER 13. BLOCK DESIGN FMRI DATASET

Chapter 14

Regression dataset

Contents
14.1 GUT analysis oo 0o e e e e 135
14.1.1 Data & Design o o o e e e e e e 135
14.1.2 Prepare feature set e 136
14.1.3 Model: Specify new 136
14.1.4 Model: Specify from oL L 137
14.1.5 Display results Lo 137
14.2 Batch analysis L 139
14.2.1 Data & Design o o e e e e e e e e 139
14.2.2 Featureset / Kernel L 139
14.2.3 Model: Specify new (KRR) 140
14.2.4 Model: Run (KRR) o 141
14.2.5 Model: Specify and Run (RVR and GPR) 142
14.3 Removing confounds (optional) 142
14.4 Within- and between- subject regression 000 143

This chapter will describe the steps necessary to perform a regression using PRoNTo. These are similar
to the ones in the previous chapter, thus, the reader is advised to complete the tutorial in Chapter 13 before
moving on, since the explanation of some steps will be less descriptive. The dataset used in this chapter can be
found on PRoNTo’s website http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html (data set 3).

14.1 GUI analysis

As in Chapter 13, the analysis of the data will start with the PRoNTo’s GUI. Please create a folder in your
computer to store the results and type ‘prt’ or ‘pronto’ on the MATLAB command window. This will open the
main interface of PRoNTo (see Figure 13.1 in the previous chapter).

14.1.1 Data & Design

In PRoNTo’s main window, click on ‘Data & Design’. Like in the previous chapter, browse the directory
in which to save the PRT structure (saved as ‘PRT.mat’).

In the panel ‘Groups’, click on ‘Add’ and provide a name to the group, e.g. ‘Aged’.

Unlike the previous chapter, all the images in the dataset correspond to different subjects; therefore, click
on the ‘Samples’ tick box. This will lock the ‘Subjects/Samples’ field, allowing you to skip to the third
field.

In the ‘Modalities’ panel, click on ‘Add’ and provide a name for the modality, e.g. ‘sMRI’.
In the ‘Data format’ choose the appropriate format for your data (here nifti); For other data formats the

reader is referred to the tutorial of Chapter 17.

135

http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html

136 CHAPTER 14. REGRESSION DATASET

e You can see that the ‘Design’ section is unavailable. Since we are doing a regression and every subject
has only 1 sample/scan, there is no design matrix.

e Load all the image files available in the directory (IXIdata/aged/Guys/). You can select all the files by
using the right mouse button and clicking on the option ‘Select All’. When all the images are selected,
click on the ‘Done’ button.

e Into the ‘Regression targets’ field click ‘Specify Targets’. A new window will appear where you can either
directly write (or paste) the list of target values, where in our case they are available in the ‘Age_old_Guys’
file (IXIdata/aged/), or if you have a .mat file with the regression targets, you can select it directly by
selecting the option ‘From .mat file’ and choosing the appropriate .mat file. The two different options are
shown in Figures 14.1 and 14.2.

a X "4\ Enter number of targets - m] X

From .mat file ~

4| Enter number of targets

Regression targets
74 654 721 756 645

r74 0260095824778 65.4099931553730
o |

Cance' “

Figure 14.1: ‘Specify’ option in the Figure 14.2: ‘From .mat file’ option in
‘Specify targets’ GUI. the ‘Specify targets’ GUL

e Leave the ‘Covariates’ section as it is, and press ‘OK’.

e In the ‘Masks’ field, on the bottom left of the ‘Data and design’ window, select the ‘SPM_mask_noeyes’
mask for the specified modality. The mask is available in the path where you have installed PRoNTo
(PRoNTo/masks/).

e The ‘Data and design’ window should look similar to Figure 14.3. Click on the ‘Save’ button to create
‘PRT.mat’ file with the structure containing the information that has been previously specified. If no
errors are shown in the MATLAB command, leave the ‘Data and design’ window by clicking ‘Quit’.

14.1.2 Prepare feature set

e In PRoNTo’s main window, click on ‘Prepare feature set’ and a new window will open prompting you to
select a ‘PRT.mat’ file. Select the ‘PRT.mat’ file previously created in the ‘Data & Design’ step and you
are now in the ‘Specify modality to include’ window (see Figure 13.12 in the previous chapter). There is
no need to change anything for this example. Just click on the ‘Done’ button.

e Once you click on the ‘Done’ button the window ‘Prepare feature set” will appear. Provide a name to the
feature set, e.g. ‘Scalar_Momentum’; and click on ‘Build Kernel / data matrix’ to build the feature set
and kernel.

14.1.3 Model: Specify new

e Next we have to specify a model. In PRoNTo’s main window, click on ‘Specify new’ and a new window
will open, ‘Specify model’ (see Figure 13.14 in the previous chapter).

e Select the ‘PRT.mat’ file and provide a name to the model, e.g. ‘KRR/’.
e Select from the list one of the ‘Feature Set’ previously defined. In this case, there is only one, ‘Scalar_Momentum’.

e Leave the option ‘Use kernels’ tick box as it is, i.e. “Yes’.

14.1.

GUI ANALYSIS 137

[\ Enter group name - m} X

1c11X1028-Guys-1038-T1.nii, 1 ji8
re1X1114-Guys-0737-T1 nii 1
re11X1115-Guys-0738-T1 nii, 1
rc11X1158-Guys-0783-T1.nii, 1
rc1X1164-Guys-0844-T1 nii, 1
e XI172-Guys-0982-T1 nii, 1
re11X1185-Guys-0795-T1 nii, 1
rc11X1186-Guys-0796-T1.nii, 1
rc1X1197-Guys-0811-T1.nii, 1
rc1X1199-Guys-0802-T1 nii, 1
re11X1210-Guys-0856-T1 nii, 1
rc11X1223-Guys-0830-T1.nii, 1
rc11X1227-Guys-0813-T1.nii, 1
rc11X1229-Guys-0980-T1 nii, 1
reIXI1237-Guys-1049-T1 nii, 1
rc11X1249-Guys-1072-T1.nii,1
< >

Add Remove Modify

[v] Samples

Figure 14.3: ‘Data and design’ GUI final configuration.

Select the ‘Regression’ model type and click on the ‘Select subjects/scans® button. This will open a new
window, ‘Specify subjects/scans to regress’, click on the ‘Select all’ button to use all the scans for the
regression and ‘age’ as our regression target (Figure 14.4). Current models available in PRoNTo do no
enable multi-output prediction.

Select the ‘Kernel Ridge Regression’ option, in the Machine field.

Leave the option ‘Optimize hyper-parameter’ tick box unchecked and ‘Cross-Validation Scheme’ (internal
loop) as it is.

Select the ‘Leave One Subject Out’ cross-validation scheme (external loop).

In the ‘Data operations’ box, select only the ‘Mean centre features using training data’ option. The final
‘Specify model new’ window should look similar to the Figure 14.5. Click on the ‘Specify and run model’
button.

14.1.4 Model: Specify from

Use this module to copy the configurations of the previously defined KRR model but select the other options
in the ‘Machine’ drop-down list (‘Relevance Vector Regression’ and ‘Gaussian Process Regression’) and give
different names to each model. For further information regarding the ‘Model: Specify from’ section the reader
is referred to 13.1.4 in the previous chapter and to chapter 4.

14.1.5 Display results
e In PRoNTo’s main window, click on ‘Display results’ and select the ‘PRT.mat’ file. This will open the

main results window similar to the Figure 14.6.

e In the ‘Results’ window, one can select the different regression models in the ‘Model’ list on the upper

right panel. This will show the results obtained using each one of the regression models.

e Since we didn’t run any permutation testing, the p-values of Correlation, R2, MSE and Normal MSE

are not available. If one wants to check the statistical significance of the results, one should run his/her

138 CHAPTER 14. REGRESSION DATASET

PRoNTo :: Specify model

@ PRoNTo = Select subjects/targets for regression

Kernel Ridge Regression

Define range

Leave One Subject Out

Leave One Subject Out ~

Sampl 1 blofly
‘Sample averaging (within suk
Normalize samples

Regress out covariates

< I

Specify and run model

Figure 14.4: ‘Select subjects/scans’ GUL

PRONTo : Results
Save Figure File Edit View Insert Tools Desktop Window Help

NEEe kR UDEL G/ 0E a0

Prediction Errors
R2 Distribution

Figure 14.6: ‘Display results’ GUIL

models from the ‘Model: Run’ section of the main window, with permutation testing. For more detailed

14.2.

BATCH ANALYSIS 139

information the reader is referred to 13.1.5.

14.2 Batch analysis

In this section, the previous experiment will be repeated using the ‘matlabbatch’ system. The reader is advised
to complete the tutorial in Section 13.2.1 before continuing, since the explanation of each step will be less
descriptive.

Once again, to analyse the data, create a new directory in which to save the results of the analysis. On
the main interface of PRoNTo click on the ‘Batch’ button to open the ‘matlabbatch’. Alternatively, type
‘prt_batch’ in the MATLAB prompt.

14.2.1 Data & Design

Click on ‘Data & Design’ in the PRoNTo menu (see Figure 13.29 in the previous chapter).
In the ‘Directory’ field, select a directory where the ‘PRT.mat’ file will be saved.

In the ‘Groups’ field:

— Add one group.

In the field ‘Name’, provide a name without spaces for this group, e.g. ‘Aged’.

— In the field ‘Select by’, select the ‘Samples’ option and add a new modality. For more information
on the Samples option please consult Chapter 2.

Provide a name for this modality, e.g. ‘sMRI’ and choose the appropriate data format (here nifti).

— Select the image files available in the ‘aged/Guy’ directory of the IXI dataset.

In the ‘Regression targets (subject)’ option specify the regression targets by selecting the ‘Age_old_Guys’
.mat file (IXIdata/aged/).

— Leave ‘Covariates’ field as default.
In the ‘Masks’ field, add a new modality and provide the same modality name, ‘sMRI’; choose the appro-
priate data format, and select the ‘SPM_mask_noeyes’ mask available in the path where you have installed

PRoNTo (PRoNTo/masks/). The name of the modality here has to be exactly the same as in ‘Modalities’,
otherwise it will not work.

Leave the ‘HRF overlap’ and the ‘HRF delay’ fields as default.

In the ‘Review’ field, select ‘Yes’ if you would like to review your data and design in a separate window.
Otherwise, leave as it is, i.e. ‘No’.

Figure 14.7 is the final configuration of the matlabbatch ‘Data & design’ module.

14.2.2 Feature set / Kernel

Click on the ‘Feature set / Kernel’ option on PRoNTo’s matlabbatch menu.

With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Data & Design’ step or click on the ‘Select files” button to browse where ‘PRT.mat’
file was saved.

Provide a name to the ‘Feature/kernel’ set, e.g. ‘Scalar_Momentum’.

Select the ‘Nifti’ option for a data format, add one modality and select the modality name with the
‘Dependency’ button' (Data & Design:Mod#1 name).

— In the ‘Samples/Conditions’ field, select ‘All samples’ option.

10r type it in manually, ‘sMRI’, but the name needs to be exactly the same as the one specified in the ‘Data & Design’ module.

140 CHAPTER 14. REGRESSION DATASET

Help on: Data & Design

Directory ... Scripts\v3
Groups

. Group

.. Name Aged
.. Select by

... Samples

... . Modality

..... Name sMRI
..... Data format nifti
..... Files 102 files
..... Regression targets (subject)

...... From file ..._old_Guys.mat
..... Covariates

Masks

. Modality

.. Name fMRI
. . Data format

... Nifti

....Fie ..._hoeyes.img,1
... . HRF overlap

. ... HRF delay 0
Review No

Figure 14.7: Data & design module in matlabbatch.

— In the ‘Voxels to include’ field, select ‘All voxels’ option, this means we are not entering with an
additional second-level mask.

— In the ‘Detrend’ field, select the ‘None’ option.

— In the ‘Scale input scans’ field, select the ‘No scaling’ option and finally leave ‘Use atlas to build ROI
specific kernels’ as default.

e Figure 14.8 is the final configuration of the matlabbatch ‘Feature set / Kernel’ module. For the other
Data formats the reader is referred to chapter 4.

Help on: Feature set/Kernel ~
Load PRT.mat ...ign: PRT.mat file
Feature/kernel name Scalar_Momentum
Data format
. Nifti
. . Modality
.. . Modality name ...gn: Mod#1 name
. Samples / Conditions
... All samples
.. Voxels to include
... All voxels
. Detrend
.. None
. Scale input scans
.. No scaling
. Use atlas to build ROI specific kerels

Figure 14.8: Feature set / Kernel module. Selected parameters in the Modality option.

14.2.3 Model: Specify new (KRR)
e Click on the ‘Model: Specify new’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Feature set / Kernel’ step or click on the ‘Select files’ button to browse where
‘PRT.mat’ file was saved.

e Provide a name to the model, e.g. ‘KRR’

o Select the feature set name with the ‘Dependency’ button?. From v3.0, multiple feature set is supported
so you can put more than one feature set names.

2or write it exactly as previously defined in the ‘Feature set / Kernel’ module (option ‘Feature set/Kernel: Feature/kernel

name’), here ‘Scalar_Momentum’.

14.2. BATCH ANALYSIS 141

e Select the ‘Regression’ model type:

— Add a new group and call it ‘Aged’.

— In the ‘Subjects’ field, type ‘1:102’. This will instruct the program to use all the 102 scans, i.e. from
scan 1 to scan 102.

— In the ‘Conditions / Samples’ choose ‘Target’ and type in ‘age’, as this is the name of our regression
target variable in the ‘Age_old_Guys.mat’ file.

In the ‘Machine’ field:

— Select ‘Kernel machine’” and then select the ‘Kernel Ridge Regression’ option:

— In the ‘Machine optimization and parameters’, select ‘No optimization’, and leave ‘No optimization’
as it is, i.e. ‘17,

In the ‘Cross-validation type’ field, select ‘Leave One Subject Out’ option.

Leave the ‘Include all scans’ field as it is, i.e. ‘No’.

e In the ‘Data operations’ field:

— Leave the ‘Mean centre features’ field as it is, i.e. ‘Yes’.

— Leave the ‘Other Operations’ field as it is, i.e. ‘No operations’.

The final configuration of the of the matlabbatch ‘Model: Specify new’ module should look similar to Figure
14.9.

Help on: Model: Specify new

Load PRT.mat ...re set/Kernel: PRT.mat file
Model name KRR
Feature sets

. Feature set name

.. Name ...mel: Feature/kernel name
Model Type

. Regression

.. Groups

... Group

... .Group name Aged
. ... Subjects 102x1 double
. ... Conditions / Samples

...... Name age
. . Machine Type

. . . Kernel machine

... . Kemel Ridge Regression

..... Machine optimization and parameters

...... No optimization 1
Cross-validation type

. Leave one subject out

Include all scans No
Data operations

. Mean centre features Yes
. Other Operations

. . No operations

Figure 14.9: ‘Model: Specify new’ module in matlabbatch, final configuration.

14.2.4 Model: Run (KRR)

e Click on the ‘Run model’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Specify model’ step.

e Select the model name from the ‘Specify model’ module with the ‘Dependency’ button®.

e In the field ‘Do permutation test?’, leave as it is, i.e. ‘No permutation test’

3or write it ezactly as previously defined in the ‘Specify model’ module, here ‘KRR’

142 CHAPTER 14. REGRESSION DATASET

14.2.5 Model: Specify and Run (RVR and GPR)

The specification of the other models (‘Relevance Vector Regression’ and ‘Gaussian Process Regression’) can
be done using the ‘Specify from’ module. The only difference is that in the ‘Machine’ field of the ‘Specify from’
module, one has to choose the appropriate machine to use (‘Relevance Vector Regression’ or ‘Gaussian Process
Regression’). The parameters used for each machine should be the default ones.

Note that when the ‘PRT.mat’ file is loaded in each module, the user should select the latest option on the
list.

When all the models are defined, the ‘Module List” should contain 8 modules:

1. Data & Design.
Feature set/Kernel.
Mode: Specify new.
Mode: Run.

Mode: Specify from.
Mode: Run.

Mode: Specify from.

® N o ok W

Mode: Run.

Note that modules 3 and 4 correspond to the KRR model; 5 and 6 to the RVR model; 7 and 8 to the GPR
model.

When all the modules are added, just click on the ‘Run Batch’ button. The resulting ‘PRT.mat’ file will be
saved in the specified directory and the results can be viewed using the process described in Section 14.1.5.

14.3 Removing confounds (optional)

In this tutorial until now we only had subjects from a specific testing site. Say now that in your study this
isn’t true. For example in the IXI study there were 3 testing sites, Hammersmith Hospital using a Philips 3T
system, Guys Hospital using a Philips 1.5T system and the Institute of Psychiatry using a GE 1.5T system.
What changes? How could we account for the potential differences of the scanner systems? One way to do it is
by ‘regressing out the covariates’. Please see section 2.5.1 for important considerations on covariates.

Chapter 16 is a detailed tutorial about removing confounds in a classification example, so the reader is strongly
advised to go through that tutorial first and if one is interested to try a regression example as well, one should
come back here afterwards as this is not a complete tutorial regarding removing confounds.

The first main thing that one has to change is in the ‘Data & design’ module.

e In the ‘Files’, you need to select all 170 subjects from all the 3 different folders (representing one testing
site each).

e In the ‘Covariates’ field, you need to type the covariates you want to regress out. Covariates can be input
to PRoNTo by directly copying values into the Covariate if there is only one confounding factor (e.g. a
continuous confound), or by typing the full path of the R matrix containing either one column or multiple
columns. As ‘Testing site’ is categorical, one-hot encoding was used (i.e. one column for each testing site
in the ‘R’ matrix). In this example, you need to select the file Confounds/_one/ hot.mat found in the
IXI/Data/aged/ folder.

The second important thing is in the ‘Specify model new’ module.

e Select the ‘Kernel Ridge Regression’ option in the Machine field. You can also do the same procedure
choosing ‘Gaussian Process Regression’ if you want to try more than one machines.

e Check the option ‘Optimize hyper-parameter’ tick box. Type ‘10.”[-5:5]” on the right field. Then, select
‘k-fold CV on Subject-Out’ option in the ‘Cross-Validation Scheme’ field (internal loop), and type ‘5’ in
the new window that will open.

14.4. WITHIN- AND BETWEEN- SUBJECT REGRESSION 143

e Sclect the ‘Leave One Subject Out’ cross-validation scheme (external loop).

e Now here comes the important part, where we specify that we want to regress out covariates. In the ‘Data
operations’ box, first select the ‘Mean centre features using training data’ option as we are doing so far.
But now also select the ‘Regress out covariates (subject level)’ option, which corresponds to the removal
of the contribution of some external variables to the data. Click on the ‘Specify and run model” button.

If you now wish to find the effects of removing the covariates, you have to rerun a new model exactly the
same with the previous one, but without regressing out the covariates in the ‘Data operations’ box, and compare
the differences in the performance measures.

14.4 Within- and between- subject regression

As mentioned sporadically throughout the whole PRoNTo Manual, until PRoNTo v2.1, the user could only
input one regression target per subject. Thus, the option of doing within-subject regression was not available,
and between-subject regression could only be done with one regression target.

From PRoNTo v3.0, multiple regression targets can be specified at the Data & Design level (although they
can only be modelled independently, i.e. one regression model per target). The new functionalities in this
version, enable users to specify both which target and which samples (i.e. which subjects for between-subject
regression or which trials for within- subject regression) to use for the regression model.

The user is referred to Part I for further information regarding this topic.

144 CHAPTER 14. REGRESSION DATASET

Chapter 15

Multiple Kernel Learning example

Contents
15.1 GUIL analysis o o o e e e e e 146
15.1.1 Data & Design oL e 146
15.1.2 Prepare feature set e e e e e 146
15.1.3 Model: Specify new L 147
15.1.4 Model: Specify from e 147
15.1.5 Model: Run oL e 148
15.1.6 Display model (optional step) L 148
15.1.7 Display results Lo 149
15.1.8 Compute weights e 150
15.1.9 Display weights e 150
15.2 Batch analysis e 151
15.2.1 Data & Design oL e 151
15.2.2 Featureset / Kernel L 151
15.2.3 Model: Specify new Lo 152
15.24 Model: Run oL e e 154
15.2.5 Compute weights (optional step) 154

This chapter will describe the steps necessary to perform a classification with SimpleMKL http://asi.
insa-rouen.fr/enseignants/~arakoto/code/mklindex.html [20] using PRoNTo. These are similar to the
ones in Chapter 13, thus, the reader is advised to complete the tutorial in Chapter 13 before moving on, since
the explanation of some steps will be less detailed.

Many practical learning problems involve multiple and heterogeneous data sources. In this way, Multiple
Kernel Learning (MKL) [2] has been proposed to combined different data sources in a single predictive model
by learning the relative contribution of each kernel (often corresponding to each data source) to the model. In
MKL, the kernel K can be considered as a linear combination of M ‘basis kernels’. For further details, please
refer to [2].

One example of a MKL approach based on SVM is the SimpleMKL algorithm [20]. Essentially, the algorithm
is based on a gradient descent on the SVM objective value and iteratively determine the combination of kernels
by a gradient descent wrapping [20]. For further details, please refer to [20]

We will use the same dataset used in Chapter 13, this fMRI dataset originates from a study on face and
object representation in human ventral temporal cortex [10]. The dataset’ used in this chapter can be found
in PRoNTo’s website http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html (data set 1) and the whole”
dataset is available in http://data.pymvpa.org/datasets/haxby2001/.

For simplicity, in this example we will use PRoNTo to predict if the subject is viewing an image of a Face or
a House based on the fMRI scans. We will classify the whole brain images using SimpleMKL and a leave one
block out cross-validation scheme.

1Pre-processed (realigned and normalised) data from participant 1.
2Not pre-processed.

145

http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html
http://asi.insa-rouen.fr/enseignants/~arakoto/code/mklindex.html
http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html
http://data.pymvpa.org/datasets/haxby2001/

146

CHAPTER 15. MULTIPLE KERNEL LEARNING EXAMPLE

15.1 GUI analysis

We will first analyse the data using PRoNTo’s GUI and then repeat the analysis using the matlabbatch system.
To start, create a new directory in which to save the results of the analysis, then start up MATLAB and type
‘prt’ or ‘pronto’ in the MATLAB prompt. This will open the main interface of PRoNTo.

15.1.1 Data & Design

In PRoNTo’s main window, click on ‘Data & Design’. Like in the previous chapters, browse the directory
in which to save the PRT structure (saved as ‘PRT.mat’);

In the panel ‘Groups’, click on ‘Add’ and provide a name to the group (we only have one group/subject),
with no spaces, e.g. ‘G1’;

Add a subject in the ‘Subject/Samples’ option, e.g. ‘S1’, and leave the ‘Samples’ tick box below the panel
unchecked. See Chapter 2 of the manual for more information on this option;

In the ‘Modalities’ panel, click on ‘Add’ and provide a name to the modality, e.g. ‘fMRI’. In the ‘Data
format’, choose ‘nifti’. In the ‘Design’ field, choose the option ‘Load SPM.mat’. This file is available with
the Haxby dataset on PRoNTo’s website® inside the folder Haxby_dataset/design/. Finally, in this case
leave ‘Regression targets’ as it is, in the ‘No targets’ option.

— The reader is referred to Chapter 13 and chapter 2 for the case where there is no ‘SPM.mat’ file
available.

Finally, load all the image files available in the fMRI directory (Haxby_dataset/fMRI/). You can select
all the files by using the right mouse button and clicking on the option ‘Select All’. When all the images
are selected, click on the ‘Done’ button;

In the ‘Masks’ field, on the bottom left of the ‘Data and design’ window, select the ‘whole_brain’ mask for
the specified modality. The mask is available in the masks directory inside the folder Haxby_dataset/masks/;

Click on the ‘Review’ button to check the data and the design inserted for this modality. For more
information on what one can do with the Review option, please see Chapter 2;

Click on the ‘Save’ button to create the ‘PRT.mat’ file with the structure containing the information
that has been previously specified. If no errors are shown in the MATLAB command, leave the ‘Data and
design’ window by clicking ‘Quit’. The ‘Data and design’ window should look similar to the one in Figure
13.10 from the previous chapter.

15.1.2 Prepare feature set

Next we have to prepare the feature set, so click on ‘Prepare feature set’ in PRoNTo’s main window.
A new window will open prompting you to select a PRT.mat file. Select the ‘PRT.mat’ file previously
created in the ‘Data & Design’ step, as in Figure 13.11 from Chapter 13. Once you click ‘Done’ another
window will appear, ‘Specify modality to include’, as in Figure 13.12 from Chapter 13. Here you set the
specification of different parameters and options for each modality, which are:

— ‘Modality’ field: select the modality previously specified in the ‘Data & Design’ step, ‘tMRI’;

— ‘Conditions’ field: select ‘All scans’;

— ‘Parameters’ box: select the polynomial detrend with order 1 and the 'No scaling’ option;

— ‘Features’ box: select the ‘Build one kernel per region’ tick box and load the ‘AAL’ atlas (named

'aal_T9x91x69’) available in the PRoNTo directory (PRoNTo/atlas/). Then, click on the 'Done’
button. The final ‘Specify modality to include’ window should look similar to the one in Figure 15.1;

Once you specify the modality to include and click ‘Done’; yet another window will appear, ‘Prepare
feature set’. Here you provide a name for the feature set, e.g. ‘HaxbyFeatures’ and finally you click on
‘Build kernel / data matrix’ to build the kernel. If everything was done correctly, a progress bar will pop
up, marking the start of the procedure, similar to the Figure 13.13 from Chapter 13, which can take a few
minutes.

Shttp://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html

15.1.

GUI ANALYSIS 147

|4\ PRoNTo :: Specify modality to include - m} X

MRI

All scans =

Parameters

Detrend ‘ Polynomial

Order

Scaling No scaling

Features

‘ Additional (2nd level) mask for selected modality ‘

Build one kernel per region

‘ ...PRONTo_directory\atiasiaal_79x91x69.img, 1 ‘

Figure 15.1: ‘Specify modality to include’ GUI final configuration.

15.1.3 Model: Specify new

In PRoNTo’s main window, click on ‘Specify model’ and a new window called ‘Specify model’ will open
(see Figure 13.14 in Chapter 13);

Select the ‘PRT.mat’ file and provide a name to the model, e.g. ‘mklFacesHouses’;
Select one of the feature sets previously defined. In this case, there is only one: ‘HaxbyFeatures’;
Leave the option ‘Use kernels’ tick box as it is, i.e. ‘Yes’;

Select the ‘Classification” model type and click on the 'Define classes’ button. A new window will open,
‘Specify classes’, to define the number of classes and a name for each class. We will define 2 classes. First
click ‘Class 1’ on the tab ‘Class’. For ‘Class 1’ select subject ‘S1” and the condition ‘Faces’ and, similarly,
for ‘Class 2’ select subject ‘S1’ and the condition ‘Houses’. Leave the ‘Subsample according to smallest
class’ as it is for now. Once you have appropriately specified everything, click ‘Done’.

Select the ‘L1 Multi-Kernel Learning’ option, in the ‘Machine’ field;

Select the ‘Optimize hyper-parameter’ tick box, leave the ‘Define Range’ at its default range (i.e. [0.1, 1,
10° 100]) and in the ‘Cross-Validation Scheme’ (internal loop) field, select the option ‘k-fold CV on Block’.
A window will appear asking to define the value of k, set it to 4.

Select the ‘Leave One Block Out’ cross-validation scheme (external loop);

In the ‘Data operations’ box, select the ‘Mean centre features using training data’ and ‘Normalize samples’
options. Then, the ‘Specify model’ window should look similar to the one in Figure 15.2;

Click on ‘Specify and run model’ and the model will be immediately estimated, therefore there is no need
to use the ‘Run model’ module in this case. If however you wanted to check the statistical significance of
your results, you need to use the ‘Run model’ module in order to do permutation testing. It will take a
few minutes to complete.

15.1.4 Model: Specify from

The reader is referred to Chapter 13 and chapter 4 for more details regarding the ‘Model: Specify from’
module.

148 CHAPTER 15. MULTIPLE KERNEL LEARNING EXAMPLE

|4\ Specify k the number of folds - [m} X

C:\Users\PRoNTo_DeviTesting Scripts\PRT.mat _
mkiFacesHouses

Model

‘Classrﬁcat\on i ‘

Define classes

‘ L1 Multi-Kernel Learning

001 o1

folds GV on Block

Cross-

‘Leave One Block Out

Selected data operations

Sample averaging (within bloffy Mean centre features using tr ~
Sample averaging (within sut Normalize samples
Regress out covariates

Specify model Specify and run model

Figure 15.2: ‘Specify model new’ GUI final configuration.

15.1.5 Model: Run

The reasons for using the ‘Model: Run’ module and not just click ‘Specify and run model’ in the ‘Model: Specify
new/from’ module are the following:

e One might want to specify one or more models now but run it/them later.
e One might want to specify more than one models first and run them all together at once afterwards.
e One might want to run permutation tests in order to check the statistical significance of the results. The

reader is referred to Chapter 13 and section 5.4 for more details.

15.1.6 Display model (optional step)

e To review the model specification, in the main PRoNTo GUI, click on ‘Review kernel & CV’ and after you
select the ‘PRT.mat’ file to review, a new window will open, ‘Review Model Specification’ (Figure 13.20)
in Chapter 13).

e Select the model, ‘mklFacesHouses’, from the list at the top and click on ‘Review model’; then, select one
class from the list of ‘Class’ to see which groups, subjects and conditions this class comprises, similar the
one to Figure 13.21) in Chapter 13;

e To review the data and cross-validation matrix click on ‘Review CV’ and a Figure similar to Figure 13.22
in Chapter 13 will appear. For more information on what these matrices mean, please consult chapter 4.

e To review the kernel, click on ‘Show kernel’ (Figure 15.3).

15.1. GUI ANALYSIS 149

"4 PRONTO : Review kernel - a X

File Edit View Insert Tools Desktop Window Help ~

NEdS R ODEL- A0E D

HaxbyFeatures

Figure 15.3: Kernel matrix used for classification.

15.1.7 Display results

e In PRoNTo’s main window, click on ‘Display results’ and select the ‘PRT.mat’ file. This will open the
main results window. In the ‘Model” panel, select the model that you want to view, ‘mklFacesHouses’,
and the results through performance will be similar to the one in Figure 15.4;

PRoNTo i Results - O X

saveFigure File Edit View Insert Tools Desktop Window Help E

DEHL LANODEL- B/ 0EaD

Average
® Eachfold
1

Figure 15.4: ‘Display results’ GUIL

e In the ‘Results’ window, one can select the different plots in the ‘Plots’ list.

e In the ‘Results’ window, one can select specific folds in the ‘Fold’ list and also check their performance with

150 CHAPTER 15. MULTIPLE KERNEL LEARNING EXAMPLE

different plots in the ‘Plot’ list. Please note that there is a new plot on the list, this displays information
about the hyper-parameter optimization, for more information, please refer to Chapter 5.

e Also keep in mind that if you have not run permutation tests, all p-values would be ‘N.A.’.

15.1.8 Compute weights

e In PRoNTo’s main window, click on ‘Compute weights’ and a new window will open, ‘Compute weights’
(see Figure 13.24 in Chapter 13);

Select the ‘PRT.mat’ file;

Select the model from the list to ‘Models computed in PRT’, ‘mklFacesHouses’ model;

Check the tick box option ‘Compute average/kernel weight per region’;

Click on the 'Compute weights’ button. Computations will be displayed on the MATLAB prompt.

15.1.9 Display weights

e In PRoNTo’s main window, click on ‘Display weights’ and select the ‘PRT.mat’ file. This will open the
primary ‘Display weights’ window. By clicking on ‘Model’, mklFacesHouses, an image will appear in the
“Weights map’ box; and to show the ‘Anatomical img’ you have to load an anatomical image for reference.
A template image can be found in the SPM’s canonical folder ‘single_subj_T1’. The final result window
will look similar to that shown in Figure 15.5.

e Since the machine used in the example was MKL with a kernel calculated for each brain region, it is
possible to see the contributions of each region (i.e. the kernel’s weights). The labels for the regions can
be found in the same folder where the atlas is located (PRoNTo/atlas). For more information, please refer
to Chapter 7.

4 PRoNTo : Weights - o X
SaveFigure File Edit View Insert Tools Desktop Window Help E
DEAS|KAROBRL- 208 =D

Display

o Weights |yeights_mkiFacesHousesimg v @ weights per voxel
Fold Allifolds / Average ~ O weights per region

Model mkiFacesHouses

Weights map Anatomical img

Crosshair Position
Origin

mm | 00-250100

V& 270300210

Intensity NaN

C:\Users\Konstantinos Tsirlis\Drop| C:\Users\Konstantinos Tsi| Resetimages

Label | Weight (%) Size (feat) Exp. Ranking
Fusform.. ~ 21.3508 617 115208 A
Occipttal.. 20.7087 839 114.958
Lingual R 20.1918 642 114.583
Lingual L 138128 597 1129161
Fusform.. 11.0065 687 107.458:
Cingulu 6.0339 143 110916
Frontal_| 46163 373 101.166i
Parietal_.. 1.3491 401 86.1661
Occiptal.. 0.3955 314 451250
Occiptal.. 0.2234 441 0.083¢
audate L 0.1611 285

<

Export table Load labels

Figure 15.5: ‘Display weights’ GUI.

15.2. BATCH ANALYSIS 151

15.2 Batch analysis

This tutorial will now show how to analyse the same data but using the matlabbatch system.

Once again, to analyse the data, create a new directory in which to save the results of the analysis, saved
as ‘PRT.mat’. On the main interface of PRoNTo click on the ‘Batch’ button to open the ‘matlabbatch’.
Alternatively, type ‘prt_batch’ in the MATLAB prompt.

15.2.1 Data & Design
e Click on ‘Data & Design’ in the PRoNTo menu and a window like the one in Figure 13.28 will appear.

e In the ‘Directory’ field, select a directory where the ‘PRT.mat’ file will be saved. There are three ways of
editing all fields in matlabbatch: (i) by using the right mouse button and clicking on the current option,
(ii) clicking on current button in the window or (iii) by double clicking;

e In the ‘Groups’ field:

Add one group;

In the field ‘Name’, provide a name without spaces to that group, e.g. ‘G1’;
— In the field ‘Select by’, select the ‘Subjects’ option and add one subject;

— Add one modality for this subject and provide a name, e.g. ‘MRI’; choose the appropriate data
format (here nifti); define the interscan interval of 2.5 seconds; and in the field ‘Files’, select all the
image files available in the fMRI directory of the Haxby dataset;

— In the ‘Data & Design’ field, since our data are in nifti format, choose the ‘Load SPM.mat’ option.
This file is available with the Haxby dataset on PRoNTo’s website* inside the folder Haxby_dataset /design/.
The reader is referred to Chapter 13 in case there is no ‘SPM.mat’ file available.

— The reader is referred to the tutorial of chapter 17 in case the data are not in nifti format.

e In the ‘Masks’ field, add a new modality and provide the same modality name, ‘fMRI’, choose the appro-
priate data format and finally select the ‘whole_brain’ mask available in the masks directory of the Haxby
dataset. The name of the modality here has to be exactly the same as in ‘Modalities’, otherwise it will
not work;

e Leave the ‘HRF overlap’ and the ‘HRF delay’ fields as default;

e In the ‘Review’ field, select ‘Yes’ if you would like to review your data and design in a separate window.
Otherwise, leave as it is, i.e. ‘No’. Keep in mind that the procedure pauses while you review the data and
that you have to close the ‘Review’ window for the procedure to continue.

The final configuration should look similar to the Figure 13.30 in Chapter 13.

15.2.2 Feature set / Kernel

e Click on ‘Feature set / Kernel” option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Data & Design’ step or click on the ‘Select files” button to browse where ‘PRT.mat’
file was saved. The window of Figure 13.32 in Chapter 13 is called to establish a dependency connection
with the previous ‘Data & design’ module.

e Provide a name to the ‘Feature/kernel’ set, e.g. ‘HaxbyFeatures’;

e Select the ‘Nifti’ option for a data format, add one modality and select the modality name with the
‘Dependency’ button® (Data & Design:Mod#1 name);

— In the ‘Samples/Conditions’ field , select the ‘All samples’ option;

4http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html
50r type it in manually, ‘fMRI’, but the name needs to be ezactly the same as the one specified in the ‘Data & Design’ module.

152 CHAPTER 15. MULTIPLE KERNEL LEARNING EXAMPLE

— In the ‘Voxels to include’ field, select ‘All voxels’ option;

— In the ‘Detrend’ field, select ‘Polynomial detrend’ option with order 1;

— In the ‘Scale input scans’ field, select ‘No scaling’ option.

— In the ‘Use atlas to build ROI specific kernels’; select an atlas file AAL (named ‘aal 79x91x69)
available in the PRoNTo directory (PRoNTo/atlas/).

Figure 15.6 shows the final configuration of the matlabbatch ‘Feature set / Kernel’ module.

Help on: Feature set/Kernel
Load PRT.mat ...esign; PRT.mat file
Feature/kernel name HaxbyFeatures
Data format
. Nifti
.. Modality
.. . Modality name ...esign: Mod#1 name
. Samples / Conditions
... All samples
.. Voxels to include
... All voxels
. Detrend
.. . . Polynomial detrend
..... Order 1
. Scale input scans
.. . No scaling
. Use atlas to build ROI specific kernels ...aal_79x91x69.img, 1

Figure 15.6: Final configuration of the matlabbatch ‘Feature set / Kernel’ module.

15.2.3 Model: Specify new

e Click on the ‘Model: Specify new’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Feature set / Kernel” step or click on the ‘Select files’ button to browse where
‘PRT.mat’ file was saved;

e Provide a name to the model, e.g. ‘mklFacesHouses’;
o In the ‘Feature sets’ field, select the feature set name with the ‘Dependency’ button®;

e Select the ‘Classification’ model type:

— Add 2 new classes;

— For Class (1) write ‘Faces’ on the name field and add one group. Select the group name from the ‘Data
& Design’ module (‘Data & Design:Group#1 name’) with the ‘Dependency’ button”. Similarly, for
Class (2) write ‘Houses’ on the name field and add the group created in the ‘Data & Design’ module,
4G17;

— In the ‘Subjects’ field, type ‘1’ (only subject 1 is selected);

— In the ‘Conditions / Scans’ field, select the ‘Specify Conditions’ option and add a new condition.
Provide a name for this condition, i.e. for Class (1) ‘Faces’ and for Class (2) ‘Houses’. Note that this
name needs to be spelled exactly as specified in the ‘Data & Design’ module: if you simply loaded
an ‘SPM.mat’ file for the design, you must know the names of the conditions;

e Leave ‘Subsample examples based on class definition’ as it is, i.e. ‘No’.

Sor write it ezactly as previously defined in the ‘Feature set / Kernel’ module (option ‘Feature set/Kernel: Feature/kernel

name’), here ‘HaxbyFeatures’.
7Or write it ezactly, as previously defined in the Data & Design’ module, here ‘G1’

15.2. BATCH ANALYSIS 153

o In the ‘Machine’ field:

Select the ‘Kernel machine’ and the ‘L1 Multi-Kernel Learning’ option;

— In the ‘Machine optimization and parameters’ field, select the ‘Optimize hyper-parameter’ option;

Here we need a range of values only for the ‘Regularization hyper-parameter’ optimization, which
you can leave with the defaults (i.e. [0.01, 0.1, 1, 10, 100, 1000]);

In the ‘Cross validation type for hyper-parameter optimization’ (internal loop) field, select the ‘k-folds
CV on blocks’ option and on the field ‘k’ input the value 4;

e In the ‘Cross validation type’ (external loop) field, select ‘Leave one block out’ option;
e Leave the ‘Include all scans’ field as it is, i.e. ‘No’;

e In the ‘Data operations’ field:

— Leave the ‘Mean centre features’ field as it is, i.e. ‘Yes’;

— Click on the ‘Other Operations’ field and select the option ‘Select Operations’, then add a new
operation and select the ‘Normalize samples’ option;

Figure 15.7 shows the final configuration of the matlabbatch ‘Model: Specify new’ module.

Help on: Model: Specify new

Load PRT.mat ... PRT.mat file
Model name ...acesHouses
Feature sets

. Feature set name

.. Name .../kernel name
Model Type
. Classification
.. Classes
...Class
. ... Name Faces
. ... Groups
..... Group
...... Group name ...roup#1 name
...... Subjects 1
...... Conditions / Samples
....... Specify Conditions
........ Condition
......... Name Faces

Class

. Name Houses
. ... Groups
..... Group
...... Group name ...roup#1 name
...... Subjects 1
...... Conditions / Samples
....... Specify Conditions
........ Condition
......... Name Houses
. . Subsample examples based on class definition No
.. Machine Type

... Kernel machine

. ... L1 Multi-Kernel Learning

..... Machine optimization and parameters

...... Optimize hyper-parameter

....... Regularization hyper-parameter 1x6 double
....... Cross-validation type for hyper-parameter optimization

........ k-folds CV on blocks

Cross-validation type
. Leave one block out

Include all scans No
Data operations

. Mean centre features Yes
. Other Operations

. . Select Operations

. . . Operation ...alize samples

Figure 15.7: Final configuration of the matlabbatch ‘Model: Specify new’ module.

154 CHAPTER 15. MULTIPLE KERNEL LEARNING EXAMPLE
15.2.4 Model: Run
e Click on the ‘Model: Run’ option on PRoNTo’s matlabbatch menu.

e With the ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Specify model’ step;

e Select the model name from the ‘Model: Specify new’ module with the ‘Dependency’ button, or write it
exactly, as previously defined in the ‘Model: Specify new’ module, here ‘mklFacesHouses’;

e Finally leave ‘Do permutation test?’ as it is.

Figure 15.8 shows the final configuration of the matlabbatch ‘Model: Run’ module.

15.2.5 Compute weights (optional step)
e (lick on the ‘Compute weights’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Model: Run’ step;

e Select the model name from the ‘Model: Specify new’ module with the ‘Dependency’ button;
e It’s optional to define a name for the image;

e In the ‘Build weight images per ROI’, load the atlas that was used for building the feature set, which can
be found in PRoNTo/atlas/;

e Leave the ‘Build weights images for permutations’ field as it is, i.e. ‘No’;
Finally, save the batch (e.g. as batch_run_all.m) and click on the ‘Run Batch’ option, in the ‘File menu’.

The batch file created can then be opened and edited for further analyses. The results will be the same as those
obtained using the GUI (see Section 15.1.7 of this tutorial).

Figure 15.9 shows the final configuration of the matlabbatch ‘Compute weights’ module.

{4\ Batch Editor

DEd P

Module List

Data & Design
Feature set/Kernel [
Model: Specify newl
Model: Run [
Compute weights

"

File Edit View SPM BasiclO PRoNTo

Current Module: Model: Run
Help on: Model: Run
Load PRT.mat
Model name

Do permutation test?
. No permutation test

... Model: Specify new: PRT.mat file
... Model: Specify new: Model name

~

4\ Batch Editor

File Edit View SPM BasiclO

DEW b

Module List

Data & Design

Feature set/Kemel [
Model: Specify newl
Model: Run [
Compute weights [

~

Compute weights

PRoNTo

Current Module: Compute weights

Help on: Compute weights

Load PRT.mat

Model name

Image name (optional)

Build weight images per ROI

. Load Atlas

Build weight images for permutations

.... Run: PRT.mat file
... new: Model name

...al_79x91x69.img, 1
No

Trains and tests the predictive machine using the cross-validation structure specified
by the model.

This branch contains 3 items: v

Compute weights. This module computes the linear weights of a classifier and saves
them as a 4D image. 3 dimensions correspond to the image dimensions specified in
the second-level mask, while the extra dimension corresponds to the number of
folds. There is one 3D weights image per fold. v

Figure 15.8: Final configuration of the
matlabbatch ‘Model: Run’ module.

Figure 15.9: Final configuration of the
matlabbatch ‘Compute weights’ module.

Chapter 16

Removing confounds: a classification
example

Contents
16.1 Introduction L 155
16.2 GUIL analysis 0 o o e e e e e e 156
16.2.1 Data & Design oL L 156
16.2.2 Prepare feature set L e e e e e e 157
16.2.3 Model: Specify new L e 158
16.2.4 Model: Specify from e 159
16.2.5 Model: Run o L 159
16.2.6 Display results Lo 160
16.3 Batch analysis L e 160
16.3.1 Data & Design o e e e e e e 160
16.3.2 Featureset / Kernel 161
16.3.3 Model: Specify new e e 162
16.3.4 Model: Run oL 163
16.3.5 Compute weights e 163
16.3.6 Display weights e 164
16.4 Effects of removing covariates L oL 164

16.1 Introduction

This chapter describes the steps necessary to remove confounding effects using PRoNTo. Age, gender or scan-
ner/site (in case of a multi-site study) are examples of potential confounds (or covariates) that can be removed
from the pattern regression analysis. Please see section 2.5.1 for important considerations on covariates.

The dataset used in this chapter can be found on the OASIS’s website http://www.oasis-brains.org
(data set 1). In this example, 100 subjects were selected from the OASIS dataset with 50 demented patients
and 50 nondemented subjects. Age and gender are considered confounds. Gender is a categorical variable, so
it was represented using one-hot encoding (i.e. male was represented as [0 1] and female was represented as [1
0]). The preprocessed data can be found on PRoNTo’s website.

We will use PRoNTo to classify subjects with dementia from healthy subjects based on structural MRI
scans. We will use Multiple Kernel Learning to classify the subjects based on whole brain images, so the reader
is advised to complete the tutorial in Chapter 13 and Chapter 15 before moving on.

As in previous Chapters, we will start analyzing the data with PRoNTo’s GUI and then repeat the analysis

using the matlabbatch system. Please create a folder on your computer to store the results and type prt in
MATLAB.

155

http://www.oasis-brains.org

156

CHAPTER 16. REMOVING CONFOUNDS: A CLASSIFICATION EXAMPLE

16.2 GUI analysis
16.2.1 Data & Design

In PRoNTo’s main window, click on ‘Data & Design’ and a new window will open, ‘Data and design’.
Like in previous chapters, browse the directory in which to save the PRT structure (saved as ‘PRT.mat’).

In the panel Groups, click on ‘Add and provide a name to the group, e.g. ‘Dem’. We will first add all the
information about the demented subjects.

All the images in the dataset correspond to different subjects; therefore, click on the Samples tick box.
This will lock the Subjects/Samples field, please see Chapter 2.4 of the manual for more information on
this option.

In the ‘Modalities’ panel, click on ‘Add’ and provide a name to the modality, e.g. ‘MRI_.GM’, where we
used gray matter images.

In the ‘Data format’ choose the appropriate format for your data (here nifti); For other data formats the
reader is referred to the tutorial of chapter 17.

Load all the image files belonging to the first group. You can select all the files by using the right mouse
button and clicking on the option ‘Select All’, or clicking on the first subject then Shift-click on the last.
Please ensure that the order of the images in the selection is as expected (SPM file selector sorts the files
based on their names, which can lead to ‘Scanl0’ being selected before ‘Scan2’). When all the images are
selected, click on the ‘Done’ button.

You can see that the ‘Design’ section is unavailable. Since each subject has only 1 sample/scan, there is
no design.

Leave the ‘Regression targets’ as it is, i.e ‘No targets’.

In the ‘Covariates’ field, type the covariates you want to regress out. Alternatively, you can save all the
covariates in a matrix named R and input the full path of this matrix to ‘Covariates’. Each covariate should
be stored in one (continuous confound) or multiple (one-hot encoded categorical confound) columns, hence
if there is only one continuous covariate, R is a column vector; if there are multiple and/or categorical
confounds, R will be a matrix containing multiple columns. In this example, we input the full path of a
matrix where gender and age are the chosen confounding factors (Figure 16.1). The file containing matrix
R (Dem_cov.mat) can be found together with the pre-processed OASIS data on PRoNTo’s website.

4] Enter modality name

Modality

MRI_G

nifti

select...

No design

Design
Regression targets No targets

Covariates Is_v3_with_data\OASIS\Data\Dem_cov.mat

OK I Cancel

Figure 16.1: ‘Specify modality’ GUI allows one to enter the covariates to be regressed out.

In the ‘Masks’ field, on the bottom left of the ‘Data and design window, select the ‘mask_GM’ mask (found
on OASIS/Data) for the modality specified.

16.2. GUI ANALYSIS 157

e Finally, repeat the previous steps for a new group, the non-demented group, 'NonDem’, including the
corresponding images and covariates, and using the same modality and mask as for the ‘Dem’ group.
Click on the ‘Save’ button to create the ‘PRT.mat’ file. Notice that the only difference with the tutorials
of the previous Chapters is that now we have two groups instead of one (Figure 16.2. The ‘Data and
design’ window should look similar to Figure 16.3.

{4 PRONTO :: Review data and design - O X

Save »

Number of modalities:

Design?

Figure 16.2: Review data in the ‘Data and design’ GUI.

4 Enter group name - m] X

Groups { Files

Dem T A
NonDem mwrc10AS2_0010_MR1.nii,1
mwrc10AS2_0021_MR1.nii,1
mwrc10AS2_0023_MR1.nii,1
mwrc10AS2_0026_MR1.nii,1
mwrc10AS2_0028_MR1.nii,1
mwrc10AS2_0032_MR1.nii 1
mwrc10AS2_0037_MR1.nii,1
mwrc10AS2_0039_MR1.nii,1
mwrc10AS2_0043_MR1.nii,1
mwrc10AS2_0046_MR1.nii,1
mwrc10AS2_0048_MR1.nii,1
mwrc10AS2_0058_MR1.nii,1

mwrc10AS2_0060_MR1.nii,1
mwrc10AS2_0083_MR1.nii,1
mwrc10AS2_0064_MR1.nii,1 o

<

Add Remove

[] samples

Figure 16.3: ‘Data and design’ GUI final configuration.

If no errors are shown in the MATLAB command, leave the ‘Data and design’ window by clicking ‘Quit’.

16.2.2 Prepare feature set

e In PRoNTo’s main window, click on ‘Prepare feature set’ and a new window will open, ‘Prepare feature
set’.

e Select the ‘PRT.mat’ file previously created in the ‘Data & Design’ step and another window will open,
‘Specify modality to include’. Select the ‘Build one kernel per region’ tick box and load the ‘AAL’ atlas
(named ‘aal_79x91x69’) available in the PRoNTo directory (PRoNTo/atlas/). Leave all the other default
options and click ‘Done’.

e This will bring you back to the ‘Prepare feature set’” window. Provide a name for the feature set, e.g.
‘OASIS_ConfEffects_withCov’.

e Click ‘Build kernel/data matrix’ to build the feature set and kernel.

158 CHAPTER 16. REMOVING CONFOUNDS: A CLASSIFICATION EXAMPLE

16.2.3 Model: Specify new

e In PRoNTo’s main window, click on ‘Specify new’ and a new window will open (see Figure 13.14 in
Chapter 13).

e Select the ‘PRT.mat’ file and provide a name to the model, e.g. ‘mkl_ OASIS_ConfEffects_withCov’.
e Select one of the ‘Feature Set’ previously defined. In this case, there is only one: ‘OASIS_ConfEffects_withCov’.
e Leave the option ‘Use kernels’ tick box as it is, i.e. “Yes’.

e Select the ‘Classification’ model type and click on the ‘Define classes‘ button. A new window will open,
‘Specify classes’, to define the number of classes and a name for each class. We will define 2 classes. For
‘Class 1’ select group ‘Dem’; and all subjects in this first group and, similarly, for ‘Class 2’ select group
‘NonDem’ and all the subjects in this group. The class names can be any names the user prefers (in
alphanumeric characters). Here we simply use the same names as the group names. Leave the ‘Subsample
according to smallest class’ as it is for now. Once you have appropriately specified everything, click ‘Done’.
The final configuration of the ‘Specify classes’ window should look similer to Figure 16.4

|4 PRoNTo : Specify classes - O x

Class Do NonDem |

Subjects in group Conditions in modality

Groups in data set

Dem ~

Select all Select all

Selected subject(s) Selected condition(s)
S44 ~
S45
S46
S47
S48
549
S50

Figure 16.4: ‘Specify classes’ GUIL

e Select the ‘L1 Multi-Kernel Learning’ option, in the ‘Machine’ field.

e Click the ‘Optimize hyper-parameter’ tick box and leave the range unspecified, i.e. use the default hyper-
parameter range. Choose ‘k-folds CV on Subject per Class’ for the ‘Cross-Validation Scheme’ (internal
loop), and input 5 in the pop up window defining the number of folds.

e Similar to the inner loop, select the ‘k-folds CV on Subject per Class’ cross-validation scheme for the
external loop, where k=10.

e In the ‘Data operations’ box, select the ‘Mean centre features using training data’, ‘Normalize samples’
and ‘Regress out covariates (subject level)” option. The ‘Regress out covariates (subject level)’ option
corresponds to the ”regressing out” effect of confounds from the data. Note that the order of the operations
is important and can affect the results. However, when selected, the ‘Regress out covariates’ option will
be performed first (even if not selected as first). Then, the ‘Specify model’ window should look similar to
(Figure 16.5). Click on the ‘Specify and run model’ button.

16.2. GUI ANALYSIS 159

e Remember that if you want to check the statistical significance of the results you should specify your
models here and run them using the ‘Model: Run’ module where you will have the option of choosing or
not to run permutation tests.

|4 Specify k, the number of folds — O e
C:\Users\PRoNTo_Dev\Testing_Scripts\PRT.mat

mki_OASIS_ConfEffects_withCov

onfEffects withCi

Classification

L1 Multi-Kernel Learning

0.1 1 10

k-folds CV on Subject per Class

k-folds CV on Subject per Class ~

bj Mean centre features using ~
Normalize samples

< I > < I >
Specify model Specify and run model

Figure 16.5: ‘Specify model’ GUI final configuration.

16.2.4 Model: Specify from

e The reader is referred to Chapter 13 and chapter 4 for more details regarding the ‘Model: Specify from’
module.

16.2.5 Model: Run

The reasons for using the ‘Model: Run’ module and not just click ‘Specify and run model” in the ‘Model: Specify
new/from’ module are the following:

e One might want to specify one or more models now but run it/them later.
e One might want to specify more than one models first and run them all together at once afterwards.

e One might want to run permutation tests in order to check the statistical significance of the results. The
reader is referred to Chapter 13 and section 5.4 for more details.

160 CHAPTER 16. REMOVING CONFOUNDS: A CLASSIFICATION EXAMPLE

16.2.6 Display results

e In PRoNTo’s main window, click on ‘Display results’ and select the ‘PRT.mat’ file. This will open the
main results window (Figure 16.6).

[4 PRONTO :: Results - a X
Save Figure File Edit View Insert Tools Desktop Window Help ¥
DEds kA0 LEL- S 0E DO

PRoNTo: Results

Fold Allfolds / Average Q
1

1
=

Plot Model
Accuracy distribution Model | mkl_OASIS_ConfEffects_with ~
1
0.8
L +
2
2 v
5 06 < >
o
o
b
]
-]
o
E

S
X

Plot ccuracy Dis
Balanced accuracy Predictions
q -+ Mean ROC

Influence of the hyper-paramel v
< >

Stats

Total accuracy: 75.00 %

Balanced accuracy (BA): 75.00 %

BA p-value: N A

Class accuracy (CA): 74.00 % 76.00 %
CA p-value: N.A

Class predictive value: 79.06 % 77.19 %
Area Under Curve: 0.80

AUC p-value: N.A

Copyright 2011 PRoNTo Edit plot | Help ‘ Quit

Figure 16.6: ‘Results’ GUIL

e In the ‘Results’ window, we have different performance measures, as well as different plots; both the
average as well as for each fold. One can select different plots in the ‘Plots’ list. For further information
regarding the ‘Display results’ module the reader is referred to chapter 5.

16.3 Batch analysis

In this section, the previous experiment will be repeated using the ‘matlabbatch’ system. The reader is advised
to complete the tutorial in Section 13.2 before continuing, since the explanation of each step will be less detailed.

Once again, to analyse the data, create a new directory to save the results of the analysis. On the main
interface of PRoNTo click on the ‘Batch’ button to open the ‘matlabbatch’. Alternatively, type ‘prt_batch’ in
the MATLAB prompt.

16.3.1 Data & Design
e Click on ‘Data & Design’ in the PRoNTo menu.
e In the ‘Directory’ field, select a directory where the ‘PRT.mat’ file will be saved.

e In the ‘Groups’ field:

— Add two groups.
— In the field ‘Name’, provide a name without spaces to both groups, e.g. ‘Dem’ and 'NonDem’.

— In the field ‘Select by’, select the ‘Samples’ option and add a new modality. For more information
on the Samples option please refer to chapter 2.

16.3. BATCH ANALYSIS 161

— For both groups add one modality and provide the same name, e.g. ‘MRI_.GM’.

For both groups select ‘nifti’ for our data format.

In the field ‘Files’, select the proper images for each of the groups.

For both groups leave the ‘Regression targets (subject)’ as it is, i.e. ‘No targets’.

— Specify as ‘Covariates’ the file with the confounds you want to remove. Remember that this file
should contain a variable ‘R’ with a matrix of covariates.

e In the ‘Masks’ field, add a new modality, provide the same modality name, ‘MRI_.GM’; choose the ap-
propriate data format and select the ‘mask_GM’ mask available in the Oasis dataset. The name of the
modality here has to be exactly the same as in ‘Modalities’.

e Leave the ‘HRF overlap’ and the ‘HRF delay’ fields as default.

e In the ‘Review’ field, select ‘Yes’ if you would like to review your data and design in a separate window.
Otherwise, leave as it is, i.e. ‘No’. Note: if ‘Yes’ is selected, users will need to close the Review window
after Running the batch to allow the execution of following modules.

The final configuration of the matlabbatch ‘Data & Design’ module should look similar to Figure 16.7.

Help on: Data & Design

Directory ...s-classification)\v3
Groups

. Group

.. Name Dem
.. Select by

... Samples

. ... Modality

..... Name MRI_GM
..... Data format nifti
..... Files 50 files
..... Regression targets (subject)

...... No targets

..... Covariates ...\Dem_cov.mat
. Group

.. Name NonDem
. . Select by

... Samples

... . Modality

..... Name MRI_GM
..... Data format nifti
..... Files 50 files
..... Regression targets (subject)

...... No targets

..... Covariates ...\NonDem_cov.mat
Masks

. Modality

.. Name MRI_GM
. . Data format

... Nifti

... . File ...ta\mask_GM.nii, 1
. ... HRF overlap 0
. ... HRF delay 0
Review No

Figure 16.7: ‘Data & Design’ module in matlabbatch.

The batch can either be run directly or the following modules can be added to complete multiple steps of
the analysis at once. We typically suggest users to save and run the ‘Data and Design’ step in a separate batch
to avoid deleting/overwriting the PRT each time the batch is run.

16.3.2 Feature set / Kernel

e Click on the ‘Feature set / Kernel’ option on PRoNTo’s matlabbatch menu.

162 CHAPTER 16. REMOVING CONFOUNDS: A CLASSIFICATION EXAMPLE

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Data & Design’ step or click on the ‘Select files” button to browse where ‘PRT.mat’
file was saved. The window of Figure 13.32 in Chapter 13 is called to establish a dependency connection
with the previous ‘Data & design’ module.

e Provide a name for the ‘Feature set/kernel’, e.g. ‘OASIS_ConfEffects_withCov’.

e Choose the appropriate data format, add one modality and select the modality name with the ‘Dependency’
button' (Data & Design:Mod#1 name).

In the ‘Samples/Conditions’ field , select the ‘All samples’ option.

— In the ‘Voxels to include’ field, select ‘All voxels’ option, this means we are not entering an additional
second-level mask.

— In the ‘Detrend’ field, select ‘None’.

In the ‘Scale input scans’ field, select the ‘No scaling’ option.

— And finally in the ‘Use atlas to build ROI specific kernels’ field, load the AAL atlas as we did in the
GUI section. After all these steps, the batch editor should look similar to the one in Figure 16.8.

Help on: Feature set/Kernel

Load PRT.mat ... Design: PRT.mat file
Feature/kernel name ...ConfEffects_WithCov
Data format
. Nifti
. . Modality
. . Modality name ...Design: Mod#1 name
... Samples / Conditions
... All samples
... Voxels to include
. ... Allvoxels
... Detrend
... None
... Scale input scans
... . No scaling
.. Use atlas to build ROI specific kernels ...1x69.img, 1

Figure 16.8: Final configuration of the matlabbatch ‘Feature set / Kernel’ module.

16.3.3 Model: Specify new
e Click on the ‘Model: Specify new’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Feature set / Kernel” step or click on the ‘Select files’ button to browse where
‘PRT.mat’ file was saved.

e Provide a name for the model, e.g. ‘mkl_OASIS_ConfEffects_withCov’.
e In the ‘Feature sets’ field, select the feature set name with the ‘Dependency’ button?.
e Select the ‘Classification’ model type:

— Add 2 new classes.

— For Class (1), specify a name by writing ‘Dem’ or using Dependency to choose the first group’s name
defined in 'Data & Design’ and add one group. The class name doesn’t have to be the same as the
group name, this example uses this only for simplicity. After this step, select the group name from
the ‘Data & Design’ module (‘Data & Design:Group#1 name’) with the ‘Dependency’ button®.

10r type it in manually, ‘MRI_GM’, but the name needs to be ezactly the same as the one specified in the ‘Data & Design’
module.

2or write it ezactly as previously defined in the ‘Feature set / Kernel’ module (option ‘Feature set/Kernel: Feature/kernel
name’), here ‘OASIS_ConfEffects_withCov’.

30r write it ezactly, as previously defined in the Data & Design’ module, here ‘Dem’

16.3. BATCH ANALYSIS 163

— In the ‘Subjects’ field of Group 1, type ‘1:50’. This will tell the program to use all the 50 subjects,
i.e. from subject 1 to scan 50. In Conditions/Samples, select ‘All Samples’.

— Similar to Class (1), write ‘NonDem’ on the name field for Class (2), or use Dependency to choose
the second group’s name. Then fill the group name using Dependency, i.e. the second group’s name
created in the ‘Data & Design’ module, ‘NonDem’. In the ‘Subjects’ field of Group 2, type ‘1:50’. In
Conditions/Scans, select ‘All scans’.

— Finally leave ‘Subsample example based on class definition’ as it is, i.e. ‘No’.

In the ‘Machine’ field:

— Select ‘Kernel machine’” and the ‘L1 Multi-Kernel Learning’ option.

— In the ‘Machine optimization and parameters’ select the ‘Optimize hyper-parameter’ and leave it to
the default values (i.e. ‘10°[-2:3]’).

— In the ‘Cross validation type for hyper-parameter optimization’ field, choose ‘k-folds CV on subjects
per group’, and input ‘5’ in the field ‘k’.

In the ‘Cross-validation type’ field, choose ‘k-folds CV on subjects per group’, and input ‘10’ in the field
k.

Leave the ‘Include all scans’ field as it is, i.e. ‘No’.

In the ‘Data operations’ field:

— Leave the ‘Mean centre features’ field as it is, i.e. ‘Yes’.

— Click on the ‘Other Operations’ button, choose ‘Select operations’, ‘New Operation’ and select the
‘Normalize samples’.

— Click ‘Select operations’, ‘New Operation’, and select ‘Regress out covariates (subject level)’ option
from the list.

After these steps, the batch editor should look similar to the one in Figure 16.9.

16.3.4 Model: Run
e Click on the ‘Model: Run’ option in PRoNTo’s matlabbatch menu.

e With the ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
updated in the previous ‘Specify model’ step.

e Select the model name from the ‘Specify model’ module with the ‘Dependency’ button®.

e In the field ‘Do permutation test?’, leave as it is, i.e. ‘No permutation test’.

16.3.5 Compute weights
e Click on the ‘Compute weights’ option in PRoNTo’s matlabbatch menu.

e With the ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
updated in the previous ‘Run model’ step.

e In the ‘Model name’ field, click on the ‘Dependency’ button to associate the model name from the ‘Specify
model’ module.

e In ‘Build weight images per ROI’, users can choose ‘Load atlas’ to build a weight image showing where
the value in each region corresponds to the region/kernel’s weight. This example uses MKL, where the
AAL atlas was selected during the Feature set module, hence the atlas will be automatically loaded here
if ‘Load atlas’ is selected.

e Leave the other fields as default.

We are now ready to run the batch: the arrow on top of the matlabbatch should be green and can be clicked.
If the arrow is gray, please check for missing inputs in the different modules (displayed with an ‘< ——X’).

4or write it exactly as previously defined in the ‘Specify model’ module, here ‘mkl_OASIS_ConfEffects_withCov’

164 CHAPTER 16. REMOVING CONFOUNDS: A CLASSIFICATION EXAMPLE

Help on: Model: Specify new

Load PRT.mat ...ernel: PRT.mat file
Model name ...nfEffects_withCov
Feature sets

. Feature set name

.. Name ...ature/kernel name
Model Type

. Classification

.. Classes

...Class

... . Name ..ign: Group#1 name
. ... Groups

..... Group

...... Group name .ign: Group#1 name
...... Subjects 50x1 double
...... Conditions / Samples

....... All samples

...Class

... . Name ..ign: Group#2 name
. ... Groups

..... Group

...... Group name .ign: Group#2 name
...... Subjects 50x1 double
...... Conditions / Samples

....... All samples

. . Subsample examples based on class definition No
.. Machine Type

... Kemnel machine

. ... L1 Multi-Kernel Learning

..... Machine optimization and parameters

...... Optimize hyper-parameter

....... Regularization hyper-parameter 1x6 double
....... Cross-validation type for hyper-parameter optimization

........ k-folds CV on subjects per group

Cross-validation type
. k-folds CV on subjects per group

..k 10
Include all scans No
Data operations

. Mean centre features Yes

. Other Operations

. . Select Operations

... Operation Normalize samples
. . . Operation ...ress out covariates

Figure 16.9: Final configuration of the matlabbatch ‘Model: Specify new’ module.

16.3.6 Display weights

e In PRoNTo’s main window, click on ‘Display weights’ and select the ‘PRT.mat’ file. This will open the
‘PRoNTo::Weights” window.

e In the Display panel, click the model name in the ‘Model’ field, ‘mkl_OASIS_ConfEffects_withCov’. An
image will appear in the ‘Weights map’ panel. To show the ‘Anatomical img’ you have to load an
anatomical image for reference. A template image can be found in SPM’s canonical folder (‘single_subj_T1¢
file). Select ‘weights per region’ to display the kernel/ROI contributions (see Chapter 6 for details on this
image). Select ‘weights per voxel’ to display the voxels contributions. In the table below the weight
map, the contribution of ROI to the model and its corresponding rank are listed. A bar graph shows the
contribution of each ROI to the model (sorted), displaying how ‘sparse’ the model is. The final window
will look similar to the one shown in the Figure 16.10.

16.4 Effects of removing covariates

This section shows the differences between results with and without removing covariates.

In order to check the effects of regressing out covariates one has to rerun the whole procedure keeping

16.4. EFFECTS OF REMOVING COVARIATES

|4 PRONTO = Weights - [m] X
SaveFigure File Edit View Insert Tools Desktop Window Help >
DEEdS AU RL- G/ 0E D

Display

Weights |yeights_mki_OASIS_ConfEff . v O weights per voxel

Model mki_OASIS_ConfEffects_with... ~))
Fold Allfolds / Average v ® weights per region

Weights map Anatomical img

4

-

0w 4%

Crosshair Position
Origin

mm 000000

V& 460640370

Intensity NaN

o

C:\Users\Konstantinos Tsirlis\Drop| C:\Users\Konstantinos Tsi| Reset images

Label | Weight (%)[Size (feat) Exp. Ranking
Cingulu.. 10.4205 311 90.800(A
60435 111.300(
Cerebelu.. 54950 100.300(
Rolandic... 4.9651 99.700(
Frontal ... 4.2024 3480 95.100(
Cerebelu 4.0585 108.100(
Amygdal 38712 104.900(
Supraba.. 3.5495 1109 94.6000
Cingulu.. 33426 1265 84.700
Rectus R 3.1514 728 93.600(

Thalamu.

i
o= arnn

Export table Load labels

Figure 16.10: ‘Display weights’ module where a weight map per region is shown.

165

everything the same, except that now we have to not choose ‘Regress out covariates’ in the ‘Data operations’

when we specify our new model. This can be more easily done using the module ‘Model: Specify from’.

Figure 16.11 shows the accuracy of the same MKL model but without removing confounds: the average
balanced accuracy decreased from 75% (see 16.6) to 64%.

"4 PRONTO : Results - O X
Save Figure File Edit View Insert Tools Desktop Window Help >
EEE IR P AR E =
PRoNTo: Results
Plot Model
Accuracy distribution Model mki_OASIS_ConfEffects_witr ~
1
0.8
z
2 + v
508 < — >
=)
s Fold ~
E 0.4 1
£ 2 v
0z L WS Accuracy Distribution
ol L Mean ROC
Influence of the hyper-paramet v
< >
Stats
Total accuracy: 64.00 %
Balanced accuracy (BA): 64.00 %
BA p-value: N.A
Class accuracy (CA): 62.00 % 66.00 %
CA p-value: NA
Class predictive value: 64.88 % 64.05 %
Area Under Curve: 069
AUC p-value: N.A
Copyright 2011 PRoNTo Edit plot | Help | Quit |

Figure 16.11: ‘Display results’ GUI with the accuracies of MKL without removing covariates.

166 CHAPTER 16. REMOVING CONFOUNDS: A CLASSIFICATION EXAMPLE

Chapter 17

Multi-modal face recognition example

Contents
17.1 GUIL analysis o o it e e e e e e e e e e e 168
17.1.1 Data & design e e e e e e 168
17.1.2 Prepare feature set e 172
17.1.3 Model: Specify new L 175
17.1.4 Model: Specify fromo 175
17.1.5 Model: Run o e e 177
17.1.6 Display results e e e 178
17.1.7 Compute weights e e 178
17.1.8 Display weights L 178
17.1.9 Using an atlas with .mat L o 180
17.2 Batch analysis L e 181
17.2.1 Data & Design oL e 182
17.2.2 Featureset / Kernel 185
17.2.3 Model: Specify new e e e e 186
17.24 Model: Run oL e 188
17.2.,5 Compute weights e 190
17.2.6 Display results & weights Lo 190
17.2.7 Using an atlas with .mat o o oo 190

The dataset used in this tutorial consists of is a visual experiment where pictures of famous faces (Fa-
mous), unfamiliar faces (Unfamiliar) and scrambled faces (Scrambled) are presented to the subjects. In to-
tal 16 subject were recorded with fMRI, EEG and MEG. The data is available for research purposes from
ftp://ftp.mre-cbu.cam.ac.uk/personal /rik.henson/wakemandg_hensonrn/ and is fully detailed in the publica-
tion: A multi-subject, multi-modal human neuroimaging dataset, Wakeman, D. G. and R. N. Henson, Scientific

Data, vol. 2, 150001, 2015.

A within-subject version of the dataset can be found, along with pre-processing batches, on the SPM website
(https://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/).

In this tutorial, the EEG and MEG data was used to derive 6 modalities:

e MEG: average trace for each channel, in the considered time window. There are 102 MEG channels.
There is one file with the 3 traces per subject.

e Interpolated EEG: nifti images from spatial interpolation of average trace per condition on the scalp, for
EEG. We thus obtain one image per condition and per subject.

e Interpolated MEG: nifti images from spatial interpolation of average trace per condition on the scalp, for
MEG.

167

168 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

e Connectivity EEG: for each pair of channels, we computed the correlation between the average traces of
a condition. The output is a 70*70 matrix per condition and per subject. Only the upper triangular part
of the matrix was extracted.

e Connectivity MEG: for each pair of channels, we computed the correlation between the average traces of
a condition. The output is a 102*¥102 matrix per condition and per subject. Only the upper triangular
part of the matrix was extracted.

The EEG, MEG, interpolated EEG and MEG files were obtained from following the batches provided with
the corresponding chapter in the SPM manual. The connectivity was built from the obtained EEG and MEG
files, based on in-house scripts (in the Appendix).

17.1 GUI analysis

We will first analyse the data using PRoNTo’s GUI and then repeat the analysis using the matlabbatch system.
As this is a much more complex tutorial, readers are strongly advised to go through the other tutorials first
to get a better understanding of PRoNTo’s functionalities. Also, since this is the fourth tutorial, some parts
that have been previously described will be only shortly described here. Therefore, the reader is advised to go
through the previous tutorials first.

To start, create a new directory in which to save the results of the analysis, then start up MATLAB and type
‘prt’ or ‘pronto’ in the MATLAB prompt. This will open the main interface of PRoNTo.

17.1.1 Data & design

There are 16 subject to input. For each subject, there are 6 modalities to specify. The easiest way to do this is
to fully specify subject 1, then use the entered modalities and designs in further subjects.

e Choose a directory to save the resulting PRT.mat.

e Add a group (e.g. ‘G1’), one subject (‘S1’), and leave the ‘Samples’ tick box below the panel unchecked.
See Chapter 2 of the manual for more information on this option.

EEG/MEG (MEEG data format)

e The first modality to be specified will be the EEG. Provide the name ‘EEG’ and choose its type as ‘MEEG’.
The MEEG data formats usually consist of two files, one .mat and one .dat. In this case we have to go to
/Multimodal_face_dataset/data/S1/EEG where we'll find the EEG data of the first subject (‘S1’).

e When the file is selected, PRoNTo will automatically read the design from it. The design can be reviewed
be clicking on ‘Events in file’.
In Figure 17.1 we see both the MEEG modality specification in mention, and the MEEG design review.
There we see 3 conditions: Unfamiliar, Famous and Scrambled. The units are already set to seconds and
the TR is the sampling interval (in seconds) in the file. In this example, the TR of 0.005 corresponds to
a sampling rate of 200Hz.

e The same can be done for the MEG modality, where you will only have to change the name and choose
the appropriate MEG files, instead of the EEG files that we chose before.

Interpolated EEG/MEG (nifti data format)

e The interpolated EEG and MEG consist of nifti files. This is similar to entering beta images from a GLM
analysis in previous versions of PRoNTo. The only difference is that the type now needs to be specified;
even though nifti is the default option.

e In the ‘Specify modality’ GUI, provide a name to the modality, e.g. ‘interpEEG’, choose ‘nifti’ and select
the appropriate files, which are found in /Multimodal_face_dataset/data/S1/EEG _Ginterp. As there are
3 conditions, we have 3 different files, one for each condition.

17.1. GUI ANALYSIS 169

[#] Enter subject name — m} X

4 PRONTo Specify conditions

C:\Users\PRoNTo_D
From .mat file i

Onsets Duration
0.905

[#] Enter moda ity name 0.905
' 3 |Scrambled 0 0905

Modality

EEG

MEEG

select...

>
Design Events in file
Regression targets o farqes 0005

Figure 17.1: ‘Specify modality’ and ‘Specify conditions’ GUIs.

— Very important note: the order you choose the conditions (their files) should be the same across
all modalities that will be used in a single model. This means that we should use the same order
(Unfamiliar, Famous, Scrambled) that was input with the EEG and MEG files.

e Since there is no SPM.mat file for the design, we need to specify the design ourselves.

— Create a new design by selecting the option ‘Specify design’.

— If we do not have a .mat file with the design information, we need to specify the experimental design
manually. Select the ‘Specify’ option in the ‘Specify conditions’ GUI. First you need to write how
many conditions you have, which in this case is 3 (corresponding to the 3 image files). This will open
another window that allows the user to write the names, onsets and durations of each condition.

— As when using beta images, the onsets should correspond to the index of the image in the file selection,
with the smallest index (i.e. first selected image) being 0. The duration should be set to 1 for all
images, and the units should be set to ‘Scans’, with a TR of 1. Take great care when specifying
conditions manually. The initial and final ‘Specify conditions’ window should look similar to the one
in Figure 17.2.

e The same can be done for the interpolated MEG modality, where you will only have to change the name
(‘interpMEG’) and choose the appropriate MEG files, instead of the EEG files that we chose before.

Note: If we have many subjects and many conditions, this procedure can be tiresome and is quite prone to
mistakes. Therefore what one could do is manually create a ‘Design.mat’ file and include the information re-
garding the names, onsets and durations inside that file. The name of the .mat file itself is irrelevant. What
is important is to have 3 different cell arrays named ‘names’, ‘onsets’ and ‘durations’. The dimensions of all
3 cell arrays should be 1 x #conditions. So in our case all 3 cell arrays will have 1x3 dimensions for the 3
conditions (Unfamiliar, Famous, Scrambled). You can find one such example design file called ‘Design.mat’ in
the /Multimodal_face_dataset/data.

So for the interpolated MEG modality and from now on, do not input manually all the conditions in the
‘Specify conditions’” GUI. Instead, select the ‘From .mat file’ option and choose the ‘Design.mat’ file located in

170

CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

[#] Enter number of conditions - m} X |4\ Enter number of conditions - m} X

Name Onsets i Onsets
1 |cond 1 NaMN NaMN Unfamiliar 0
cund 2 NaN Nal Famous 1
'3 lcond3 NaN NaN | 3 |Scrambled 2

% pri_text_input - O x

3
e

>
SEEDndS .

Figure 17.2: ‘Specify conditions’ GUI and final configuration.

the /Multimodal_face_dataset/data folder. As you can see one still needs to choose the ‘Units of onsets/dura-
tions’ and the ‘Interscan Interval’ options. So again set the units to ‘Scans’, and the TR to 1.

Connectivity EEG/MEG matrices (.mat data format)

e Finally we have the connectivity derived EEG and MEG matrices, which can be entered in a similar way

as for images. We set the name as ‘ConnEEG’.

The ‘Data format’ needs to be set to ‘.mat’. The files in this case are ‘.mat’ files, and usually we will have
1 file for each condition, hence 3 for each subject. The order with which we input the files needs to be
the same as before (Unfamiliar, Famous, Scrambled).

The possible design options are then Specify design or No design. Specifying the design is identical to
that of (nifti) images. As for images, PRoNTo expects one .mat file per trial/sample. Important note:
When loading the file, it will read the first variable only (independently of the variables name). You hence
need to ensure that the variable of interest is saved as the first one, or in a specific .mat. For ease of use,
keep using the last way we mentioned to specify conditions (using the design file called ‘Design.mat’ in
the /Multimodal_face_dataset/data).

The same can be done for the connectivity MEG modality, where you will only have to change the name
(‘ConnMEG’) and choose the appropriate MEG files, instead of the EEG files that we chose before.

At this point we have finished inputting the first subject!'.

— You can now start the second subject. You first create a new subject, e.g. ‘S2’.

— The modalities of the second subject can then be entered by selecting the already specified modalities,
where first you will need to select the appropriate data files of that subject, those of the second subject
instead of the first one we selected before.

— You will also need to specify the design wherever you specified it manually. So for EEG and MEG, the
design is read automatically. For nifti and .mat data formats, a new option will appear in the ‘Design’
menu of the ‘Specify modality’ GUI. The ‘Design’ menu will have the extra option ‘Replicate design
from subject 17, that is very convenient in this application. You can of course re-specify it manually
again by locating the design file called ‘Design.mat’ in the /Multimodal_face_dataset/data, as we
did before. You will need to do this for all 16 subjects.

IFor the more experienced users we have included a small MATLAB script inside the /PRoNTo_main_folder/manual called
‘16_script.m’ that automatically creates the rest of the subjects provided you have followed exactly the same steps as the ones
mentioned in the tutorial, you have completely finished the first subject, you have specified the interpolated EEG and MEG masks
and you have saved the struct. You need to load the ‘PRT.mat’, and be sure you’re in the same directory of your ‘PRT.mat’.

17.1. GUI ANALYSIS 171

e Finally we need to specify the masks. While mask files definitely need to be specified for nifti images, for
.mat and MEEG data formats, we indeed assume that the data only contains relevant features (therefore
there is no need for a mask), as this can be easily performed during pre-processing. Please ensure that
your data (.mat or MEEG) do not contain NaNs.

If the user wants to use a mask, it can still be done at the feature set level (for connectivity matrices,
we’ll see in another tutorial that another option could be to enter the full matrix and specify a 2nd level
mask).

After you have specified everything, the final configuration should look like the one in figure 17.3, with 16
subjects, each one with its 6 modalities.

4\ Enter subject name

Modalities/ runs

_ cbdspmeeg run 01 sss.matfdl
MEG

interpEEG
interpMEG
ConnEEG
ConnMEG

interpMEG ~

Figure 17.3: ‘Data & Design’ GUI final configuration.

Note regarding NaN values: A simple ‘Check Reg’ in SPM will show that the interpolated EEG (MEG)
images have NaNs at different pixels, for different subjects. We hence need to create a common mask to discard
those NaNs. This can easily be performed using SPM ImCalc batch (select all images from the EEG interpo-
lated modality, select ‘read as matrix’, operation can be: isnan(sum(X))) and should be done for EEG and
MEG separately.

Understanding the ‘PRT’ structure: At this point we have a ‘PRT.mat’ in the directory you previously
chose. It would be quite useful to load this in MATLAB and take a look at its structure, in order to start famil-
iarizing yourself with how PRoNTo structures everything. Once you slowly start being comfortable with this,
you will start to understand its great practicality. Maybe for example you want to inspect something you did
and you are not sure of, and maybe there is no explicit way to inspect this through the available GUIs. Instead
of re-doing everything right from the start, you can inspect ‘PRT.mat’ directly from the MATLAB Workspace.

For example, if you load the ‘PRT.mat’ file that was created and you go inside the ‘PRT.group’ field, you
will see a field called ‘gr_name’ which only has one group, ‘G1’, and another field called ‘subject’ whose value
is 1 x F#subjects. If you now go inside ‘subject’, you will notice two different fields. Now we are inside the
subjects of ‘G1’. Here you can see one field with the name ‘subj_name’ where we can see the 16 different sub-
jects we created, and another field called ‘modality’ which includes the 6 different modalities for each subject.
Go further inside if you wish, to the ‘modality’ field of ‘S1’. Here you see 6 entries (one for each modality),
each of which has 6 fields, ‘mod_name’ which includes the names we input, ‘covar’ which includes possible
covariates, ‘rt_subj’ which includes potential regression targets, ‘design’ which includes the designs we input,

172 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

‘scans’ which includes the data files we input for each subject and finally ‘type’ which is the data format of each
data file. That way you can easily check in a direct manner what you have input in every step you did previously.

Learning to explore and manoeuvre around the ‘PRT.mat’, while not obligatory, will definitely help you a
lot and make your life much more practical. It can save you from potential typo or other types of mistakes
because it’s an easy and fast way to check your inputs. So we strongly advise readers who intend to make heavy
use of PRoNTo to start familiarizing themselves with the MATLAB Workspace and the main PRoNTo structures
and even write their own MATLAB scripts automating some of the trivial procedures, like the one we did. A
MATLAB script is a much safer way to process mundane tasks that require a lot of mouse clicks which can be
tiresome and quite prone to human errors.

As in the previous tutorials the design can be reviewed. If properly specified, it will display one group of 16
subjects, with 6 modalities. For nifti modalities, this is where you would specify HRF parameters if you were
using a design specified in seconds. This option is (obviously) not available for .mat or MEEG. In the present
case, our design is in terms of images/scans. The default values of 0 and it should not be modified. The ‘Review
data’ GUI would look like Figure 17.4.

{4\ PRoNTO :: Review data and design — 0 X

Save ¥

Number of groups:

Number of modalities:

Design?

Select modality:

Number of conditions:

Unfamiliar
[JFamous
Scrambled

Figure 17.4: ‘Review data’ GUI.

17.1.2 Prepare feature set

In versions 2.X, modalities could be combined in 2 ways at this stage: either concatenated in samples (e.g.
multiple runs of a same experiment), or by computing one kernel per modality and storing them together. This
had the limitation that combined modalities (in either way) had to have the exact same number of features.
We have now decoupled those operations for more flexibility. At the feature set stage, modalities can only be
concatenated in samples. In this case they still need to have the exact same number of features.

As we want to use our modalities as different ‘features for the same model and not as different samples, we
hence need to build one feature set per modality. The different data types are handled in different ways: images

17.1. GUI ANALYSIS 173

and .mat in a way similar to v2, MEEG with a new window. This means that, after loading the ‘PRT.mat’ in
the ‘Prepare feature set’” GUI, a new window like the one in figure 17.5 will appear if multiple data formats are
contained in the ‘PRT.mat’. The window asks which data format the specified feature set will have. Feature
sets are built for only one data format at a time. The buttons available on this interface will reflect the data
formats present in your PRT. If only one type is present, this step is skipped.

{4\ PRoNTG : Specify type of data - | X

Figure 17.5: ‘Specify type of data’ GUI

Interpolated EEG/MEG (nifti data format)

o We first choose ‘nifti’ and will build the feature set for interpolated EEG. Once the data format has been
chosen, the process is similar to that of v2: if there are multiple modalities of that data format in the
PRT, the left window of figure 17.6 will appear, asking how many modalities to concatenate. Here, there
is only one modality to consider.

e After specifying ‘1’ and ‘Enter/Return’, the appropriate window, like the one in figure 17.7 will then open
to specify parameters for this specific modality. If there were multiple modalities to concatenate, the
following windows would open as many times as the number entered.

4 PRoNTo : Specify modality to include - O x

interpEEG ~
[# PRONTo :: Prepare feature set - O x

Modalities

Number of modalities to concatenate

No scaling

Selected modalities

‘ Additional (2nd level) mask for selected modality ‘

[Build one kemel per region

‘ Atlas defining regions of interest (ROIs) ‘

Build kernel / data matrix

Figure 17.6: ‘Prepare feature set’ GUL Figure 17.7: ‘Specify modality’ GUL.

e For nifti images, the whole process as we know it from versions 2.X and from the previous tutorials is the
same. All options previously available are included in v3, with no addition. We select all default options.
We then repeat the same procedure for the interpolated MEG modality (‘interpMEG’) to create a second
feature set.

Connectivity EEG/MEG (.mat data format)

e To create the connectivity EEG/MEG feature sets, we repeat the first step but select ‘.mat’. As we have
2 .mat modalities (EEG and MEG), window in Figure 17.6 appears first.

174 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

e Again, we enter ‘ConnEEG’ as the feature set name and enter ‘1’ as the number of modalities to include.
The next window is the same as for images, like the one in Figure 17.7. The only option not available is
the ‘Detrend’. In addition, 2nd level masks and atlases can be entered. An example is provided in another
tutorial. In the present case, we use all default options.

EEG/MEG (MEEG data format)

e To build a MEEG feature set, we select ‘MEEG’ in the first window and specify ‘EEG’ as the feature set
name and ‘1’ as the number of modalities to include in the second window.

e Then, a new window appears. It allows to ‘play’ along the different dimensions of the file, averaging across
dimensions or building multiple kernels. This last option will be equivalent in the code to creating an
atlas for the MEEG file. The atlas is not saved but the features selected along each dimension are stored
and further used to enable building the weights per kernel.

e In the present case (figure 17.8), we choose all ‘good’ channels (which is equivalent to all channels as this
is a multi-subject study), use the whole time window for consistency with the other modalities and do not
specify kernels along a dimension as we did not use an atlas for nifti or .mat.

e The ‘Frequencies’ panel is disabled as the signal is in voltage and was not decomposed in time-frequency.
Files with TF information enable this panel. Chapter 18 elaborates more on the different things one can
do when specifying MEEG modalities.

Important note: For .mat and nifti, we assume that feature 1 in sample 1 is equivalent to feature 1 of
sample 2. For MEEG, the assumption is the same: the first time point in the first channel and frequency
bin should be equivalent across subjects/runs. This means that if the channel montage was different or
epoching was different, preprocessing steps need to be performed to ensure compatibility across files.

After we build the 6 feature sets, we can see in figure 17.9 the 12 new files along the ‘PRT.mat’: 6 binary
file arrays (.dat) that collect the information across all subjects and samples in a modality, and 6 linear kernels
(.mat) that store the pair-wise similarity between all selected samples in a feature set.

4 PRoNTo : Specify modality to include - O X

Frequenci
Fom o e

Average signal in specified band

One kernel per frequency bin

All Current Folder ®

hd G074 | Name =

Eﬂ ConnEEG.mat

Eﬂ ConnMEG.mat

[EEGmat
Feature_set_ConnEEG.dat
Feature_set_ConnMEG.dat
Time points Feature_set_EEG.dat

[l Average signal aver channels

[0ne kemel per channel

Feature_set_interpEEG.dat
-100 800 z et
From msto ms Feature_set_interpMEG.dat
: . . Feature_set_MEG.dat

L] Average signal over time points [H] interpEEG.mat
Eﬂ interpMEG.mat

L One kemel per: [MEG.mat

) ime point [pRT.mat

) window of |:|ms

Figure 17.8: ‘Specify modality’ GUI for MEEG. Figure 17.9: The files of the 6 feature sets.

17.1. GUI ANALYSIS 175

17.1.3 Model: Specify new

Our goal is now to discriminate between the brain signals recorded during visualization of ‘Famous’ faces and
‘Scrambled’ faces. We will first build one model for each modality separately, to see how they perform, then
we’ll build a model that combines all the information and look at the contribution of each modality to the
predictive model. By the end of this tutorial we are going to have a total of 8 different models, 6 single kernel
models (one for each modality), one multiple kernel model, and a single kernel model using a 2nd level atlas
only for demonstration purposes.

e In PRoNTo’s main window, click on ‘Specify model’ and a new window called ‘Specify model’ will open
(see Figure 13.14 in Chapter 13).

e Select the ‘PRT.mat’ file and provide a meaningful name to the first model, e.g. ‘interpEEG_SVM’.
e Select the ‘interpEEG’ feature set previously defined.
e Leave the option ‘Use kernels’ tick box as it is, i.e. “Yes’.

e Select the ‘Classification’ model type and click on the 'Define classes’ button. A new window will open,
‘Specify classes’, to define the number of classes and a name for each class. We will define 2 classes.
First click ‘Class 1’ on the tab ‘Class’. For ‘Class 1’ select all subjects and the condition ‘Famous’ and,
similarly, for ‘Class 2’ select all subjects and the condition ‘Scrambled’. A novelty in the class specification
is the possibility to randomly subsample the over-represented class (to match as close as possible the under-
represented class). However, we use only one condition per class and one image per subject, so our dataset
is balanced. So leave the ‘Subsample according to smallest class’ unchecked. Once you have appropriately
specified everything, click ‘Done’.

e Select the ‘Binary support vector machine’ option, in the ‘Machine’ field.

e Select the ‘Optimize hyper-parameter’ tick box, in the ‘Define Range’ put ‘[0.1 1 10 100]’ and in the
‘Cross-Validation Scheme’ (internal loop) field, select the option ‘k-fold CV on Subject out’. A window
will appear asking to define the value of k, set it to 4.

e Select the same cross-validation scheme for the external loop as well.

Note: Leave One Subject per Class Out or its k-folds variant is not appropriate here as we need to leave
out all images from a single subject. Using the ‘per Class Out’ CV will throw an error and ask to select
Leave Subject Out instead.

e In the ‘Data operations’ box, select the ‘Mean centre features using training data’ option.

In the end, the ‘Specify model new’ window should look similar to the one in figure 17.10.

e Permutation testing is set in the ‘Run model’ module and since we are going to run permutations, we are
only going to specify the model here, and run it later. So click on ‘Specify model’.

This operation could be repeated across the different modalities. However, this is tiresome and prone to
human errors. In addition, if we had used the subsampling option, the different models would very likely select
different samples, which would make them harder to compare. Instead, we can now copy most of the parameters
from the model we just defined. This is done in the next section using the ‘Specify model from’ module.

17.1.4 Model: Specify from

The main interface has been modified to add a ‘Specify from’ model option. This will launch a window that is
very similar to the ‘Specify model’ window, but with a couple of changes: there is an extra popup menu that
allows to select which model to copy from. Some fields have also been disabled to ensure comparability of the
models: only the feature sets, the machine (with its hyper-parameter optimization) and the operations can be
modified. Classes/Regression selection and outer CV options cannot be modified.

e To create the other models based on each modality, we simply need to load our PRT and select the
interpEEG_SVM model to copy from (it is by default the 1st model in the PRT).

e We need to specify a model name for this new model, e.g. ‘interpMEG_SVM’.

176 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

e In the present case, we only want to change which feature set is used, so we click on ‘interpEEG’ to
deselect it and then click on the modality we would like to add, namely ‘interpMEG’.

e In the ‘Data operations’ select the ‘Mean centre features using training data’ option.

e Leave all the other parameters intact.

The ‘Specify model from’ window should look similar to the one in figure 17.11.

|4\ Specify k the number of folds |4 PRoNTo : Specify model from — O X

C:\Users\PRoNTo_DeviTesting_Scripts\PRT.mat —
intepEEG_SVIM

C:\Users\PRoNTo_Dev\Testing_Scripts\PRT.mat —
interpMEG_SVIM

Use kemels

|Classrﬁcatmn v|

Define classes

Model
Model

‘Classmcamﬂ

|Bmary support vector machine

Machine ‘Binary support vector machine

‘ o1 ! Optimize hyper-parameter 0.1 1

Cross-Validation Scheme ‘k—folds CV on Subject Out

|kfolds GV on Subject Out

Cross.

|kfolds CV on Subject Out Cross-Validation Scheme Ikfolds CV on Block

Selected data operations Data operations Selected data operations

Mean centre features using trjtel Sample averaging (within bigeal Mean centre features using il
Sample averaging (within su
Normalize samples

Regress out covariates

'Sample averaging (within suk
Normalize samples
Regress out covariates

<

Specify model Specify and run model

Figure 17.10: ‘Model: Specify new’ Figure 17.11: ‘Model: Specify from’
GUI final configuration. GUI final configuration.

<

Specify model Specify and run model

e Do exactly the same procedure for the 4 other modalities, where each time you will only select the feature
set of that modality with a name exactly the same as the feature set itself, adding a ‘.SVM’ in the end,
e.g. ‘EEG.SVM’, ‘MEG_SVM’, ‘ConnEEG_SVM’, ‘ConnMEG_SVM’.

Understanding the ‘PRT’ structure: Now if you load and explore the ‘PRT.mat’ file in the MATLAB
Workspace, you are going to see that there are some new structures, which correspond to the feature sets and
the models you created. If you open the ‘PRT.model’ you will see it has 3 fields, with 6 entries. The first one,
‘model_name’, you will recognize as the name of the model you wrote. Then we have the ‘input’, which is the
different parameters of the model, some of which you input manually and others that were defined automatically.
Finally there is the ‘output’, which is where the results of each model will be written once you run the models.
At the moment it is empty since you haven’t run the models yet.

If for example you want to do a quick check of the feature set that you input in a model you want to build,
one way through the MATLAB Workspace is to get inside the ‘PRT.model’ and go to the input of the first entry,
‘interpEEG_SVM’. So now we ought to be inside ‘PRT.model(1).input’ if you followed the instructions properly.
Inside there, you will find a field named ‘fs’. ‘fs’ in general is short for ‘feature set’, and in that particular case
corresponds to the feature set of this particular model. So if you followed the instructions properly, the feature
set ought to be the ‘interpEEG’. It is in that particular structure that you will find more than one feature sets,

17.1. GUI ANALYSIS 177

corresponding to the feature sets, in the case of multiple kernel learning.
MKL model

We can also build multimodal models in PRoNTo and use it to investigate the different contribution of each
modality for the predictive model. In this example we can use the MKL model to investigate which modality
contains most information for the ‘Faces’ versus ‘Scrambled’ comparison, and see if using different features
improves performance when compared to the single modalities. So use the ‘Specify model from’ module again,
but this time instead of having only one feature set, add all feature sets to the model. You will also need
to change the machine to the ‘L1 Multi-Kernel Learning’. Finally you will also need to add the ‘Normalize
samples’ operation in the ‘Data operations’ to compensate for the fact that different modalities have different
numbers of features. Leave all the other options as they are. The ‘Specify model from’ window for the MKL
model should look similar to the one in figure 17.12.

17.1.5 Model: Run

We can use the ‘Run’ module to run the previously specified models. After you select the ‘PRT.mat’ file you
will see the 7 models we have created so far, 6 single kernel models and the MKL model. You can either select
and run them one by one, or you can select all and run them all together.

In ‘Permutations’ select ‘Perform permutation test’ with 100 repetitions. Be aware that 100 repetitions
is a small number when running permutation tests, and 1000 repetitions (or even more) are recommended if
you want to be able to obtain smaller p-values (since the minimum p-value possible is equal to 1/number of
permutations). The ‘Run’ window should look similar to the one in figure 17.13.

|4\ PRONTO = Specify model from

C:\Users\PRoNTo_DeviTesting_Scripts\PRT.mat B
MKL_mods

[PRoNTo :: Run model - O X

ConnMEG

Model Models in PRT Models to run

Model type |Cla55|ﬁ cation interpEEG_SVM
interpMEG_SVM

Machine |L1 Multi-Kernel Learning hEAEGGiz\\’:"I\\AA

Optimize hyper-parameter 01 1 ConnEEG_SVM
- ConnMEG_SVM
Cross-Validation Scheme |kffolds CV on Subject Out MKL mods

Cross-V 1

Cross-Validation Scheme icfolds GV on Block

Data operations Selected data operations

Sample averaging (within bl
Sample averaging (within su
Regress out covariates

<

Specify model Specify and run model Run model(s)

Figure 17.12: ‘Model: Specify from’ GUI fi- Figure 17.13: ‘Model: Run’ GUI final con-
nal configuration for the MKL model. figuration to run all models together.

178 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

17.1.6 Display results

Taking a quick look at the results we see that ‘interpMEG_SVM’ and ‘MEG_SVM’ are the best performing
models, and ‘ConnMEG_SVM’ the worst performing model. We also see that the MKL model that included all
modalities had in fact worse performance than the best single-kernel modalities alone.

For more detailed information regarding the interpretation of the results, the different types of ways to
measure performance and the stats of the results the reader should take a look at all the previous tutorials,
especially chapters 13 and 15.

17.1.7 Compute weights

Accordingly, the weight computation window includes a tick box to allow building the average weights for each
permutation. As in the v2.X batch, these are saved in another folder. The window will also allow to select one
atlas per feature set included in the model. To this end, simply select multiple images or .mat, in the correct
order. If the Computer average/kernel weight per region option is selected, feature sets that were built using an
atlas will automatically use this atlas. If this option is selected and no atlas is specified for some feature sets,
only the weights will be built, not the weights per region/kernel. Please note that loading an atlas for weight
summarization is not available for MEEG data (only nifti and .mat).

e In PRoNTo’s main window, click on ‘Compute weights’ and a new window will open, ‘Compute weights’
(Figure 13.24).

e Select the ‘PRT .mat’ file.

Select one by one all models from the list of ‘Models computed in PRT".

e Leave the options ‘Compute average/kernel weight per region’ and ‘Build weight images for permutations’
unchecked.

e Click on ‘Compute weights’ button. Computations will be displayed on the MATLAB command window.

The final ‘Compute weights’ window should look like the one in figure 17.14

|4\ PRoNTo :: Compute weights - O X

Feature weights

Models computed in PRT interpEEG_SVM

‘ weights_interpEEG_SVIM

Allas-based weights
[] Compute average/kernel weight per region

Load atlas

Compute weights

Figure 17.14: ‘Compute weights’ GUL.

17.1.8 Display weights

Weights can be displayed for all modality types. For 1D MEEG or 1D .mat data, weights are displayed as bar
graphs, with the color of the bar representing the amplitude of the weight (e.g. the connectivity vector used for
.mat). Example in figure 17.15.

17.1. GUI ANALYSIS 179

Figure 17.15: ‘Display weights’ for 1D MEEG or .mat data.

For 2D data, the display shows the matrix, with y-axis as the 1st dimension and x-axis as the 2nd dimension
(after squeezing out dimensions of size 1), with the color of a (x,y) pair displaying the magnitude of its weight.
Example in figure 17.16. Finally, nifti images are displayed as before, except a small change in the color map.
Example in figure 17.17.

Figure 17.16: ‘Display weights’ for 2D MEEG or .mat data.

0.0000.0

C:\Users\Konstantinos Tsirlis\Drop Load anatomical img —

Figure 17.17: ‘Display weights’ for nifti images.

When building the weights from the ‘MKL_mods’ model, we can also look at the feature set contributions.
From figure 17.18 we can see that the interpolated EEG has the largest contribution to the MKL model, followed
by the EEG and MEG traces. This can be due to the interpolated EEG smoothing some of the anatomical
variance in electrode placement, while EEG and MEG keep subject-specific information.

180 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

{4 PRONTO = Weights - O X
Save Figure File Edit View Insert Tools Desktop Window Help o
DEde KARUBDEL- S 0E aDd

Display
Model |MKL mods v

ights weights MKL_mods_interpEE_ |~ (@ weights per voxel
Fold All folds / Average v ‘ () weights per region

Crosshair Position
origin

mm | 43-86350.0

VX 170170910

.01
o1 Intensity. -0.000577496

[T

LT

oo |

g

ol

C:\Users\Konstantinos Tsirlis\Droph Load anatomical img ‘

&

- | Resetimagesl

31.1338 3.2500

20,4312

Figure 17.18: ‘Display weights’ for MKL model, with additional weight contribution shown.

17.1.9 Using an atlas with .mat

As for nifti, an atlas can be used with .mat and MEEG files. For MEEG files, the atlas is implicit, resulting
from the selection of channels, time points and kernels on which to build the kernels on. However, for .mat,
PRoNTo is agnostic of the type of features entered, so the atlas needs to be built by the user. As an example,
we built an atlas for the EEG connectivity derived modality. We defined 11 ‘networks’ that the channels could
belong to based on their anatomical position (e.g. ‘orbitofrontal’, ‘occipital’, ‘left-parietal’, ‘central-parietal’,
...). The atlas then builds ROIs from pair-wise network interactions (i.e. ‘orbitofrontal-occipital’, ‘orbitofrontal
left-parietal’, ...) leading to 66 ROIs (11*10/2 between networks interactions + 11 within-network interactions).
The atlas looks as in figure 17.19 (2D version but only the upper triangular part is saved).

Going back to the feature set step, we can build another .mat feature set (called ‘ConnEEG_atlas’) including
the ConnEEG modality and ticking the ‘Build one kernel per ROI’ box (figure 17.20. We can load the designed
atlas and PRoNTo will automatically gather ROI labels if a label file (called ‘Labels_atlasname.mat’) is present
in the same folder and contains a ‘ROI_names’ variable.

Model specification can then be performed as in v2.
e Select the ‘ConnEEG _atlas’ feature set.

e Define the classes as we did before.

e Choose the ‘L1 Multi-Kernel Learning’ machine.

e Use 4-folds CV on subjects out for both inner and outer CV.

17.2. BATCH ANALYSIS 181

30

Figure 17.19: Atlas for EEG connectivity modality, defining interactions between and within 11 ‘networks’
(identified based on their anatomical position as displayed on the left).

e And finally, add the mean centering and the normalize samples operations before specifying and running.

The window should look like the one in figure 17.21.

The model does not perform very well (53.13% balanced accuracy) for this modality taken on its own.
For information, the same model using SVM (i.e. discarding the atlas information) leads to 43.75% balanced
accuracy. Both models display a large variance across folds and would not be considered as significantly dis-
criminating between famous faces and scrambled faces.

We can compute the weights for this model and select the option to build the weights per region. This will
build 2 .mat files: one including the weights per feature, one including the weights per ROI. The latter gives the
same value (i.e. its kernel contribution) to each feature within a ROI. The ‘Display weights’ window in figure
17.22 shows the table of kernel contributions.

Note: If for any reason the ROI labels haven’t loaded, you can manually load them using the button ‘Load
labels” and locating the file ‘Labels_EEG_atlas.mat’ found in Multimodal_face_dataset/data.

The weight file can then be postprocessed for better visualization. This has to be performed outside of
PRoNTo as PRoNTo does not know what type of data the .mat represents (i.e. it does not know this is con-
nectivity data).

As an example, in figure 17.23 we have summarized the weights per region in a 11*¥11 matrix instead of
the 70*70 matrix. Furthermore, a schemaball plot (code modified from MATLABs file exchange schemaball
submission, in appendix) was derived. It depicts the contribution of each between-network interaction to the
classification as a colored curve and the within-network contributions as node color and size.

17.2 Batch analysis

This tutorial will now show how to analyse the same data but using the matlabbatch system.

Once again, to analyse the data, create a new directory in which to save the results of the analysis, saved
as 'PRT.mat’. On the main interface of PRoNTo click on the ’Batch’ button to open the ‘matlabbatch’.
Alternatively, type ‘prt_batch’ in the MATLAB prompt.

182 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

<4 Specify k the number of folds

C:\Users\PRoNTo_DeviTesting_Scripts\PRT.mat _
ConnEEG_atlas_MKL

{4\ PRONTO = Specify modality to include - O X

ConnEEG b2

interpMEG
ConnEEG
ConnMEG
EEG
MEG

‘Classrﬂcm\nn v ‘

Define classes

‘L1 Multi-Kernel Learning

X 1

|kfolds GV on Subject Out

No scaling

Cross-

k-folds CV on Subject Out

Selected data operations
Sample averaging (within blofey Mean centre features using tr A
Sample averaging (within sut Normalize samples
Regress out covariates

‘ Additional (2nd level) mask for selected modality |

Build one kemel per region

‘a\Muilti |_SPM_preprt .JmalEEG_aﬂasmat| |

Specify model Specify and run model

Figure 17.20: ‘Specify modality’ GUI with atlas. Figure 17.21: ‘Specify model’ GUI final configuration.

17.2.1 Data & Design

When adding a modality, the user now has to specify its Data format as either nifti, MEEG or .mat. As the
batch is agnostic of the users choices, all design options are available for each type. Please make sure to use the
appropriate option (i.e. loading an SPM.mat is only for nifti, and Events in file is only for MEEG).

For the same reason, one mask has to be entered per modality, independent of its type. Only ‘nifti’ data
format requires a file, ‘*.mat’ and ‘MEEG’ just need a modality name. This is in contrast with the GUI that
only requires masks for ‘nifti’ files (as it derives the masks for the MEEG and .mat automatically).

e Click on ‘Data & Design’ in the PRoNTo ‘matlabbatch’ menu.
e In the ‘Directory’ field, select a directory where the ‘PRT.mat’ file will be saved.
e In the ‘Groups’ field:

— Add one group and in the field ‘Name’, provide a name without spaces to that group, e.g. ‘G1°.
— In the field ‘Select by’, select the ‘Subjects’ option and add one subject.

EEG/MEG (MEEG data format)

* Add one modality for this subject and provide a name, e.g. ‘EEG’; choose the appropriate data
format (here MEEG); define the interscan interval of 0.05 seconds; and in the field ‘Files’, select
the EEG (MEEG) file of the first subject (‘S1°), found in the Multimodal_face_dataset/data/S1
directory.

x In the ‘Data & Design’ field, since our data are in MEEG format, choose the ‘Events in MEEG
file’ (for MEEG inputs only option), and select no regression targets/covariates.

17.2. BATCH ANALYSIS 183

4 PRONTO : Weights - [} X
Save Figure File Edit View Insert Tools Desktop Window Help ~
NEde| kR ODE L | a08 e

Display

‘ Weights | eights_ConnEEG_atlas_MK_ ~| () weights per voxel

Model | ComnEEG_atlas MKL v : :
Fold |Alfolds / Average ~| @weights per region

0.0981749

Label Weight (%) Size (feat)| Exp. Ranking|
ccce 16,8425 15
RF-RP 12,0604 2
CF-CF 11.2839
OF-RP 109574
OF-OF 105413
crLc 87074
LF-CF 6.1539
RC-RC 53157
cFcP 10222
RF-O 35455
LC-CP
oF-cP

>

3.1469
1.4979

Export table Load labels

Figure 17.22: Atlas for EEG connectivity modality, defining interactions between and within 11 ‘networks’
(identified based on their anatomical position as displayed on the left).

L]
LF ©] 0.07
0.08 o I
0.06

0.07
RF | 1

0.08

[a)2}
[] CC

Lok - | 0.06 0.05
cp .

el - i 0.05 .04
RC 1 0.04

0.03
LP ¢ ’ 0.03 @ .
CP 1 002 \ 0.02
RP .] 0.01 ’ ’ 0.01

o F 1 © ¢ «

40

OF LF CF RF LC CC RC LP CP RP O

Figure 17.23: Summarized ROI weights across networks, displayed as a matrix (left) and as a schemaball (right).
The size and brightness of the network marker displays the within-network contribution while the curves display
the between-network contributions. Grey lines or matrix entries represent 0 contribution.

x Add one more modality and repeat the whole procedure for MEG.
Connectivity EEG/MEG (.mat data format)

x Add two more modalities, these would be the ‘ConnEEG’ and ‘ConnMEG’; choose the appropri-
ate data format (here .mat); define the interscan interval at 1; and in the field ‘Files’, select the 3
ConnEEG/ConnMEG (.mat) files of the first subject (‘S1’), found in the Multimodal - face_dataset/data/S1
directory. Remember that the order (Unfamiliar, Famous, Scrambled) with which you input the

184 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

files is of great importance.

x In the ‘Data & Design’ field, since our data are in .mat format, choose the ‘Specify design’ option,
set the ‘Units for design’ to ‘Scans’, and either manually set the names, onsets and durations
of each of the 3 conditions, or select the practical option ‘Multiple conditions’ and select the
‘Design.mat’ file found in the Multimodal_face_dataset/data/S1 directory.

* Repeat the whole procedure for MEG.
Interpolated EEG/MEG (nifti data format)

x Add two more modalities, these would be the ‘interpEEG’ and ‘interpMEG’; choose the appropri-
ate data format (here nifti); define the interscan interval at 1; and in the field ‘Files’, select the 3
interpEEG /interpMEG (NIfTT) files of the first subject (‘S1’), found in the Multimodal_face_dataset/data/S1
directory in the folders EEG_interp/M EG_interp. Remember that the order (Unfamiliar, Fa-
mous, Scrambled) with which you input the files is of great importance.

* In the ‘Data & Design’ field, since our data are in .mat format, choose the ‘Specify design’ option,
set the ‘Units for design’ to ‘Scans’, and either manually set the names, onsets and durations
of each of the 3 conditions, or select the practical option ‘Multiple conditions’ and select the
‘Design.mat’ file found in the Multimodal_face_dataset/data/ directory.

* Repeat the whole procedure for MEG.

e In the ‘Masks’ field, add 6 new modalities and provide the appropriate modality names. The name of the
modality here has to be exactly the same as in ‘Modalities’, otherwise it will not work.

— For MEEG and .mat you only have to choose the appropriate data format as for both of these data
formats we assume that the users have provided only useful features, as this can be easily performed
during pre-processing. Please ensure that your data do not contain NaNs.

— For nifti select the ‘mask_ EEG’ or the ‘mask_ MEG’ masks found in the Multimodal _face_dataset/data/
directory and ensure that ‘HRF overlap’ and the ‘HRF delay’ fields are 0.

e In the ‘Review’ field, select ‘Yes’ if you would like to review your data and design in a separate window.
Otherwise, leave as it is, i.e. ‘No’. Keep in mind that the procedure pauses while you review the data and
that you have to close the ‘Review’ window for the procedure to continue.

After you have set everything for the first subject, you can go to ‘Subjects’ and select ‘Replicate: Subject
(1)’. That way you will have everything set and you will only need to change the files from those of ‘S1’ to the
ones of the subject you are setting. Alternatively, you could use the ‘PRT.mat’ you already have from the GUI
part of the tutorial, or use the script we provide. The final configuration including the first subject only should
look like figure 17.24.

17.2. BATCH ANALYSIS

185

Help on: Data & Design
Directory

Groups

. Group

.. Name

.. Select by

... Subjects

.. .. Subject

..... Modality
...... Name
...... Data format

...... Files
...... Data & Design

........ Events in file

...... Files
...... Data & Design

. Events in file

..... Modality
...... Name
...... Data format

...... Files

...... Data & Design
........ Conditions
..... Modality
...... Name

...... Data format
...... Files

...... Data & Design

........ Conditions

Madalis

...... Interscan interval

....... Events in MEEG file (for MEEG inputs only)

...... Interscan interval

Events in MEEG file (for MEEG inputs only)

. . Add regression targets/covariates
......... No regression targets/covariates

...... Interscan interval

....... Specify design
........ Units for design

........ Multiple conditions
...... Interscan interval
....... Specify design

........ Units for design

........ Multiple conditions

...imodal face)\batch_test

G1

EEG

MEEG

0.005
...meeg_run_01_sss.mat

MEG

MEEG

0.005
...meeg_run_01_sss.mat

ConnEEG
-mat

1

3 files

Scans
...essed\data\Design.mat
ConnMEG

-mat

1

3 files
Scans

...essed\data\Design.mat

17.2.2 Feature set / Kernel

Interpolated EEG/MEG (nifti data format)

o Click on ‘Feature set / Kernel” option on PRoNTo’s matlabbatch menu.

..... Modality

. Name

. Data format

. Interscan interval
. Files

. Data & Design
Specify design
. Units for design
. Conditions

. Multiple conditions
Modality

. Name

. Data format

. Interscan interval
. Files

. Data & Design
Specify design
. Units for design
. . Conditions
........ Multiple conditions
Masks

. Modality

.. Name

.. Data format

... MEEG

. Modality

.. Name

.. Data format

... MEEG

. Modality

.. Name

.. Data format

....mat

. Modality

.. Name

.. Data format

....mat

. Modality

.. Name

.. Data format

... Nifti

... .File

. ... HRF overlap

. ... HRF delay

. Modality

.. Name

.. Data format

... Nifti

... .File

. HRF overlap

. ... HRF delay

Review

...essed\data\Design.mat

...essed\data\Design.mat

...d\data\mask_EEG.nii,1

...d\data\mask_MEG.nii, 1
0

interpEEG
nifti

1

3 files

Scans

interpMEG
nifti

1

3 files

Scans

EEG

MEG

ConnEEG

ConnMEG

interpEEG

0
0

interpMEG

0
No

Figure 17.24: ‘Data & Design’ module in matlabbatch.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Data & Design’ step or click on the ‘Select files’ button to browse where ‘PRT.mat’
file was saved. The window of Figure 13.32 in Chapter 13 is called to establish a dependency connection
with the previous ‘Data & design’ module.

e Provide a name to the ‘Feature/kernel’ set, e.g. ‘interpEEG’.

e Select the ‘Nifti’ option for a data format, add one modality and select the modality name with the
‘Dependency’ button or type it in manually but the name needs to be exactly the same as the one
specified in the ‘Data & Design’ module, here ‘interpEEG’.

e Leave all the other parameters at their default options/values.

e Click on ‘Feature set / Kernel’ option on PRoNTo’s matlabbatch menu to add one more ‘Feature set /
Kernel’ module and repeat the procedure for the interpolated MEG (‘interpMEG’) data.

EEG/MEG (MEEG data format)

e Click on ‘Feature set / Kernel” option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous step or click on the ‘Select files’ button to browse where ‘PRT.mat’ file was saved.

e Provide a name to the ‘Feature/kernel’ set, e.g. ‘EEG’.

186 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

e Select the ‘MEEG’ option for a data format, add one modality and select the modality name with the
‘Dependency’ button or type it in manually but the name needs to be exactly the same as the one specified
in the ‘Data & Design’ module, here ‘EEG’.

e Leave all the other parameters at their default options/values.

e Click on ‘Feature set / Kernel’ option on PRoNTo’s matlabbatch menu to add one more ‘Feature set /
Kernel’ module and repeat the procedure for the MEG (‘MEG’) data.

Connectivity EEG/MEG (.mat data format)

e Click on ‘Feature set / Kernel” option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous step or click on the ‘Select files’ button to browse where ‘PRT.mat’ file was saved.

e Provide a name to the ‘Feature/kernel’ set, e.g. ‘ConnEEG’.

e Select the ‘mat’ option for a data format, add one modality and select the modality name with the
‘Dependency’ button or type it in manually but the name needs to be ezactly the same as the one
specified in the ‘Data & Design’ module, here ‘ConnEEG’.

e Leave all the other parameters at their default options/values.

e Click on ‘Feature set / Kernel’ option on PRoNTo’s matlabbatch menu to add one more ‘Feature set /
Kernel’ module and repeat the procedure for the connectivity MEG (‘ConnMEG’) data.

At this point your matlabbatch should look like figure 17.25.

[Batch Editor -] X
File Edit View SPM Basiclo PRoNTo ~
Ded bk
Module List Current Module: Feature set/Kernel
Data & Design @ Help on: Feature set/Kernel @
Feature set/Kernel DEP Load PRT.mat DEP Feature set/Kernel: PRT.mat file
Feature set/Kernel DEP Feature/kernel name ConnMEG
Feature set/Kernel DEP Data format
Feature set/Kernel DEP . .mat
Feature set/Kernel DEP . . Modality
Feature set/Kernel DEP ... Modality name ConnMEG
... Samples / Conditions
... . All samples
... Scale input scans
... . No scaling
... Features to include
. ... All features
... Use atlas to build ROI specific kernels .
v

Feature set/Kernel
Compute feature set according to the design specified

This branch contains 3 items:
* Load PRT.mat
* Feature/kernel name v

Figure 17.25: ‘Feature set / Kernel’ module in matlabbatch.

17.2.3 Model: Specify new

Single kernel models

e Click on the ‘Model: Specify new’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous ‘Feature set / Kernel” step or click on the ‘Select files’ button to browse where
‘PRT.mat’ file was saved.

17.2. BATCH ANALYSIS 187

e In the ‘Feature sets’ field, select the ‘New: Name’ in the ‘Feature set name’ and either use the ‘Dependency’
button to find the relevant feature set name (here ‘interpEEG_SVM’) or write it exactly as previously
defined in its relevant ‘Feature set / Kernel’ module.

e Select the ‘Classification’ model type:

— Add 2 new classes.

— For Class (1) write ‘Famous’ on the name field and add one group. Select the group name from the
‘Data & Design’ module (‘Data & Design:Group#1 name’) with the ‘Dependency’ button, or write
it ezactly, as previously defined in the Data & Design’ module, here ‘G1°. Similarly, for Class (2)
write ‘Scrambled’ on the name field and add the group created in the ‘Data & Design’ module, ‘G1°.

— In the ‘Subjects’ field, type ‘1:16’ to include all 16 subjects.

— In the ‘Conditions / Scans’ field, select the ‘Specify Conditions’ option and add a new condition in
each class. Provide a name for this condition, i.e. for Class (1) ‘Famous’ and for Class (2) ‘Scrambled’.
Note that this name needs to be spelled exactly as specified in the ‘Data & Design’ module.

e Leave ‘Subsample examples based on class definition’ as it is, i.e. ‘No’.

e In the ‘Machine’ field:

— Select the ‘Kernel machine’ and the ‘SVM Classification’ option.
— In the ‘Machine optimization and parameters’ field, select the ‘Optimize hyper-parameter’ option.
— Set the ‘Regularization hyper-parameter’ to ‘0.1, 1, 10, 100’.

— Set the ‘Cross-validation type for hyper-parameter optimization’ to ‘k-folds CV on subjects’ and the
k to ‘4’. This is the internal cross-validation loop.

e In the ‘Cross validation type’ (external loop) field, select ‘k-folds CV on subjects’ option and again set k
to ‘4’.

e Leave the ‘Include all scans’ field as it is, i.e. ‘No’.

e Leave all the rest to their default parameters/values.

Figure 17.26 shows the final configuration of the first matlabbatch ‘Model: Specify new’ module for the
interpolated EEG data.

We now need to do the same procedure for 5 more single kernel models, each one including only 1 feature set,
and for 1 multi-kernel model including all feature sets together.

Compared to the GUI, when we are in matlabbatch and depending on whether you want to modify the
feature sets, the model types and the data operations from one model to the other, it might be more practical
either to replicate the ‘Model: Specify new’ module that we have already finished, or to create a new ‘Model:
Specify from’ module. In our case that we do not want to modify anything other than changing the feature set,
it is in fact faster to just right-click on the ‘Model: Specify new’ and select the ‘Replicate module’ option.

After replicating the finished module 5 times, for each module you will only need to change its ‘Model
name’ and the ‘Name’ option of the ‘Feature set name’ field. So for the other modules these would have to be
interpMEG_SVM’ and ‘interpMEG’ respectively, ' EEG_SVM’ and ‘EEG’, and so on.

If one wanted to use the ‘Model: Specify from’ module, then they would mostly have to follow the same
procedure as in the ‘Model: Specify new’ module, but they should also input the model they want to copy from
in the ‘Model to copy’ field, and also to specify in the ‘Fields to modify’ any possible changes they wanted in
either the feature sets, the model types or the data operations.

188 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

Help on: Model: Specify new

Load PRT.mat ...st\PRT.mat
Model name ...EEG_SWM
Feature sets

. Feature set name

.. Name interpEEG
Model Type

. Classification

.. Classes

...Class

....Name Famous
. ... Groups

..... Group

...... Group name G1
...... Subjects 16x1 double
...... Conditions / Samples

....... Specify Conditions

........ Condition
......... Name Famous
Class
. Name Scrambled
Groups
..... Group
...... Group name G1
...... Subjects 16x1 double
...... Conditions / Samples
....... Specify Conditions
........ Condition
......... Name Scrambled
. . Subsample examples based on class definition No
. . Machine Type

.. . Kernel machine

. ... SVM Classification

..... SVM string argument -q-s0-t4-c
..... Machine optimization and parameters

...... Optimize hyper-parameter

....... Regularization hyper-parameter [0.1 110 100]
....... Cross-validation type for hyper-parameter optimization

........ k-folds CV on subjects

Cross-validation type
. k-folds CV on subjects

..k 4
Include all scans No
Data operations

. Mean centre features Yes

. Other Operations
. . No operations

Figure 17.26: Final configuration of the matlabbatch ‘Model: Specify new’ module.

Multi-kernel model

e Replicate one ‘Model: Specify new’ module one more time.
e Set a name for the model, ‘MKL_mods’.

e We are going to include all 6 feature sets in this model, so in the ‘Feature set name’ include 6 entries
and put the 6 names of the feature sets, ‘interpEEG’; ‘interpMEG’, ‘EEG’, ‘MEG’, ‘ConnEEG’ and
‘ConnMEG’.

e The second thing we will need to change is in the ‘Data operations’ where in the ‘Other Operations’ we
are going to select the ‘Select Operations’ option, include a new operation, and choose the ‘Normalize
samples’ option from the list.

e Leave all the other fields as they are.

Figure 17.27 shows all 7 matlabbatch ‘Model: Specify new’ modules, with the MKL model showing as an
example.
17.2.4 Model: Run

e Click on the ‘Model: Run’ option on PRoNTo’s matlabbatch menu.

e Select the appropriate ‘PRT.mat’ file, either manually, or if you have all modules together in the ‘Module
List’ using the Dependency button to associate it with the module of the previous step.

17.2. BATCH ANALYSIS

This branch contains 7 items:
* Load PRT.mat

* Model name

* Feature sets

"4\ Batch Editor - O
File Edit View SPM BasiclO PRoNTo
Ded b
Module List Current Module: Model: Specify new
Model: Specify new 2 Help on: Model: Specify new @D
Meodel: Specify new Load PRT.mat ...st\PRT.mat
Model: Specify new Model name MKL_mods
Model: Specify new Feature sets
Model: Specify new . Feature set name
Model: Specify new .. Name interpEEG
Model: Specify new .. Name interpMEG
.. Name EEG
.. Name MEG
.. Name ConnEEG
.. Name ConnMEG
Model Type
. Classification
.. Classes
...Class
....Name Famous .,

Construct model according to design specified

Figure 17.27: All 7 matlabbatch ‘Model: Specify new’ modules.

189

e Select the model name from the first ‘Model: Specify new’ module with the ‘Dependency’ button, or write

it exactly, as previously defined in the ‘Model: Specify new’ module, here ‘interpEEG_SVM’.

e In the ‘Do permutation test?’ select ‘Permutation test’, with 100 repetitions. Be aware that 100 repetitions
is a small number when running permutation tests, and 1000 repetitions (or even more) is a more realistic
one if you want your results to have a good statistical power.

Figure 17.28 shows the final configuration of the matlabbatch ‘Model: Run’ module.

4 Batch Editor - [m]
File Edit View SPM BasiclO PRoNTo
Ded| b
Module List Current Module: Model: Run
Model: Run & Help on: Model: Run &
Model: Run DEP Load PRT.mat ...\batch_test\PRT.mat
Model: Run DEP Model name interpEEG_SVM
Model: Run DEP Do permutation test?
Model: Run DEP . Permutation test
Model: Run DEP . . Number of permutations 100
Model: Run DEP . . Save permutations parameters No
. . Copy permutations from model
... No
v
Model: Run R
Trains and tests the predictive machine using the cross-validation structure specified by the model.
This branch contains 3 items:
* Load PRT.mat
* Model name
* Do permutation test? v

Figure 17.28: The matlabbatch ‘Model: Run’ modules.

Follow the same procedure (as in the previous section) by replicating the now finished ‘Model: Run’ module 6

190 CHAPTER 17. MULTI-MODAL FACE RECOGNITION EXAMPLE

more times, each time changing only the name of the model to be run. Remember that we have 7 models in
total, 6 single kernel models and 1 multi-kernel model.

17.2.5 Compute weights

e Click on the ‘Compute weights’ option on PRoNTo’s matlabbatch menu.

e With ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the ‘PRT.mat’ file
created in the previous step, or locate the ‘PRT.mat’ manually.

e It’s optional to define an image name.

e Finally, set the ‘Build weights images for permutations’ field to ‘No’.

As we did before, replicate this module 6 times. Each time you will only need to change the name of the model
(either set it manually, or associate it properly using the ‘Dependency’ button, if you have all modules in the
module list) so that we compute weights for all 7 models. Figure 17.29 shows the final configuration of the
matlabbatch ‘Compute weights’ module.

4 Batch Editor - [m] X
Eile Edit View SPM BasiclO PRoNTo -
Dl P
Module List Current Module: Compute weights
Compute weights & Help on: Compute weights &
Compute weights Load PRT.mat ... \batch_test\PRT.mat
Compute weights Model name MKL_mods
Compute weights Image name (optional) "
Compute weights Build weight images per ROI
Compute weights . No weight per ROI
Compute weights Build weight images for permutations No

Compute weights

Compute weights. This module computes the linear weights of a classifier and saves them as a 4D image. 3
dimensions correspond to the image dimensions specified in the second-level mask, while the extra dimension
corresponds to the number of folds. There is one 3D weights image per fold.

This branch contains 5 items:
* Load PRT.mat v

Figure 17.29: Final configuration of the matlabbatch ‘Compute weights’ module.

It is advised that you save the batches, either in groups or if possible all together, so that you can open and
edit them for further analyses.

17.2.6 Display results & weights

If everything was set properly, the results should be the same as those obtained using GUI.

17.2.7 Using an atlas with .mat

The changes needed to use an atlas with .mat, compared to not using an atlas, are straight forward, and the
reader is referred to 17.1.9 where the same procedure is followed.

Chapter 18

Classification of semi-simulated ECoG
data

Contents
18.1 GUT analysis oo e e 192
18.1.1 Data & design e e e e e 192
18.1.2 Prepare feature set e e e 192
18.1.3 Model: Specify new L 194
18.1.4 Model: Specify from 195
18.1.5 Model: Run oL e 195
18.1.6 Display results 196
18.1.7 Compute weights e 196
18.1.8 Display weights e 196
18.2 Batch analysis Lo 197
18.2.1 Data & Design o e e e e e e 197
18.2.2 Featureset / Kernel e 199
18.2.3 Model: Specify new L e 200
18.2.4 Model: Run 202
18.2.5 Display results L 202
18.2.6 Compute & Display weights o oo 203

The data consists of a semi-simulated data set from a single subject in electrocorticography (ECoG, a.k.a.
intracranial EEG). It was built from a 5 minutes rest session to which a fake design was added: 2 conditions,
‘A’ and ‘B’, randomly interspersed. The pre-processing discarded noisy and pathological channels, leaving 38
‘good’ channels. A rectangular signal window was added to events from ‘A’; after extraction of the power in
the High Frequency Broadband (HFB). The magnitude of the signal to add was calculated based on the A vs
B contrast. The chosen signal (A) to noise (B) ratio varied in the original experiment but is fixed to 3 in the
present case. Similarly, the simulated signal was not added to all channels but to roughly half of them. After
artefact rejection, 60 events of A and 56 of B remain for classification. This dataset was published in:

J. Schrouff and J. Mouro-Miranda, ” Interpreting weight maps in terms of cognitive or clinical neuroscience:
nonsense?,” 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore, 2018,
pp. 1-4. doi: 10.1109/PRNI.2018.8423944

And the code to generate this data is available at: hitps://github.com/JessicaSchrouff/Simulated_ECoG
In this tutorial the GUI analysis is going to be slightly different from the Batch analysis in the interest of
variety. The reader is advised to read the previous tutorials in case he/she wants to familiriaze himself/herself

more with the differences in the way we input values, names, parameters, etc. between the GUI and the Batch
mode.

191

192 CHAPTER 18. CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

18.1 GUI analysis

18.1.1 Data & design

e This is a single-subject analysis, so enter one group (e.g. ‘G1’) and one subject.
e Add a new modality and give it a new name (e.g. ‘ECoG’).

e Set the type of the modality as ‘MEEG’ and select the .mat file corresponding to the ECoG simulated
recording (found in the SimulatedECoG/Data/ directory).

e Once we select the appropriate .mat file, the experimental design will automatically load from that file.
It can be reviewed by clicking the ‘Events in file’ option in the ‘Design’ section (figure 18.1) where a new
window will appear, like the one in figure 18.2.

Please note that there is no need to specify a mask file for the MEEG modality type as all the useful
information is already contained inside the MEEG file.

|4 PRoNTo : Specify conditions - O x

[Enter modality name

Modality

Onsets Duration
23448.120.169134 .. 141414141414,
24859514722963. . 141414141414

Name ECoG ~|

Data format MEEG |

Files select
Design Events in fils v

Regression targets |Nu targets

oK I Cancel

Figure 18.1: ‘Specify modality’” GUI for MEEG. Figure 18.2: ‘Specify conditions’ GUI.

e After clicking ‘OK’ on both windows, you can save the data into a PRT.mat in the directory of your
choice, and also review the data, either prior to saving them through the ‘Review’ button in the ‘Data &
Design’ window, or after saving them, using the ‘Review data’ button in PRoNTo’s main window.

As we can see in figure 18.3, we have one subject in one group that contains one modality (ECoG). There
are 2 conditions (A and B). The ‘selected scans’ reflect the ‘good’” epochs, while the ‘discarded scans’ reflect the
epochs marked as ‘bad’ in the SPM file.

18.1.2 Prepare feature set

This step is probably the most different from all other new functionalities in v3. It reflects the different dimen-
sions of the data and allows to ‘play’ on them. Click on ‘Prepare feature set’ in the main window and load the
PRT.mat. As there is only one modality of type MEEG, the corresponding MEEG modality window will be
launched directly. There are 3 main panels, corresponding to the 3 dimensions an MEEG file can have:

Channels:
e The list of channels is displayed on the left panel, as unselected. To add a channel to the feature set, click

on it. It will then appear on the right panel. Alternatively, you can select ‘All’ channels or all ‘Good’
channels. On Windows OS, the ‘bad’ channels appear in red in the list.

18.1. GUI ANALYSIS 193

‘4. PRoNTo :: Review data and design — O X

Save ¥

Number of groups:

Number of modalities:

Design?

Select ity: ECoG i

Number of conditions: 2

Figure 18.3: ‘Review data’ GUI.

e Average signal over channels: this option will average the signal over all selected channels. This might be
useful to obtain an average trace across a specific region of interest.

e One kernel per channel: whether to build one kernel per channel (ticked) or not. This option corresponds
to building an atlas with each channel as a ‘ROT’.

Time points:

e Similarly, the time window is displayed and can be amended. When entering a value in ms, PRoNTo will
identify the closest corresponding time point.

e The signal can be averaged across all selected time points.

e One kernel can also be built, either per time point or per sub-windows of XX ms (user-specified). PRoNTo
does not discard kernels with less than a few time points, so to avoid big imbalances in the feature numbers
across kernels you should ensure you provide the right window end. For example if you want to have 100ms
subwindows between -100 and 1100ms, the end time point should be 1099ms, otherwise a kernel with only
one time point will be created (see batch tutorial below for example).

Frequencies:

e Similar to time points, the range of frequency bins included in the data can be viewed and specific sub-
ranges selected.

e The data can be averaged over a frequency band, as specified above. This is useful to test multiple
frequency bands without having to manually perform the averages as a pre-processing step.

e A kernel can also be built on each frequency bin.

Note 1: Dimensions that are not present in the 1st file are greyed out and the corresponding panel cannot be
accessed (e.g. frequencies in the present case).
Note 2: Tt is not possible to use ‘average’ and ‘multiple kernels’ on the same dimension simultaneously.

194 CHAPTER 18. CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

e In the present case, lets first build a simple feature set, using all ‘Good’ channels and the time points
between -100ms and 1100ms (keep in mind that the simulated window was added between 0 and 1000ms).
Having explained all the above it will be quite straight forward to do so.

— So, after you click the ‘Prepare feature set’ button and the main window where you define the feature
set has appeared, you first need to select only the ‘Good’ channels by clicking the ‘Good’ button, in
the ‘Channels’ section.

— Then you need to change the time points in the ‘Time points’ section from -100ms to 1100ms. The
window at this point should look like figure 18.4.

|4\ PRoNTa :: Specify madality to include - O X

Fom Wb

Average signal in specified band

One kernel per frequency bin

[[] Average signal over channels

[[] One kemel per channel

Fiom | 100 msto| 1100 |ms

[[] Average signal over time points

[One kemel per:
(time point

() window of |:|ms

Figure 18.4: ‘Specify modality to include’ GUI. ‘All’ feature set.

— Clicking ‘Done’ sends us to the main feature set window, where we specify the feature set name (e.g.
CAlD).

— Clicking on Build kernel/data matrix builds the binary file array (as for nifti) with all the features,
as well as the kernel(s) containing only the selected features. Hence, the MEEG modality window
builds a second-level mask but implicitly (instead of the user specifying a file).

e We will then repeat this operation but building one kernel per channel, for later use with L1 MKL machine,
and name it ‘MKChans’ (for Multiple Kernels on channels). As displayed in the main window, 38 kernels
were built, one for each channel containing all the time points between -100 and 1100ms around onset.
The final configuration of this feature set should look like figure 18.5.

18.1.3 Model: Specify new

We can now build two models discriminating A from B: one using SVM and the other using MKL on the
channels. The model specification is very similar to PRoNTo v2.1 and there is nothing specific to MEEG at
this stage.

e For the SVM model, first choose the appropriate PRT.mat file;
e Specify the name of our model (e.g. ‘SVM’);

e Choose the ‘All’ feature set and define the classes as ‘A’ modality A and as ‘B’ modality B. Although
the imbalance is small, we also select the ‘Subsample according to smallest class’ option to randomly
subsample 56 epochs from A to match the number of B epochs. The window should look like figure 18.6.

e Choose the SVM machine and optimize the hyper-parameter C (range: [0.01 0.1 1 10 100 1000]).

18.1.

GUI ANALYSIS 195

|4\ PRoNTO : Specify modality to include - O X

Fom Wb e

Average signal in specified band

One kernel per frequency bin

‘Average signal over channels

One kernel per channel

[[] Average signal over time points

[] One kermnel per-
() time point

Clwindowef | ms

Figure 18.5: ‘Specify modality to include’ GUIL. ‘MKChans’ feature set.

The nested cross-validation scheme (inner loop) is ‘k-folds on Block per Class’ with k=4, meaning that
we will leave approximately 25% of A and approximately 25% of B epochs out for testing in each fold.

Choose the same scheme for the outer CV with k=5.

Finally, mean centre the kernel and specify the model.

After you have specified everything, the final configuration should look like the one in figure 18.7.

18.1.4 Model: Specify from

To specify the MKL model, you need to ‘copy’ the SVM model specifications if you want to use the same
samples as the random subsample option was selected.

In this case, click ‘Specify from’ and load the PRT.mat. The SVM model is loaded by default (as the
first) and you can only modify the feature set, the machine (with hyper-parameter optimization) and/or
the kernel operations.

Use the ‘MKChans’ feature set and change the machine to ‘L1 Multi-Kernel Learning’.
Use the same hyper-parameter optimization as before;

But you need to add the ‘Normalize samples’ operation. Note: as the kernels all include the same number
of features (i.e. the number of time points considered), this operation could also be left out.

After you have specified everything, the final configuration should look like the one in figure 18.8.

18.1.5 Model: Run

It is now time to run our models so open the ‘Run’ module.

After you select the ‘PRT.mat’ file you will see the 2 models we have created so far. You can either select
and run them one by one, or you can select all and run them all together.

In ‘Permutations’ select the ‘Perform permutation test’ option with 100 repetitions. Be aware that 100
repetitions is a small number when running permutation tests, and 1000 repetitions (or even more) is a
more realistic one if you want your results to have a good statistical power. You could also select the
‘Save permutation parameters’ option, in case you wanted to perform further statistical tests.

The ‘Run’ window should look similar to the one in figure 17.13 of Chapter 17;

196 CHAPTER 18. CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

-« Specify k, the number of folds

C:\Users\PRoNTo_Dev\Testing_Scripts\PRT.mat _

Svit

|4 PRoNTO : Specify classes

Glass Gl rame
‘C\assrﬁcat\on ™ ‘

Subjects in group Conditions in modality
~ Define classes

‘Elﬂﬂl"/ support vector machine ~ ‘

‘ 001 01 1 10 100 1000

v

‘kffnlds CV on Block per Class ~ |

Selectall Select all o

‘k—folds CV on Block per Class

Selected subject(s) Selected condition(s)
B d Selected data operations

Mean centre features using trijey
Sample averaging (within suk
Normalize samples
Regress out covariates

<

Specify model Specify and run model

Figure 18.6: ‘Specify classes’ GUL Figure 18.7: ‘Specify model’ GUI, ‘SVM’ model.

18.1.6 Display results

The SVM model leads to 93.86% balanced accuracy, while the MKL model leads to 95.72%. Their AUC is
however the same (1.00). It is expected that MKL performs better as only half of the good channels contain
signal of interest while the other half only contains noise. The results of the ‘SVM’ model are shown in figure
18.9.

18.1.7 Compute weights

e We can now build the weights for the SVM model. In this case, select the PRT.mat, the SVM model
and leave the other options as default. Please note that weight summarization is not available for MEEG
data. A new file, in MEEG format, will be built containing the weights per feature. It will have the same
dimensions as the input file but contain NaN where the second-level masks did not overlap with the data
(i.e. the features not selected at the feature step stage).

e Repeat the operation for the MKL model but this time tick the ‘Compute average/kernel weight per
region’. Two images are then built: one with weights per feature, one with weight per kernel. Again, the
dimensions are identical to the dimensions of the input file.

18.1.8 Display weights

The weight display for MEEG is very basic, just a color-coded 2D matrix if there are 2 dimensions in the file (3D
files are not displayed). We refer the user to SPM (or other software after conversion) for more advanced plotting.

18.2. BATCH ANALYSIS 197

4\ Specify k, the number of folds —] X

‘C\assmcanon

Machine ‘L1 Multi-Kernel Learning

Optimize hyper-parameter 001 01 1 10 100 1000 |
Cross-Validation Scheme ‘kffolds CV on Block per Class @ ‘

Cross-Validati

Cross-Validation Scheme ‘kffo\ds CV on Block per Class

Data operafions Selected data operations

Mean centre features using t ~
Sample averaging (within su Normalize samples
Regress out covariates

<

Specify model Specify and run model

Figure 18.8: ‘Specify model’ GUI, ‘MKL’ model.

The weights for the SVM model are displayed in the following figure. As we can see in figure 18.10, channels
are quite consistently either positive or negative. On the other hand, for the MKL model some channels have
no contribution, as shown in figure 18.11.

The weights per regions can also be displayed and the table of ‘region’ (here channels) contributions is shown
along a histogram depicting the sparsity of the solution. As we can see from figure 18.12, interestingly, the
histogram shows that around half of the channels have a contribution to the model (21 channels out of 38 on
average across all folds).

18.2 Batch analysis

In the Batch analysis of this tutorial we are not going to fully replicate the GUI analysis, so if one is not yet
familiar with the Batch analysis, he/she should first go through the previous tutorials that are much more
detailed.

18.2.1 Data & Design

e Select a ‘batch’ subfolder to write the results.
e Add a group, ‘G1°.
e Add a subject, ‘S1’.

e Add a modality ‘ECoG’.

— Specify the modality type as ‘MEEG’.

198 CHAPTER 18. CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

@ PRoNTo :: Results - m} X

Save Figure File Edit View |Insert Tools Desktop Window Help k]

NEdL| kN UDRL @ 0E D

Trus labels Predictions
| Permuted labels ROC

Influence of the hyper-paramel v
< I >

Figure 18.9: ‘Display results’ GUL..

weights_SVM_perm100.mat ~
All folds / Average

Figure 18.10: ‘Display weights’ GUIL. ‘SVM’ model.

— The interscan interval as the sampling interval (here 0.001s).
— Select the file

— Under ‘Data & Design’, select ‘Events in MEEG file’. Note: this option is not selected by default as
in the GUI, because the batch is agnostic of the user choices.

— No regression targets/covariates.
e In ‘Masks’ add a modality, specify the name (‘ECoG’), which needs to be exactly the same as the original

name of the modality and finally set the data format to ‘MEEG’. All the important information is assumed
to be already included in the MEEG file, so there is no need to specify a mask here.

18.2. BATCH ANALYSIS 199

{4 PRoNTo = Weights — m] X

Save Figure File Edit View Insert Tools Desktop Window Help »

NEdL A UDRL @08 ag

weights_MKL_perm100.mat v
All folds / Average v O

IEEG_24 171468
iEEG_21 13.0744
IEEG_10 121914
8.9608
77326
74107
6.7179
6.3463
51735
3.7930
IEEG_23 31850
IEEG_16 3.1671

weights_ MKL_perm100.mat @)
All folds / Average v O

Figure 18.12: ‘Display weights’ GUI (per region). ‘MKL’ model.

After you have specified everything, the final configuration should look like the one in figure 18.13.

18.2.2 Feature set / Kernel

In this step, we will specify a feature set for our ECoG modality. This time however we will specify a model
with multiple kernels to be built at the channel level, as well as for subwindows of 100ms in our window of
interest, and see how it performs compared to the models we built in the GUI analysis.

200

CHAPTER 18.

CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

Help on: Data & Design
Directory

Groups

. Group

.. Name

.. Select by

... Subjects

. ... Subject

..... Modality
...... Name

...... Data format
...... Interscan interval

...... Data & Design

........ Events in file

Masks

. Modality

.. Name

. . Data format
... MEEG
Review

....... Events in MEEG file (for MEEG inputs only)

........ Add regression targets/covariates
......... No regression targets/covariates

... (semi simulated ecog)\batch

G1

ECoG

MEEG

0.001
. fifdspm8_iEEGS14_62_27 mat

ECoG

No

Figure 18.13: ‘Data & Design’ module in matlabbatch.

e First load the PRT.mat file, or create a dependency with the previous step (‘Data & Design).

e Give a name to the feature set, e.g. ‘MKLChanstp’.

e Choose the Data format as ‘MEEG’ and add a new modality.

— Name the modality ‘ECoG’ as defined in the previous step (‘Data & Design).

— Channels: delete the ‘All’ selected by default and replace it with the ‘New: Channel file’ option.
Choose the file ‘Good_channels.mat’ provided with the data set. This file contains the labels (in a cell
array) of all the channels marked as ‘good’ during preprocessing. The channel selector is the same
as SPM. Please refer to SPMs help for more details. Finally choose ‘Yes’ in the ‘Multiple kernels’

option under channels.

— Time points: Specify the time window as [-100 1100]. Select ‘Multiple kernels’ under time points
and select ‘One kernel per time window’, entering 100ms as the time window to consider for each
kernel. Please note: this will create 13 kernels, from -100 to -1, 0 to 99, 100 to 199, from 200 to 299,
plus one kernel comprising the last 1100ms time point. For balanced kernels, please specify the end
of your global time window (here 1100) as the end time point desired minus your sampling interval
in ms (here 1). So in that case the end of your global time window would be at 1099ms.

e Leave all the rest of the options at their defaults.

After you have specified everything, the final configuration should look like the one in figure 18.14.

18.2.3 Model: Specify new

e Specify a new model (named ‘sMKLChanstp’) that accesses your PRT.mat and choose the ‘MKLChanstp’

feature set.

e As in previous versions, define 2 classes, based on conditions A and B (subsampling to match the least
represented class), and choose the ‘L1 Multi-Kernel Learning’ machine.

e As this is a within-subject design, we can use the ‘k-folds on block per class’ cross-validation, for hyper-
parameter optimization (inner loop) as well as for model performance evaluation (outer loop). Choose
(arbitrarily) k=4 for the nested CV (inner loop) and k=5 for the outer CV (outer loop). As the kernels
do not include the same number of features, it is important to add the Normalize samples operation. For
a more detailed way of inputting all the options and parameters the reader is referred to Chapter 17 in

the parts regarding the MEEG data format.

After you have specified everything, the final configuration should look like the one in figure 18.15.

18.2. BATCH ANALYSIS

Help on: Feature set/Kernel
Load PRT.mat
Feature/kernel name

Data format

. MEEG

. . Modality

. . . Modality name

. .. Channels

. ... Channel selection
..... Channel file

. ... Average

. ... Multiple kernels

... Time points

. ... Time window
....Average

. ... Multiple kernels
..... One kernel per time window
...... Time window (ms)
. .. Frequencies

... . Frequency window
....Average

. ... Multiple kernels

DEP Data & Design: PRT.mat file
MKLChanstp

ECoG

...th_data\SimulatedECoG\Data\Good_channels. mat

No
Yes

[-100 1100]
No

100

[-Inf Inf]

No
No

Figure 18.14: ‘Feature set / Kernel’ module in matlabbatch.

Help on: Model: Specify new
Load PRT.mat .../[Kernel: PRT.mat file
Model name sMKLChanstp
Feature sets
. Feature set name
.. Name MKLChanstp
Model Type
. Classification
.. Classes
...Class
....Name A
....Groups
..... Group
...... Group name G1
...... Subjects 1
...... Conditions / Samples
....... Specify Conditions
........ Condition
......... Name A
Class

Name B
. ... Groups
..... Group
...... Group name G1
...... Subjects 1
...... Conditions / Samples
....... Specify Conditions
........ Condition
......... Name B
. . Subsample examples based on class definition Yes
.. Machine Type
. .. Kernel machine
. ... L1 Multi-Kernel Learning
..... Machine optimization and parameters
...... Optimize hyper-parameter
....... Regularization hyper-parameter 1x6 double
....... Cross-validation type for hyper-parameter optimization
........ k-folds CV on block per class
......... k 4
Cross-validation type
. k-folds CV on block per class
.k 5
Include all scans No
Data operations
. Mean centre features Yes
. Other Operations
. . Select Operations
. .. Operation Normalize samples

Figure 18.15: ‘Model: Specify new’ module in matlabbatch.

201

202 CHAPTER 18. CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

18.2.4 Model: Run

The ‘Run model’ is the same as in previous PRoNTo versions. Simply load your PRT, type the name of the
model as chosen in the previous step and specify whether you want to do permutation test or not (along with
its options). After you have specified everything, the final configuration should look like the one in figure 18.16.

Help on: Model: Run &
Load PRT.mat DEP Model: Specify new: PRT.mat file
Model name MKLChanstp

Do permutation test?
. Permutation test

.. Number of permutations 100
. . Save permutations parameters No
.. Copy permutations from model

...No

Figure 18.16: ‘Model: Run’ module in matlabbatch.

18.2.5 Display results

In the ‘Display Results’ GUI in figure 18.17, we see that this model does not perform as well as the previous
channel MKL model that we defined on the GUI analysis.

[4 PRONTo : Results - m] X

Save Figure File Edit View Insert Tools Desktop Window Help ~

EE EID R Y PR E Y

Balanced accuracy
—|— Mean

Figure 18.17: ‘Model: Run’ module in matlabbatch.

18.2. BATCH ANALYSIS 203

18.2.6 Compute & Display weights

In this last (optional) step, were interested in the kernel contributions. More specifically, is the discrimination
distributed in time or not? In the present case, we know the ground truth as from the simulated signal, the
discrimination is uniform in the [0 1000]ms time window. It is hence interesting to look at kernel contributions
to see if this information from the simulated signal was properly recovered.

e To this end, select ‘Compute weights’ and load the PRT.mat.

e Specify the model name as before and select the ‘Build weights per region’ option, leaving the ‘Load atlas’
as it is (blank). PRoNTo will automatically access the atlas defined at the feature set step if no atlas is
specified.

After you have specified everything, the final configuration should look like the one in figure 18.18.

Load PRT.mat ... \batch\PRT.mat
Model name sMKLChanstp
Image name (optional) "
Build weight images per ROI

. Load Atlas

Build weight images for permutations No

Figure 18.18: ‘Compute weights’ module in matlabbatch.

In the ‘Display Weights’ window, click on the model and select ‘Weights per region’. You will see the table
of kernel contributions for each channel and time window (referred to by their starting time point in ms).

As we can see in figure 18.19, the MKL model mostly identifies time windows within the [0 1000]ms window
of simulated signal. However, the MKL only provides a sparse solution, i.e. it does not recover all time windows
that have discrimination information in the A vs B classification.

204 CHAPTER 18. CLASSIFICATION OF SEMI-SIMULATED ECOG DATA

[#] PRoNTG : Weights — O X

Save Figure File Edit View Insert Tools Desktop Window Help -

NSde VTP RL- @08 ag

hts_sMKLChal .mat
et KL Chansp

All folds / Average

[EEG_62_TpWin700
[EEG_17_TpWin200
[EEG_63_TpWin800
[EEG_24_TpWin900
[EEG_63_TpWin400
[EEG_19_TpWin100
[EEG_19_TpWin400
[EEG_3_TpWin300

[EEG_21_TpWin600
[EEG_21_TpWin800
[EEG_1_TpWin200

[EEG_7_TpWin100

Figure 18.19: ‘Display weights’ GUI.

Chapter 19

Non-kernel machine example

Contents
19.1 GUT analysis oo 0o e e e e 205
19.1.1 Data & Design oL e 205
19.1.2 Prepare feature set 205
19.1.3 Model: Specify new e 206
19.1.4 Model: Specify from 206
19.1.5 Model: Run e e 206
19.1.6 Display results 207
19.1.7 Compute weights e 207
19.1.8 Display weights L 207
19.2 Batch analysis e e 208
19.2.1 Data & Design L e e e e e 208
19.2.2 Featureset / Kernel 208
19.2.3 Model: Specify new Lo 208
19.24 Model: Specify from 208
19.2.5 Model: Run & Display results e 210
19.2.6 Compute & Display weights 210

In this example, we will use the same dataset used in Chapter 8 and a non-kernel machine to classify con-
ditions ‘A’ and ‘B’. As non-kernel machines build the model based on the original features and not based on
the similarity between samples they can be computationally expensive if the number of features is very large.
However, some algorithms only exist in primal form and could be of interest (for example LASSO, Tibshirani,
1996). In this tutorial, we will select a single channel (one on which there is signal) of the same ECoG data we
used in the previous chapter and use the L1-SVM machine that selects a subset of informative features during
model estimation.

This tutorial will be quite short as most information is already introduced in chapter 18 and in this tutorial
we build on top of that. So the reader is strongly advised to do that tutorial first before proceeding to this one.

19.1 GUI analysis

19.1.1 Data & Design

You will need to replicate, exactly, the procedure followed in the previous chapter. Follow step by step subsection
18.1.1 in order to finish inputting the data.

19.1.2 Prepare feature set

e First replicate, exactly, the procedure followed in the previous chapter in order to build the first feature
set, ‘All’, used in that chapter. Follow step by step subsection 18.1.2 in order to do this.

205

206

CHAPTER 19. NON-KERNEL MACHINE EXAMPLE

Then build a second feature set (‘Chan3’), that will include only channel 3 and time points the same as
before, [-100 1100]ms around onset. The final configuration of this feature set should look like figure 19.1

4 PRoNTo :: Specify modality to include - O X

Fom Mo he

Average signal in specified band

One kernel per frequency bin

[[] Average signal over channels

[One kerel per channel

[] Average signal over time points

[One kernel per:
(time point

() window of |:|ms

Figure 19.1: ‘Prepare feature set’ GUI for the ‘Chan3’ feature set.

19.1.3 Model: Specify new

Replicate, exactly, the procedure followed in the previous chapter in order to build the first of the two models,
‘SVM’, used in that chapter. Follow step by step subsection 18.1.3 in order to do this.

19.1.4 Model: Specify from

Choose the ‘SVM’ model as a basis (default).
Remove the selected feature set and instead select our new ‘Chan3’ feature set.

Untick the ‘Use kernels’ radio button. The ‘machine’ list will be updated and now includes Binary L2-
SVM, Binary L1-SVM, Multiclass SVM, L2-Logistic Regression and L1-Logistic Regression (all interfaced
from LIBLINEAR).

Select ‘Binary L1-SVM’ and optimize the hyper-parameter using a ‘k-folds on Block per Class’ cross-
validation with k=4.

Two new options appear in ‘Data operations’ for non-kernel methods: ‘Normalize features’ or ‘Z-score
features’. Lets z-score and finally specify the model.

The final configuration should look like figure 19.2

19.1.5 Model: Run

It is now time to run our models so open the ‘Run’ module.

After you select the ‘PRT.mat’ file you will see the 2 models we have created so far. You can either select
and run them one by one, or you can select all and run them all together.

In ‘Permutations’ select ‘Perform permutation test’, with 100 repetitions. Be aware that 100 repetitions is
a small number when running permutation tests and we are only using it for demonstration purposes. 1000
repetitions (or even more) is a more realistic number if you want your results to have a good statistical
power.

19.1. GUI ANALYSIS 207

4\ Specify k, the number of folds —] X

C:\Users\PRoNTo_DeviTesting_Scripts\PRT.mar .
L1SVM

Feature set
Use kernels O Yes
Feature set Selected feature set

~ ~
MKChans
v v

Model

Model type ‘C\assmcanon

Machine ‘Blnary L1-SVM

Optimize hyper-parameter 001 01

Cross-Validation Scheme ‘kffolds CV on Block per Class

Cross-Validati

Cross-Validation Scheme ‘kffo\ds CV on Block per Class

Data operafions Selected data operations

Sample averaging (within su
Mean centre features using t
Normalize samples
Rearess out covariafes

<

> v
Specify model Specify and run model

Figure 19.2: ‘Model: Specify from’ GUI for the new ‘L1SVM’ model.

v

The ‘Run’ window should look similar to the one in figure 17.13 of Chapter 17 with the ‘Save permutation
parameters’ option unchecked.

19.1.6 Display results

The ‘L1SVM’ model gives 67.21% total accuracy and a AUC of 0.76, which is worse than the kernel ‘SVM’

model that had a 93.86% total accuracy and a AUC of 0.99. The results for the ‘L1SVM’ model are shown in
figure 19.3.

19.1.7 Compute weights

We can now build the weights for the ‘L1ISVM’ model. In this case, select the PRT.mat, the ‘L1SVM’ model
and leave the other options as default.

19.1.8 Display weights

The weights for the ‘L1SVM’ model are displayed in figure 19.4. As this is an L1-SVM, only a few time points
on channel 3 should have non-null weights. Even though the L1SVM provides sparse weights for each fold, the
average weight across folds, shown in figure 19.4, is not sparse. This reflects the fact that different features are
being selected across folds therefore the selection of features across fold is very unstable.

208 CHAPTER 19. NON-KERNEL MACHINE EXAMPLE

{4 PRONTo : Results - a X
Save Figure File Edit View |Insert Tools Desktop Window Help]
AET FIDEE Y PR EE)

PRoNTo: Results

Plot Model
Accuracy distribution Model |SVM ~
L MKL
L1SVM
08}
E
3 +
3061 v
2
s Fold |Allfolds / Average ~
2041 1
2 2
= N v
02 L2 W8N Accuracy Distribution ~
Balanced accuracy Predictions
ok + ean ROC
Influence of the hyper-paramef ¥
< >

Stats

Total accuracy: 67.21 %

Balanced accuracy (BA): 6712 %

BA p-value: N.A

Class accuracy (CA): 7197 % 6227 %
CA p-value: N. A

Class predictive value: 6574 % 7140 %
Area Under Curve: 076

AUC p-value: N A

Copyright 2011 PRoNTO Edit plot | Help | Quit_|

Figure 19.3: ‘Display results’ GUI for the new ‘L1ISVM’ model.

19.2 Batch analysis
19.2.1 Data & Design

You will need to replicate, exactly, the procedure followed in the previous chapter. Follow step by step subsection
18.2.1 in order to finish inputting the data.
19.2.2 Feature set / Kernel

e First replicate, exactly, the procedure followed in the previous chapter in order to build the first of the
two feature sets, ‘All’, used in that chapter. Follow step by step subsection 18.2.2 in order to do this.

e Then build a second feature set (‘Chan3’), that will include only channel 3 and time points the same as
before, [-100 1100Jms around onset. The final configuration of this feature set should look like figure 19.5

19.2.3 Model: Specify new

Replicate, exactly, the procedure followed in the previous chapter in order to build the first of the two models,
‘SVM’; used in that chapter. Follow step by step subsection 18.1.3 in order to do this.

19.2.4 Model: Specify from

We will try the ‘Model: Specify from’ matlabbatch module and the Binary L2-SVM machine this time. Remem-
ber that in the ‘Model: Specify from’ matlabbatch module you only need to specify the fields you're modifying
from the copied model, and all the rest will remain the same.

e Specify the appropriate ‘PRT.mat’.

19.2. BATCH ANALYSIS 209

{4 PRoNTo = Weights
Save Figure File Edit View Insert Tools Desktop Window Help

NEdL A UDRL @08 ag

weights_L1SVM.mat
L1SVM ™

All folds / Average

Figure 19.4: ‘Display weights’ GUIL. ‘L1SVM’ model.

Help on: Feature set/Kernel
Load PRT.mat ...\batch\PRT.mat
Feature/kernel name Chan3
Data format

. MEEG

. . Modality

.. . Modality name ECoG
... Channels

.. .. Channel selection

..... Custom channel 3
.. ..Average No
.. .. Multiple kernels No
... Time points

.. .. Time window [-100 1100]
....Average No
.. .. Multiple kernels

..... No

... Frequencies

.. .. Frequency window [-Inf Inf]
....Average No
.. . . Multiple kernels No

Figure 19.5: ‘Feature set / Kernel’ module in matlabbatch for the ‘Chan3’ feature set.

e Give a name to the new model (‘L2SVM’) and choose the model to copy from (‘SVM’).
e In the ‘Fields to modify’ select the ‘New: Field’ option.

— In the ‘Field’, select the ‘Model type’ option, then choose ‘Classification’, ‘Non-kernel machine’ and
select the ‘Binary L2-SVM’.

— In the ‘Machine optimization and parameters’, select ‘Optimize hyper-parameter’ and choose ‘k-folds
CV on block per class’ with a k=4 in the ‘Cross-validation type for hyper-parameter optimization’
field.

210 CHAPTER 19. NON-KERNEL MACHINE EXAMPLE

e In the ‘Fields to modify’ select once more the ‘New: Field” option.
— In the ‘Field’, select the ‘Feature sets’ option, select a ‘New: Name’ and specify it (‘Chan3’).
e In the ‘Fields to modify’ select once more the ‘New: Field” option.

— In the ‘Field’, select the ‘Data operations’ option. Then in ‘Other operations’ select ‘Select opera-
tions’, select the ‘New: Operation’ and choose the ‘Z-score features (Non-kernel only)’ option.

After you have specified everything, the final configuration should look like the one in figure 19.6.

Help on: Model: Specify from

Load PRT.mat ...\PRT.mat
Model name L2SVM
Model to copy SVM
Fields to modify

. Field

. . Model Type

... Classification

. .. . Non-kernel machine

..... Binary L2-SVM

...... String arguments q-s2-B1-c
...... Machine optimization and parameters

....... Optimize hyper-parameter

........ Regularization hyper-parameter 1x6 double
........ Cross-validation type for hyper-parameter optimization

......... k-folds CV on block per class

. . Feature sets
. .. Feature set name

....Name Chan3
. Field

. . Data operations

... Mean centre features Yes
. .. Other Operations

. ... Select Operations

..... Operation ...features (Non-kernel only)

Figure 19.6: ‘Model: Specify from’ module in matlabbatch.

19.2.5 Model: Run & Display results

Simply load your ‘PRT.mat’ and run all the models with no permutations. The model displays an accuracy
very similar to the ‘L1SVM’ model.

19.2.6 Compute & Display weights
Open the ‘Compute weights’ matlabbatch module, load the PRT.mat, specify the model name (‘L2SVM’) and

leave all the rest at their default values.

In figure 19.7 you see that the weights for this model are quite smooth compared to the L1-norm. That was
expected since the L2-norm produces non-sparse weights.

19.2. BATCH ANALYSIS 211

{4 PRONTo : Weights - m} bt

Save Figure File Edit View Insert Tools Desktop Window Help »

Nade k| A 0DR L G808 a0

weights_L2SVM.mat
L2SVM ™

All folds / Average

Figure 19.7: ‘Display weights’ GUI for the ‘L2SVM’ model.

212 CHAPTER 19. NON-KERNEL MACHINE EXAMPLE

Chapter 20

Within-subject Regression

Contents
20.1 GUT analysis oo 0o e e e e 214
20.1.1 Data & Design oL L 214
20.1.2 Prepare feature set Lo 215
20.1.3 Model: Specify new e e e 215
20.1.4 Model: Run oL 216
20.1.5 Display results L e 217
20.2 Batch analysis L e e e 218
20.2.1 Data & Design 218
20.2.2 Featureset / Kernel 218
20.2.3 Model: Specify newo e e 219
20.2.4 Model: Run & Display results oL L oo 220

In this example, we will use the semi-simulated ECoG data with random regression targets and covariates
to illustrate within subject regression with MEEG data. Most of what follows also applies to nifti and .mat
although there are small differences at the Data and Design stage.

For each condition, we will create random targets by using a fixed number (1 for condition A, 3 for condition
B) to which we add uniform random noise between 0 and 1. There are 73 epochs for condition A, so for trials
of condition ‘A’ we have:

> rt_trial = ones(1,73) + rand(1, 73);

And for trials of condition ‘B’

> rt_trial = 3 x ones(1,73) + rand(1,73);

The covariates will then model the ground truth of those targets, such that when removing confounds, we
would remove all target differences between the 2 conditions. We can either simply use

> R = ones(73,1); save(‘Con founds_A.mat’,*R') % for condition A
> R = 3 xones(73,1); save(‘Confounds_B.mat’,‘R’") % for condition B

On the other hand, we could consider that this is actually a categorical covariate, i.e. being from condition
A or from condition B. This needs to be one-hot encoded according to:

> R = repmat([10], 73,1); save(‘Con founds_A.mat’,‘R') % for condition A

> R = repmat([01],73,1); save(‘Con founds_B.mat',‘R’") % for condition B

213

214

CHAPTER 20. WITHIN-SUBJECT REGRESSION

In the present ‘dummy’ application, this doesnt make much of a difference and both options correctly remove
the main condition effect. In practice, we recommend using one-hot encoding of categorical variables when these

are clearly unordered.

20.1 GUI analysis

20.1.1 Data & Design

e Starting as before, create one group ‘G1’, add one subject and one new modality called ‘ECoG’.

e Set the type of the modality as ‘MEEG’ and select the .mat file corresponding to the ECoG simulated
recording (found in the SimulatedECoG/Data/ directory).

e Once we select the appropriate .mat file, the experimental design will automatically load from that file.
It can be reviewed by clicking the ‘Events in file’ option in the ‘Design’ section (figure 18.1 from chapter
18) where a new window will appear, like the one in figure 18.2 from chapter 18.

e As you see the condition names, onsets and durations have already been filled. There are 2 more columns
that can be edited: the 4th corresponds to regression targets per trial and the last to covariates per trial.
As the design is automatically loaded from the MEEG data, these 2 fields have to be entered manually,
for each file in the design. The expressions above can be entered in the corresponding table cells to obtain
a design similar to (when using the value covariates) the one of figure 20.1.

Important notes:

: Specify conditions - O X

From .mat file &

Onsets Duration Regression targets (trials) Covariates (trials)

2344812916913 141414141 1551711281511 11111111111
2485951472296 141414141 348363.073.0732.. 33333333333

Figure 20.1: ‘Specify conditions’ GUI.

— The number of targets must correspond to the number of trials in each condition, including bad trials
for MEEG data (hence the 73 instead of 60 and 56).

— Multiple covariates can be entered in the form of a # trials x # covariates matrix. As the table can
only display one line, the matrix is vectorised before display. This does not affect the matrix in the

PRT structure.

— For .mat or nifti formats, a file can be specified to fill in the whole table, instead of manually inputting
the regression targets and the covariates. This file should contain the ‘names’, ‘onsets’ and ‘durations’
variables (as in previous PRoNTo versions), as well as a ‘rt_trial and ‘R’ cell arrays, with one cell

per condition.

Please note that there is no need to specify a mask file for the MEEG modality type as all the useful
information is already contained inside the MEEG file.

20.1. GUI ANALYSIS 215

e After clicking ‘OK’ on both windows, you can save the data into a PRT.mat in the directory of your
choice, and also review the data, either prior to saving them through the ‘Review’ button in the ‘Data &
Design’ window, or after saving them, using the ‘Review data’ button in PRoNTo’s main window.

You can check the values were passed correctly by typing:
> load(‘ PRT.mat’)

> PRT.group.subject.modality.design.conds(2).cov_trial % or rt_trials

20.1.2 Prepare feature set

The feature set you’ll be using is the ‘MKChans’ feature set from chapter 18. So follow step by step subsection
18.1.2 in order to replicate, exactly, the procedure followed in the that chapter in order to build the ‘MKChans’
feature set that is used there. The final configuration of this feature set should look like figure 18.5.

20.1.3 Model: Specify new

You will first build a new model to perform the within-subject regression and see whether a pattern can be
found for this ‘artificial’ regression model. Hence, you will need to build one model with the covariates, and
one without them and compare.

e Choose the appropriate PRT.mat file.
e Specify the name of our model (e.g. ‘RegKRRnoCov’).
e Choose the ‘MKChans’ feature set and change the ‘Model type’ to ‘Regression’.

e Click ‘Select Subjects/scans’, add subject S1 and both conditions A and B to the model (i.e. we want to
include all epochs in the regression model) and click ‘Done’. The window should look like figure 20.2.

4 PRONTO = Select subjects/targets for regression — O X

Subjects in group Targets in modality

~ ~

Groups in data set
G1 ~

v v

Selectall Selectall

Selected subject(s) Selected target(s)

v

Figure 20.2: ‘Select Subjects/targets for regression’” GUL

Choose the Kernel Ridge Regression machine and optimize the hyper-parameter C (range: [0.01 0.1 1 10
100 1000]).

The nested cross-validation scheme (inner loop) is ‘k-folds on Block’” with k=4.

e Choose the same scheme for the outer CV with k=5.

Finally, mean centre the kernel and specify the model.

216 CHAPTER 20. WITHIN-SUBJECT REGRESSION

After you have specified everything, the final configuration should look like the one in figure 20.3.
Next you will need to create a second model, similar to the first one, with the main difference that this time
you will regress out the covariates, in order to compare and contrast the differences of the two models.

e So similarly create another model called RegKRRCov where you replicate everything from the first model.

e You only have to add the ‘Regress out covariates’ operation. Please note that we could not have used the
‘Model:Specify from’ option as the covariates are only loaded in the model if the ‘Regress out covariates’
operation is selected.

After you have specified everything, the final configuration should look like the one in figure 20.4.

4\ Specify k the number of folds - m] X 4 Specify k the number of folds - m] x

C:AUsers\PRoNTo_DeviTesting Scripts\PRT.mat | .| Ci\Users\PRoNTo_DeviTesting Scripts\PRT.mat | .|
RegKRRnoCov RegKRRCov

Feature set
Use kernels @ Yes
Feature set Selected feature set

A

Model

Select subjects/scans

|Kemel Ridge Regression ~

|Regre55\un V‘

0.01 01

kfolds CV on Block

Cross-Validation
Cross-Validation Scheme kfolds GV on Block

Data operations Selected data

Sample averaging (withir
MNormalize samples
Regress out covariates

< b4

Specify model Specify and run mo...

Figure 20.3: ‘Specify model’ GUI.
‘RegKRRnoCov’ model.

20.1.4 Model: Run

Feature set
Use kemnels @ Yes
Feature set Selected feature set

~

Model

Select subjects/scans

|Keme| Ridge Regression ~

|Regre55\un V‘

0.01 01

kfolds CV on Block

Cross-Validation

Cross-Validation Scheme k-foids GV on Block

Data operations Selected data

Mean centre features usi A
Sample averaging (withir Regress out covariates
MNormalize samples

Specify model Specify and run mo...

Figure 20.4: ‘Specify model’ GUL.
‘RegKRRCov’ model.

e It is now time to run our models so open the ‘Run’ module.

e After you select the ‘PRT.mat’ file you will see the 2 models we have created so far. You can either select
and run them one by one, or you can select all and run them all together.

e In ‘Permutations’ select ‘Perform permutation test’, with 100 repetitions. Be aware that 100 repetitions is
a small number when running permutation tests and we are only using it for demonstration purposes. 1000
repetitions (or even more) is a more realistic number if you want your results to have a good statistical

power.

The ‘Run’ window should look similar to the one in figure 17.13 of Chapter 17 with the ‘Save permutation

parameters’ option unchecked.

20.1. GUI ANALYSIS 217

20.1.5 Display results

The results for both models are displayed in figure 20.5. The first model somewhat identifies that trials from
condition A have lower regression targets than epochs from condition B. We see however that the model predicts
a relatively central value for all epochs, close to 2.5 (the average between all targets when taking the random
noise into account). Removing the covariates leads to a slightly worse model, that clearly predicts the target
average all of the time.

Plot Model Plot Model

Model ENGRI A Model |RegkRRnoCov ~
4 RegKRRCov 4 RegKRRCov
e 0, o° '0.. e . 9 © .
®
°® 9.8 @) . °
35 % B9 ? . 35 °
o o ’. e [
@ e °
. ©%° 8 °% s B° %
, v ~
3 £,
‘E’ 25 Fold |Allfolds / Average A g Fold Allfolds / Average ~
b p 1 | - 1
2 ” 2 2 e 2
w0 3 v L ° &y 3 v
e ° .
15 oY C% ?O o] Plot Prediction Errors A~ G R) Plot Prediction Errors A
) 0 o0 Og R2 Distribution) L ° 8 R2 Distribution
e oq OO ® Predictions (scatter) - Predictions (scatter)
PR g a 0O OO o Influence of the hyper-parameter 1 Influence of the hyper-parameter
v v
1 15 2 25 3 35 4 M N 1 1.5 2 25 3 35 4 M N
predictions predictions
Stats Stats
Correlation: 031 Correlation 031
Correlation p-value: N. A. Correlation p-value: N. A.
Coeff. of determination (R2): 0.16 Coeff. of determination (R2): 0.15
R2 pvalue: N. A R2 p-value: N. A
MSE 052 MSE: 157
MSE p-value: N. A MSE p-value: N. A
Norm. MSE! 584 Norm. MSE: 1813
Norm. MSE p-value: N. A. Norm. MSE p-value: N. A.

Figure 20.5: ‘Display results’ GUI for regression (left) and for the same regression after
having removed confounds that are heavily correlated with the targets (right).

As for classification, the plots have been modified according to the emphasis that ‘All folds’ only reflects
the average across the different folds (i.e. different models estimated). A ‘Prediction Errors’ plot was added to
reflect, for each point, the difference between the target and the predictions. A perfect regression model would
lead to all points being located on the ‘0’ vertical axis.

Similarly to the ‘Accuracy distribution’ plot, a ‘R2’ plot displays the distribution of R2 across the different
folds in a violin plot. The plot is symmetric if no permutations were performed while it will contain the ‘true
label’ R2 distribution on its left and the ‘permuted label’ R2 distribution on its right if permutations were
estimated (figure 20.6).

R2 distribution R2 distribution
I R2 tr True labels
+ Mean Permuted labels

o 081 o 08
Q Q
= c
] ©
Eosr E o6l
o o
= =
1) @
204r S04t
)]
° °
o o
= 0.2 + = 0.2r

o ol E

Figure 20.6: R2 distribution plot without (left) and with (right) permutations.

Important note: The pre-processing steps sort the 2 conditions A and B. This means that the targets are also
sorted, with all the lower values in the 1st half of the samples and the higher values in the 2nd half. This clearly

218 CHAPTER 20. WITHIN-SUBJECT REGRESSION

affects the cross-validation: in the first fold, we only leave lower values out, making the train and test sets very
imbalanced. Hence, care should be taken to avoid this kind of situations and to ensure that the cross-validation
train and test sets are balanced in terms of target variances and ranges. This of course was not an issue during
the classification as we were able to use the ‘k-folds on Blocks per Class Out’ cross-validation scheme, leading
to balanced train and test sets.

20.2 Batch analysis

20.2.1 Data & Design

e First, replicate exactly, the procedure followed in Chapter 18. Follow step by step subsection 18.2.1 in
order to finish inputting the data.

The only thing you need to modify is to add the covariates and the regression targets.

e Go to the ‘Add regression targets/covariates’ field, select the ‘Conditions’ option and add a ‘New: Con-
dition’.

e For each condition, you then need to:

— Specify the conditions name (such that PRoNTo knows which condition to relate the inputs to, e.g.
AA’)
— Input the regression targets as an expression (a vector or expression, e.g. ‘ones(1,73)+rand(1,73)’)

— And finally load the covariates from a file (saved in a variable called ‘R’ as described in the start of
this chapter).

After you have specified everything, the final configuration should look like the one in figure 20.7.

Help on: Data & Design

Directory ...\batch
Groups

. Group

.. Name G1
.. Select by

.. . Subjects

.. .. Subject

..... Modality

...... Name ECoG
...... Data format MEEG
...... Interscan interval 0.001
...... Files ...GS14_62_27 .mat

...... Data & Design
....... Events in MEEG file (for MEEG inputs only)

........ Events in file

........ Add regression targets/covariates

......... Conditions

.......... Condition

........... Name A
........... Covariates ..\Confounds_A.mat
........... Regression targets (per trial) 1x73 double
.......... Condition

........... Name B
........... Covariates ..\Confounds_B.mat
........... Regression targets (per trial) 1x73 double
Masks

. Modality

.. Name ECoG
.. Data format

... MEEG

Review No

Figure 20.7: ‘Data & Design’ module in matlabbatch.

20.2.2 Feature set / Kernel

As for the GUI analysis, there is nothing specific to within-subject regression at the feature set level and the
instructions from the previous chapters can be followed.

20.2. BATCH ANALYSIS 219

e First replicate, exactly, the procedure followed in the chapter 18 in order to build the first of the two
feature sets, ‘All’, used in that chapter, but name it ‘MKChans’. Follow step by step subsection 18.2.2 in
order to do this.

e The only thing you have to modify is the ‘Multiple kernels’ field, where you need to change this from ‘No’
to ‘Yes’.

The final configuration of this feature set should look like figure 20.8.

Help on: Feature set/Kernel
Load PRT.mat ...\batch\PRT.mat
Feature/kernel name MKChans
Data format
. MEEG
. . Modality
. . . Modality name ECoG
... Channels
. .. . Channel selection
..... Channel file ...\SimulatedECoG\Data\Good_channels.mat
... Average No
.. . Multiple kernels Yes
.. Time points
... Time window [-100 1100]
... Average No
. ... Multiple kernels
..... No
.. Frequencies
.. . Frequency window [-Inf Inf]
....Average No
. . . Multiple kernels No

Figure 20.8: ‘Feature set / Kernel’ module in matlabbatch.

20.2.3 Model: Specify new

As in the GUI analysis, you have to specify two versions of the same model: one without additional operations
and one removing the confounds.

e Specify a new model (‘RegGRnoCov’) that accesses your PRT.mat and choose the ‘MKLChans’ feature
set.

e Change the ‘Model type’ to ‘Regression’, add a new group (‘G1’) and since we have only 1 subject type
‘1’ in the ‘Subjects’ field.

e In the ‘Conditions / Samples’ select ‘All Conditions’.
e In the ‘Machine Type’ select the ‘Kernel machine’ and choose ‘Gaussian Process Regression’.

e There is no option for hyper-parameter optimization as this is performed in a Bayesian framework. There
is however a cross-validation scheme for model performance evaluation (outer loop). Choose the ‘k-folds
CV on blocks cross-validation scheme with k=5.

e Leave the rest at their defaults.

After you have specified everything, the final configuration should look like the one in figure 20.9
You will now create the second model with covariates removed. First right-click on the ‘Model: Specify new’
module you just finished and click ‘Replicate Module’. That way you will only need to modify two things.

e Change the name of this model to ‘RegGRCov’.

e In ‘Other operations’ choose ‘Select Operations’, add a ‘New: Operation’, and in the ‘Operation’ field
choose the ‘Regress out covariates’ option.

After you have specified everything, the final configuration should look like the one in figure 20.9 with only the
two aforementioned differences.

220 CHAPTER 20. WITHIN-SUBJECT REGRESSION

Help on: Model: Specify new

Load PRT.mat ...-subject regression)\batch\PRT.mat
Model name RegGRnoCov
Feature sets

. Feature set name

.. Name MKChans
Model Type

. Regression

.. Groups

... Group

. ... Group name G1
. ... Subjects

. ... Conditions / Samples

..... All Conditions

. . Machine Type

... Kernel machine

... . Gaussian Process Regression

..... String arguments -l gauss -h
Cross-validation type

. k-folds CV on blocks

.k 5
Include all scans No
Data operations

. Mean centre features Yes

. Other Operations
. . No operations

Figure 20.9: ‘Model: Specify new’ module in matlabbatch.

20.2.4 Model: Run & Display results

Simply open two ‘Model: Run’ modules, choose your PRT.mat, type the name of the two modes as chosen in
the previous step and leave the rest at their default values.

If you’ve done everything properly the results should be quite similar to the GUI analysis with KRR.

Chapter 21

New Machine Tutorial

Contents
21.1 Introduction L e e 221
21.2 prt_new_machine.m L e e e e 222
21.2.1 Inputs e e e e e e 222
21.2.2 0utputs e e e e 223
21.3 How to import and test your new machine in Batch 223
21.4 How to import your new machinein GUL L L. 227
21.4.1 prtdefaultsm L Lo e 227
21.4.2 prt_get_machineuim oL Lo L 228
21.4.3 prtouicopy-model.m . ..o Lo e e 228
21.4.4 prtplotmested_cv.m . . . Lo oL oL 229
21.4.5 pri_weights *m . .. L oL 229
21.4.6 Running your new machine L L Lo oo 229

21.1 Introduction

Many research groups from both the machine learning and the neuroscience communities are actively involved
in the implementation of new methods for analyzing neuroscience data. In an effort to promote science and the
collaboration between researchers across the world, the developers of PRoNTo, while having it as an open-source
software right from the start, have also been constantly trying to make it more user-friendly and easy to use.
To that end, the whole structure of PRoNTo has been built in such a way, that it makes it relatively easy for
a developer or an experienced user to interfere in all steps of the process and customize them to their needs.
However, while the customization of all the other steps of the process is much more straight-forward, import-
ing a new method (or ‘machine’; as they are called in PRoNTo), or a wrapper for a library, is a bit more intricate.

This tutorial is intended as a semi-standalone tutorial with the purpose of walking a developer through all the
steps required to import their own method into PRoNTo both in Batch and GUI. It will provide all the details on
how your machine in your script needs to be structured, as well as the modifications required in all the scripts of
PRoNTo to fully port a new method in it and we expect that users with programming experience should be able
to use nothing more than this tutorial to import a new method. We will follow closely Chapter 14, which uses the
IXT dataset, therefore even though not necessary, the readers are advised to go through that tutorial first. The
IXT dataset can be found on PRoNTo’s website http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html (data
set #3). The machine we will use as a toy is the Kernel Ridge Regression (prt_machine_krr), so some parts (like
the arguments passed) will resemble the ones in the pri_machine_krr script. You will also need to download a
compressed copy of the new_machine folder, found in http://www.mlnl.cs.ucl.ac.uk/pronto/new_machine,
unzip it and put the whole folder (new_machine) inside the PRoNTo/machines folder. The new_machine folder
includes all the files needed for you to run this tutorial. Inside it you will find:

e A file named ‘prt_new_machine.m’, which will be the new method tested.

221

http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html
http://www.mlnl.cs.ucl.ac.uk/pronto/new_machine

222 CHAPTER 21. NEW MACHINE TUTORIAL

e A d structure example, which is a structure containing all the information of the data that the ‘prt_new_machine.m’
accepts as input.

e And new_machine_batch.mat, which is a .mat file containing all PRoNTo Batch modules to test your new
machine in case you only want to focus on testing your method.

Note: Importing a new machine is far more straight-forward through the Batch System, compared to GUI, so
users familiar with it are strongly advised to first try their machines in Batch, and only go through the process
of porting it in GUI if they intend to use GUI for their analyses.

Note: Any reference to specific lines in the scripts follow PRoNTo v3.0, so the reader is advised to download
that version in order to help themselves find the parts of the code that need to be modified.

PRoNTo is MATLAB-based and includes six main modules: ‘Data & Design’, ‘Prepare feature set’, ‘Model:
Specify new’, ‘Model: Specify from’, ‘Model: Run’ and ‘Compute weights’. For a specific model PRoNTo can
display results in terms of performance as well as the model’s weights. Additional review options enable the user
to review information about the data, features and models. All modules were implemented using a graphical
user interface (GUI) and the MATLAB SPM Batch System. Using the MATLAB Batch System the user can run
each module as batch jobs, and you can also extract the jobs you created in .mat files and run them using only
scripts, which enables a very efficient analysis framework. Hence, people primarily interested in testing their
method, should only focus on section 21.3 which uses the Batch.

All information about the data, experimental design, models and results are saved in a structure called PRT
inside a .mat file called ‘PRT.mat’. The PRT.mat is first created when you run the ‘Data & Design’ module.
PRoNTo also creates additional files, or overwrites existing ones, during each step (module) of the analysis.
Each step of the analysis also updates the PRT.mat itself accordingly.

In the following section we are first going to explain how to create your own ‘machine’ script according to
PRoNTo’s standards, together with the structure of the input data, as well as the structure that the output
data have to have. In Section 21.3 we will briefly explain the Batch system, and how to import and run your
new machine with it. And finally in Section 21.4 we will explain how to import your new machine in PRoNTo’s
GUL

21.2 prt_new_machine.m

First of all the user has to create their own machine script. Once they have created it according to the
specifications of PRoNTo, they have to put it inside the PRoNTo/machines folder. A template script named
‘prt_new_machine’ should already exists inside the folder PRoNTo/machines/new_machine, so the user is ad-
vised to use this as a template. Two things are important here. The way the input is structured, so that
the user knows how to modify their method to accept the data as they enter their script, as well as the way
the user has to structure the output of their script so that it is compatible with the rest of the PRoNTo structures.

Important note: The full path of the custom machine must be manually added to the Matlab
Path.

21.2.1 Inputs

There are two input structures to the machine function that contain all the relevant information of the data, d
and arygs.

1. d: This is the structure containing all the information of the data. The d structure contains more fields
than what are needed. The most important ones are the following:

e .tr_targets: training labels (for classification) or values (for regression). This is a column vector of
[Ntr x 1] dimensions, where Ntr is the number of targets of the training data.

e .te_targets: testing labels (for classification) or values (for regression). This is a column vector of
[Nte x 1] dimensions, where Nte is the number of targets of the testing data.

21.3. HOW TO IMPORT AND TEST YOUR NEW MACHINE IN BATCH 223

e .use_kernel: Whether the data are in form of kernel matrices (true) or in form of features (false).

.pred_type: Prediction type, ‘Classification’ or ‘Regression’.

.train: Training data (cell array of matrices of row vectors, each having [Ntr x D] dimensions if we
input the raw data, or [Ntr x Ntr] if we input their kernels]). Each matrix contains one representation
of the data. This is useful for approaches such as multiple kernel learning.

o .test: Testing data (cell array of matrices row vectors, each having [Nte x D] dimensions if we input
the raw data, or [Nte x Nte] if we input their kernels]).

o .testcov: Testing covariance (cell array of matrices row vectors, each [Nte x Nte]).

Irrespective of the original type of the data (NIfTI, MEEG or .mat), the data are extracted and/or
converted to the d structure. While in .mat you could visualize your data right from the start, in the
cases of NIfti and MEEG there is no PRoNTo function that lets you visualize your data. A test d structure
is provided inside the PRoNTo/machines/new_machine folder to help the readers visualize better how the
input structure is.

2. args: These are arguments required by each machine. These arguments can be strings, alphanumeric,
or numeric characters, they are usually specific to the machine and they are mostly defined as defaults
elsewhere.

21.2.2 Outputs

In order for a new machine to be fully compatible with PRoNTo the outputs of the machine have to be structured
in a specific way. The outputs of the machine are all gathered under one structure, named output, which has
the following fields:

e .predictions: Predictions of classification or regression [Nte x D]. This field is mandatory.

e .func_val: Values of the decision function [Nte x D]. This field is not always mandatory, but the reader
is advised to always have it on their output.

All the other outputs are optional in most cases. The user is advised to go through the different existing
machines, in order to get an idea of how they are structured.

Important note regarding weights: Depending on your machine, in order for it to be able to visualize
the contribution (weights) of different regions/features, some extra outputs might be mandatory. For example,
while in kernel machines the weights are computed directly, for non-kernel machines they need to be explicitly
computed. Hence, if you want to create a non-kernel machine, it is mandatory for either the coefficients to be
in the output structure in order to be computed by PRoNTo, or to compute the weights internally and contain
them in the output. A thorough look at the existing machines will give the user a good sense of what is needed
when.

21.3 How to import and test your new machine in Batch

In the introduction of this chapter it was mentioned that importing a new machine in Batch is more straight-
forward when done through Batch, compared to the GUI. That is because the PRoNTo code regarding the
Batch system is already prepared to accept a new custom machine, which is done when defining a model in the
‘Model: Specify new’ and ‘Model: Specify from’ modules so there are absolutely no code modifications required.
We assume, however, that the reader is already familiar with the PRoNTo Batch from the previous sections,
and if not enough, we strongly advise the reader to go through some tutorials first. More specifically, prior to
try importing this new machine with Batch, even though not necessary, it will strongly help the readers if they
have first completed the tutorial of Chapter 14, since we are going to use the same PRT.mat (which is the main
structure format file of PRoNTo and everything is done and stored in there) and the same feature set to run the
new machine. Finally we remind the reader that the toy machine (KRR) of this tutorial, prt_new_machine.m, is
nothing more than a copy of the prt_machine_krr.m, used here with a generic name for instructional purposes.

We will discuss quite briefly the main parts needed in order for someone not interested in details to directly
proceed, with minimal exposure, to import their own machine in PRoNTo. So anyone wanting to get a better

224 CHAPTER 21. NEW MACHINE TUTORIAL

understanding should go through the rest of the manual.

To start with, to launch the toolbox GUI, just type prt or pronto at the MATLAB prompt and the main
GUI figure will pop up, see Fig. 1.1. From there on simply click on the processing step needed. Most functions
of PRoNTo have been integrated into the matlabbatch batching system [8] (like SPM8) and the batching GUI
is launched from the main GUI by clicking on the Batch button. Once in the Batch system, click the ‘Load
Batch’ button to load the file named ‘new_machine_test_batch.mat’ and you will see 5 modules in the Module List.

As you can see in the PRoNTo GUI, each job (one job being for example to specify the details of a model,
or to ‘run’ [train&test] a model) requires you to input all the information every time you want to run this job.
This can be tiresome, and prone to errors since after running the job you have no practical way of retrieving
fast the information that you just put. So the whole idea behind Batch is to create a principled way to group a
lot of jobs together, be able to run them whenever you want, and be able to save them in a .mat file (using the
‘Save Batch’ button) in order to be able to review and revise them whenever you want to. Each module in the
list represents one job. The whole module list is run when you click the ‘Run Batch’ button. Now let’s proceed
by briefly explaining the 5 different modules in the list.

Note: All fields of all modules have a help section which can be found at the bottom of the GUI of the Batch
system after clicking on the desired field.

1. Data & Design: In this module the user imports all the information related to the data, such as, for
example, the type of the data, the regression values for regression problems, covariates, and masks, as
well as information about the experimental design.

e In this module the user has to change the ‘Directory’ field to the directory they desire to run their
analysis. It is in this directory where the PRT.mat file will be created. You first have to right-click
and ‘Unselect All’ of the previously saved directory.

e Change the ‘Files’ field to the directory you have stored the 102 subjects of the IXI data set. They
should be in the IXI/Data/aged/Guys directory. You first have to right-click and ‘Unselect All’ of
the previously saved directories of the 102 subjects.

e Change the ‘From file’ under ‘Regression targets (subject)’ to the appropriate path where the
‘Age_old_Guys.mat’ is located. These are the regression target values of the 102 subjects. You first
have to right-click and ‘Unselect All’ of the previously saved directory of the ‘Age_old_Guys.mat’ file.

e And finally change the ‘File’ under ‘Masks’ to the appropriate path where the ‘SPM_mask_noeyes.img’
is located. Masks are usually used if we want to throw away some irrelevant information prior to the
analysis. For example here the fMRI information from the eyes is irrelevant to our analysis, so we
use a standard ‘no_eyes’ mask to throw away the data from the eyes. You first have to right-click
and ‘Unselect All’ of the previously saved directory of the ‘SPM_mask noeyes.img’ mask image file.

2. Feature set/Kernel: In this module the user creates the feature sets from the loaded data in the previous
module, in order to be used later on when we build our models. Depending on the type of your data the
fields are different, but generally in this module, after defining the data format, you can choose whether
to include based on samples or conditions, for example in the case of NIfTT images whether to include all
voxels or part of them, some simple extra preprocessing steps, etc.

e Here you only need to make sure you have the appropriate directory in the ‘Load PRT.mat’ field.
Note: When you first create a batch of jobs in the Batch, there is no ‘PRT.mat’ yet created. In
that case you can either run the first module by itself, and then click ‘Specify’ to choose the already
created PRT.mat, and then run the rest of the modules. Or you can run them all together by using
the ‘Dependency’ button. By clicking the ‘Dependency’ button you can choose for example the ‘Data
& Design’ module, which instructs the ‘Load PRT.mat’ field of the ‘Feature set/Kernel’ module to
harvest the ‘PRT.mat’ of the ‘Data & Design’ module to be run as the PRT.mat of this module
(‘Feature set/Kernel’).

3. Model: Specify new: In this module the user imports all the information related to the machine learning
models they want to build, such as whether you want to do classification or regression, which feature sets
to use, as well as all the information about the machine learning algorithm itself and the model selection
and cross-validation schemes.

21.3. HOW TO IMPORT AND TEST YOUR NEW MACHINE IN BATCH 225

e First make sure you have the appropriate directory in the ‘Load PRT.mat’ field. Please note the
instructions in the previous module about how to use the ‘Dependency’ button.

e Change the ‘Function’ under the ‘Custom machine’ to the appropriate path where the ‘prt_new_machine.m’
is located.

4. Model: Run: The purpose of this module is pretty simple. Here the user only defines which models
they want to run, and whether or not to do permutation test or not.

e Here you only have to make sure you have the appropriate directory in the ‘Load PRT.mat’ field.

5. Compute weights: The previous modules allow the user to specify and run one or more models. These
include the machine to be used, the cross-validation scheme and the classifcation/regression problem. The
estimation of those models led to predictions on unseen/test data (in each fold), from which measures of
performance of the model can be derived and displayed. In addition, as PRoNTo primarily uses linear
models, it provides the option of recovering the model weights in the original feature space, and trans-
forming the weights vector into an image, or map. These maps contain at each feature the corresponding
weight of the linear model (that together define the predictive function), and which related to how much
this particular feature contributed to the classification/regression task in question. The purpose of this
module is to compute those model weights.

e Here you only have to make sure you have the appropriate directory in the ‘Load PRT.mat’ field.

If everything was done properly, clicking the green ‘Run Batch’ button will finish smoothly and give you the
same results as the KRR model in Chapter 14.

At this stage the user should be familiar enough with the Batch in order to do a first test, running the
template new machine we provide. It is strongly advisable that the users go in debug mode and enable a
breakpoint in the start of the pri_new_machine.m script to study the two input main input structures (d and
args) directly through the MATLAB workspace in order to gain a better understanding.

Create your own Batch from scratch

The users that want to create the whole batch from scratch by themselves should first follow and finish the
regression tutorial of Chapter 14 and, after that, proceed to the additional instructions below.

e First open the Batch and fill it in as instructed in 14.2.3 but without filling in the ‘Machine type’ field.
For practical purposes, change the ‘Cross-validation type’ from ‘Leave one subject out’ to ‘k-folds CV on
subjects’ with ‘k=5’.

The ‘Model: Specify new’ module at this point should look similar to figure 21.1.

e Now we will describe how to fill the additional field that we skipped before, ‘Machine type’. Since KRR
uses kernels, select the ‘Kernel machine’ option, and, after that, in the ‘Kernel machine’ field, select the
‘Custom machine’ option. There are in total 3 fields here, 2 of which are new.

1. Function: You need to fill in the full path of your machine’s file. In this particular case we have
put the machine inside a folder named ‘new_machine’ so the full path would be something like
‘PRoNTo/machines/new_machine/prt_new_machine.m’.

2. Custom machine string arguments: These are string parameters specific to each machine. They
are usually required if the machine calls an external library for computations. These are the same
string parameters mentioned in 21.4.1, so the reader is referred to this subsubsection for a further
explanation. In our case, our custom machine requires no string arguments, so leave this field as it
is.

3. Custom machine optimization and parameters: This is the same as the ‘Machine optimization
and parameters’ of the rest of the machines, with the only exception that no values are auto-filled.
First select ‘Optimize hyper-parameter’ and in the ‘Regularization hyper-parameter’ insert the values
[0.010.11101001000]. Finally change the ‘Cross-validation type for hyper-parameter optimization’ to
‘k-folds CV on subjects’ with k=4.

226

CHAPTER 21. NEW MACHINE TUTORIAL

Load PRT.mat
Model name
Feature sets

. Feature set name
.. Name

Model Type

. Regression

.. Groups

... Group

... . Group name
. ... Subjects

.. .. Conditions / Samples

. . Machine Type
Cross-validation type
. k-folds CV on subjects
ok
Include all scans
Data operations
. Mean centre features
. Other Operations
. . No operations

Help on: Model: Specify new

... PRT.mat file
New_Machine

Scalar_Momentum

Aged

102x1 double

age
<X

No

Yes

Figure 21.1: ‘Model: Specify new’ module.

— In case you do not want to do a nested cross-validation, you have to select the ‘No optimization’,
and in the ‘No optimization’ field you should fill in any default parameter values that your
machine requires. In our case that is the value of the A parameter, and is equal to 1. For further
information regarding default parameter values the reader is referred to 21.4.1.

The ‘Model: Specify new’ module finally at this point should look similar to figure 21.2.

Help on: Model: Specify new
Load PRT.mat

Model name

Feature sets

. Feature set name

.. Name

Model Type

. Regression

.. Groups

... Group

... . Group name

. ... Subjects

.. .. Conditions / Samples

. . Machine Type

. . . Kernel machine
... . Custom machine
..... Function

...... Optimize hyper-parameter

........ k-folds CV on subjects

Cross-validation type

. k-folds CV on subjects
ok

Include all scans

Data operations

. Mean centre features
. Other Operations

. . No operations

..... Custom machine string argument
..... Custom machine optimization and parameters

....... Regularization hyper-parameter
....... Cross-validation type for hyper-parameter optimization

... PRT.mat file
New_Machine

Scalar_Momentum

Aged

102x1 double

age

... \prt_new_machine.m

1x6 double

No

Yes

Figure 21.2: Final configuration of the ‘Model: Specify new’ module.

93

94

95

96

105

106

108

109

21.4. HOW TO IMPORT YOUR NEW MACHINE IN GUI 227

21.4 How to import your new machine in GUI

21.4.1 prt_defaults.m

This is the script that sets most of the defaults used by PRoNTo. Each machine and/or library has its own
parameters that might need to be set as defaults. You have to modify this script to include any default
parameters your machine requires. There are 3 things you have to modify in this script.

Machine lists for GUI

Here we provide the GUI of PRoNTo with a list of names for each machine available. All names can be found
inside prt_def.machine. The names of the machines are grouped according to whether the machine is for
classification or regression, whether it uses kernels or not, and whether it is a multi-kernel method or not. In
our case since our toy method is KRR (named ‘New Machine’), which is for regression and uses kernels, we will
need to add it to pri_def.machine.reg_K.

prt_def.machine.reg K = {’Kernel Ridge Regression’, 'New Machine’ ,...
"Relevance Vector Regression’,’ Gaussian Process Regression’ ...
"epsilon —SVR’ };

prt_def.machine.reg NK = {’ epsilon—SVR’ };

String parameters

Some times machines require string arguments in their input, especially machine that are wrapper for libraries.
Any string arguments your machine might require need to be defined here. Our toy machine (KRR) does not
require any string arguments, so for an example we will present the string arguments required to run an L2-SVM
as well as an e-SVR using the LIBSVM library.

%LIBSVM machines

% Classification — dual

prt_def.model.libsvm _sargs =’'-q-s 0 -t 4 —c 7; %L2 SVM
% Regression — dual

prt_def.model.libeSVR _sargs ='—-q-s 3 -t 4 —c ’; % e-SVR

If your machine required some string arguments to work, you would need to define the field pri_def.model. new_machine_sarg.
together with its proper string arguments. You should remember the name you give to this field (.new_machine_sargs)

because you are going to use it later on.

Default parameter values

Besides string arguments, some machines may also require numeric values to be set as defaults. For example:

prt_def.model.rtargs = 601;
prt_def.model.l1MKLmaxitr = 250;
prt_def.model. wipargs =[1 0.5];

JLIBSVM and LIBLINEAR defaults
prt_def.model.libsvmargs = 1;

In this particular case, the default parameter values required by our toy machine (KRR) are the same
as the LIBSVM and LIBLINEAR defaults shown above, so there is no need to add new ones explicitly. We
are going to use this when asked in the next subsection. In case you need to specify new ones, you have to
put it inside the prt_def.model structure. So your newly defined defaults would need to be inside a structure
prt_def.model.name_args where ‘name_args’ can be whatever name you want to give to your machine’s argu-
ments. You should remember this name because you are going to also use it later on.

Important Note: The order with which the default parameter values will be harvested is the same as the one
that are defined. So the user is advised to pay attention to that order since the machine will most likely not hit
an error if run with transposed default parameter values.

994

995

997

998

1000

1001

1002

1271

1272

1273

1274

1275

1276

1277

228 CHAPTER 21. NEW MACHINE TUTORIAL

21.4.2 prt_get_machine ui.m

This script is called when you use the GUI, to harvest the defaults you previously defined for each machine'.
You have to modify these scripts to properly harvest your machines defaults by including your machine in both
of them. Be careful, however, because the GUI and the Batch have small differences in how they define things.
Below is an example of how we defined our new machine, which is the same as KRR. First is an example from
prt_get_machine_ui.m, and then from pri_get_machine.m.

% New Machine

elseif any(strfind (name, 'New Machine))
machine . function="prt_new_machine ’;
machine. args = def.libsvmargs;

%Relevance Vector Machine
elseif any(strfind (name, Relevance’))
machine. function="prt_machine_rvr ’;

% Gaussian process

elseif any(strfind (name, Process Regression’))
machine . function="prt_machine_gpr’;
machine.s_args= def.gpr_sargs;

As we see in the code above, it is in this part that we are asking for the default parameter values that
were defined in the previous section. If a new machine required different default parameter values, the user
would have defined in the previous section, giving them a specific name, which would have been used in place
of def.libsymargs in line #113.

21.4.3 prt_ui_copy model.m

This is the script responsible for the GUI of the ‘Model: Specify from’ module. Just as in 21.4.1, the user has
to put the name of their machine here as well, in two instances, inside the if-loops #970-1002 and #1232-1296.

First instance

elseif val==2
handles.type='regression ’;
set (handles. butt_defclass , String ', Select subjects/scans’)
%set the list of machines
set (handles.pop_machine, ’String ’,{ *Kernel Ridge Regression’, ’'New Machine’,

"Relevance Vector Regression’,’Gaussian Process Regression’, 'Multi—
Kernel Regression’})
set (handles.pop_machine, ’Value’ ,1)
handles.machine. function="prt_machine _krr ’;
handles.machine. args=handles . def. krrargs;
end

Second instance

elseif strcmpi(handles.dat.model(indmod).input.type, regression’)
handles.type='regression ’;
if nk % Kernel regression machines
list = handles.reg_K;
if handles.multimod || handles.multiroi |]|...
numel (sel)>1
list = [list ,handles .MK];

Lprt_get_machine.m is the equivalent of prt_get_machine_ui.m but for Batch. Modifications to prt_get_machine.m will be dis-
cussed in the next section.

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

66

67

68

69

70

71

72

73

74

76

77

78

79

21.4. HOW TO IMPORT YOUR NEW MACHINE IN GUI

21.4.4

end

if strcmpi(handles.dat.model(indmod) .input.machine.function ,’

prt_machine_krr’)

mach = ’Kernel Ridge Regression’;
elseif strcmpi(handles.dat.model(indmod).input

prt_new_machine)

mach = 'New Machine ;
elseif strcmpi(handles.dat.model(indmod) . input

prt_machine_rvr’)

mach = ’Relevance Vector Regression’;
elseif strcmpi(handles.dat.model(indmod).input

prt_machine_gpr’)

mach = ’Gaussian Process Regression’;
elseif strcmpi(handles.dat.model(indmod).input

prt_machine_.sMKL_reg’)

mach = 'L1 Multi—Kernel Learning’;
elseif strcmpi(handles.dat.model(indmod).input

prt_machine_svm _bin ”)

mach = ’epsilon—-SVR’;
end

prt_plot_nested_cv.m

.machine. function

.machine. function

.machine. function

.machine. function

.machine. function

229

This script plots the results of the nested cv that appear on prt_ui_results. The user has to modify the script,
by including an extra case in the switch-loop of lines #27-132, with their machine. Since our toy machine for
this tutorial is KRR, we will be using logscale as well, and the x and y labels are also going to be the same.

case

21.4.5

‘prt_new_machine’
x_label = ’Lambda’;
y_label = 'NMSE’;

%If no axes_handle is given, create a new window

if “exist(’axes_handle’, 'var’)
figure;
axes_handle = axes;
logscale = 1;
else
% Clear EVERYTHING in the UI before defining the axes
cla (axes_handle, ’reset’);
logscale = 1;

end

prt_weights_*.m

As mentioned in 21.2.2 in the note regarding weights, depending on your machine, in order for it to be able to
visualize the contribution of different regions/features, some extra outputs might be mandatory. In general, in
most cases weights are computed by prt_weights_linkernel.m. So depending on your machine you might either
use one of the existing scripts, or you might need to create your own new prt_weights_*.m for building the
weights of your new custom machine. That, however, is depended on your machine so the user is advised to go
through the existing prt_weights_*.m scripts to further understand how they might need to structure theirs.

21.4.6

Running your new machine

If your machine’s script is properly defined, and if everything was done accordingly, when you open the ‘Model:
Specify new/from’ modules, you are going to see your new custom machine as one of the options in the drop-down
list like in figure 21.3.

230 CHAPTER 21. NEW MACHINE TUTORIAL

|4 Specify k, the number of folds — O b4

C:\Users\PRoNTo_DeviTesting Scripts\PRT.mat —
New_Machine_Model

Kernel Ridge Regression
\ ne
Relevance Vector Regression

Gaussian Process Regression
epsilon-SVR

k-folds CV on Subject Out v

Sample averaging (within sut
Normalize samples
Regress out covariates

< I

Specify model Specify and run model

Figure 21.3: ‘Model: Specify new’ module in GUI with the new machine option

Part IV

Advanced topics

231

Chapter 22

Developer’s manual

Contents
22.1 Introduction L e e e e e 233
22.2 PRoNTo folder structure e e 234
223 Data& Design e 235
22.3.1 PRT fields created e e e 235
22.3.2 Files created e e 235
22.3.3 GUI behaviour e e e e 235
22.3.4 Batch behaviour 236
22.3.5 Functions called e e 236
22.4 Prepare feature set L L L e e e e e 237
22.4.1 PRT fields created e e e 237
22.4.2 Files created L e e 237
22.4.3 GUI behaviour e e e e e 238
22.4.4 Batch behaviour e 238
22.4.5 Functions called e e e 238
22.5 Model: Specify new/from 239
22.5.1 PRT fields created e e 240
22.5.2 Files created e 241
22.5.3 GUI behaviour e e e e e 241
22.5.4 Batch behaviour 241
22.5.5 Functions called 242
22.6 Model: Run e e e e 243
22.6.1 PRT fields created e e 245
22.6.2 Functions called e 245
22.7 Compute weights L oL e 246
22.7.1 PRT fields created e 247
22.7.2 Files created e e 247
22.7.3 Functions called e 247

22.1 Introduction

There is an increasing interest in applying machine learning methods to detect predictive patterns in neuroimag-
ing data. The accumulative data size in neuroimaging, on the other hand, starts reaching a big data scale and
opening opportunities for more engineers and data scientists interested in mental health and neuroscience to
apply their expertise to this field. Collaborations between neuroscience and machine learning communities show
promises to discover novel and informative biomarkers for brain diseases. To meet the needs from both commu-
nities, we add new contents about PRoNTo in this v3.0 manual for users who are interested in understanding
it at a deeper level. Therefore, this chapter will describe the main framework of PRoNTo and its backend core

233

234

CHAPTER 22. DEVELOPER’S MANUAL

functions in order to provide a roadmap for developers.

This chapter will begin with descriptions on the folder structure, which explains how the files and library
folders are organised, and some naming conventions we use. Then we will explain the five functional modules:
‘Data & Design’, ‘Prepare feature set’, ‘Model: Specify new’ and ‘Model: Specify from’, ‘Model: Run’, and
finally ‘Compute weights’. Specifically, we will provide details for

How the GUI and Batch interfaces are built.

What functions are called to arrange the user inputs to PRoNTo accepted structures.

How the data structures are passed to core functions carrying on computations and model estimations.
How cross-validations are implemented.

How machines from third-party libraries are called.

How weights are computed for visualization.

We will also provide detailed information on specific functions implementing each module for reference. We
think that understanding the structure of PRoNTo shall be enough for developers to implement and interface
their own functionalities, hence further details on particular components (e.g., implementing a new data type)
beyond the framework backbone are not included here.

22.2 PRoNTo folder structure

PRoNTo contains several subfolders under the main PRoNTo folder. In this section, we will provide a brief
description of each subfolder.

The _devUtils and _unitTests folders are particular tools for testing the software. The atlas folder contains
two atlases: the AAL atlas with labels, and the Brodmann atlas without labels. If the developer wishes
to add atlases, this is the recommended place for that. Atlases in NIfTI format can be created easily by
using SPM or manually by the user. Please refer to the last point in ‘Features’ in the Section 3.3.1 of the
user manual. If you use multiple kernel learning (MKL) and want to see ROI contributions in ‘Display
weights’, a .mat file storing ROI labels should be created alongside with the atlas. This .mat file should
comprise a cell array, and each cell should contain a label of a specific region. Please refer to point ‘ROI
Label” in Section 7.2.4 in the user manual for more details on how to create and use this .mat file. Atlases
in .mat format can be created by users manually.

The batch folder contains the files for the Batch module, which includes both the configuration (with ‘cfg’
in the function names) and job execution (with ‘run’ in the function names) functions. For each module in
PRoNTo, we have corresponding configuration and execution files. The configuration functions generate
the trees defining the interfaces of the modules in Batch. The job execution functions pass user inputs to
lower level functions in PRoNTo for calculations and estimations. GUI and Batch share the same lower
functions for computations and estimations. This modular design eases the development of new machines
and functions in each module.

The machines folder contains the different regression and classification algorithms. There are functions
from several third-party libraries (e.g., libsvm, liblinear and SimpleMKL), ‘machines’ which are wrapper
functions (with ‘prt_machine’ in the function names) interfacing the libraries to PRoNTo, and functions
computing weights for each machine. If the developer wishes to add a new machine, they can open
these functions and read their input and output arguments. There are a few naming conventions: ‘gp’
Gaussian processes, ‘cla’ classification, ‘krr’ kernel ridge regression. Names of these algorithms also refer
to libraries, for example, ‘gp’ refers to ‘gpml’ library, ‘MKL’ refers to simpleMKL library.

The manual folder contains latex files for the manual, images and other contents. Developers can add to
the documentation here.

The masks folder contains one first-level mask in the Data & Design module until before version 3. This
changed in PRoNTo v3.0 and more masks (in NIfTI format) can be added.

22.3. DATA & DESIGN 235

e In wutils folder, there are several lower level functions e.g. checking if inputs are alphanumeric, or performing
operations on kernels, such as splitting data in the kernel and normalising kernels.

e Beyond the above mentioned subfolders, functions with ‘ui’ in their names define the GUI interfaces,
ie. *ui_*fig and *_ui_*.m file pairs define the figure and how the GUI behaves, respectively. We used
GUIDE (GUI development environment) to create GUI and add custom functions and codes to extend
these interface functions.

e The rest of the ‘prt_’ functions perform the computations and estimations defined in each module.

22.3 Data & Design
22.3.1 PRT fields created

The PRT structure is an important data structure (a .mat file) created and repeatedly used by PRoNTo. It is
firstly created after the ‘Data & Design’ module is initiated / specified by the user. At first, it consists of two
fields: ‘group’ and ‘masks’. Users input all their data, experimental design (e.g., modalities, runs, conditions)
and other related information here (e.g. covariates, regression values). After this step, data information is
stored in the group field of PRT.mat, and the first level masks, HRF overlap and delay parameters are stored
in the masks field of the PRT.mat. Below is a list of subfields in PRT.group and PRT.masks:

e PRT.group

— PRT.group.gr_name: Storing group names.
— PRT.group.subject: Storing subject information.

x PRT.group.subject.subj_name: Storing subject names.

* PRT.group.subject.modality: Subfields containing information on regression targets, covariates,
modality name, design and scans. Note: classification labels are specified in ‘Model: Specify
new /from’ modules later.

e PRT.masks

— PRT.masks.mod name: Name of corresponding modality.

— PRT.masks.type: Storing the data type.

PRT.masks.fname: The full path of the specified mask.
PRT.masks.hrfoverlap: Storing information on HRF overlap (default: 0).
PRT.masks.hrfdelay: Storing information on HRF delay (default: 0).

22.3.2 Files created
PRT structure, saved in a PRT.mat file in the path specified by the user.

22.3.3 GUI behaviour

GUI of Data & Design module provides interfaces for users to specify where to store the PRT structure and
files, data information, experimental design, masks and all other related information.

e Save button creates the PRT structure.
e Load button loads previously created PRT.mat files and checks their compatibility.

e Review button provides a graphical review of all the input information and the interface for modifying
some HRF parameters.

e prt_ui_main.m and prt_ui_main.fig function pair define the GUI of the main window.

e Button click on ‘Data & Design’ in the main window will call prt_ui_design.m and prt_ui_design.fig to open
the Data & Design module.

236 CHAPTER 22. DEVELOPER’S MANUAL

22.3.4 Batch behaviour

The Batch of Data & Design module provides users similar functions and interfaces as GUI. However, there are
three major differences.

e Firstly, the batch job can be saved as a .mat file or a .m function. Both users and developers can make
changes directly in these files.

e Secondly, both users and developers should be careful about the names of modalities when using the
Batch, i.e. the names needs to be consistent.

e Finally, the HRF delay and overlap can be changed directly in the Batch of Data & Design. In GUI, they
can be modified in Review.

22.3.5 Functions called

The GUI functions related to the Data & Design module can be found under the root PRoNTo folder, whereas
the Batch functions of this module are under the batch folder.

GUI:

1. prt_ui_design.m and prt_ui_design.fig

These functions define GUI interface and other functions for the Data & Design module. The function
‘prt_ui_design.m’ initializes the GUI window, executes the commands associated with each button, checks
if the inputs are correct, and creates outputs in MATLAB prompt. If the developer chooses to make
changes in this GUI module (e.g., a buttons or menus functions), you can find related sub-functions
with corresponding names in prt_ui_design.m. Some important functions called by prt_ui_design.m are
summarized as follows.

e prt_data_modality.m and prt_data_modality.fig
The two files define the GUI panel for specifying the information of the modality, experimental design,
covariates and regression targets. The prt_data_modality.m also calls:

— prt_data_conditions.m and prt_data_conditions.fig, for receiving inputs for conditions, i.e. exper-
imental design.

— prt_check_design.m, for checking the design and discards scans according to overlapping condi-
tions or the minimum time interval between conditions based on the HRF function and specified
HRF parameters.

— prt_data_targets.m and prt_data_targets.fig, for opening the target window to examine and/or
modify targets.

— prt_get_design MEEG.m, for filling the design from MEEG file. In v3.0, new data types (.mat
and MEEG) are allowed, hence relevant codes are added to interface functions, and/or core
functions carrying out the backend computations.

o prt_get_defaults.m and prt_defaults.m
Default settings of PRoNTo are stored in prt_defaults.m, including global defaults such as colour,
parameters for the data and design, preprocessing, default atlas for ROI definition, arguments of dif-
ferent machines, and parallelization of the code. The function prt_get_defaults.m gets the relevant de-
fault values from prt_defaults.m for this module. For instance, the code ‘color = prt_get_defaults(‘color’)’
sets colors of backgrounds and figure parameters for Data & Design module. prt_defaults.m is con-
stantly called by many functions in PRoNTo.

e prt_data_review.m and prt_data_review.fig
These two functions define the GUI for reviewing the data.

2. prt_load.m and prt_struct.m

This function is called when clicking the Load button. It loads PRT.mat and checks its fields for backwards
compatibility. If you wish to add a field to the PRT structure, and that field is necessary for display or
further analyses, the pri_struct file should be amended to set default values for that field to ensure that
older PRT files can still be read and modified.

22.4. PREPARE FEATURE SET 237

Batch:
3. prt_cfg_design.m and prt_run_design.m

e The function prt_cfg_design.m is the Data & Design module configuration file that builds the PRT.mat
data and design structure.

e The function prt_run_design.m is the job execution function, which takes a harvested job data,
rearranges them into PRT structure and saves it.

At this stage, the GUI and batch have very little code in common. Hence, changes in the GUI have to be
performed independently in the batch and conversely.

22.4 Prepare feature set

22.4.1 PRT fields created

There are two fields created in PRT.mat in this step, too. Field fs (feature set) and fas (file array structure).
The information for the two fields is specified by users in the ‘Specify modality to include’ panel.

For each selected modality, a file array is created containing the data (detrended if specified). The field
PRT fas is linked to this file array. In fas field, the information stored refers to the modality (as defined in Data
& Design). This means that multiple MRI sessions, entered as different runs, will each create a specific fas. A
fas is linked to a .dat file created at this stage, which is with dimensions of #images x #features within the
first-level mask. A fas structure also stores feature operations (detrend and detrend parameters), header of the
first image for recovering images if needed, and indices of all features within the first-level mask.

The field fs refers to the kernel/feature set that is created. It is a structure of size number of feature sets
created by the user. This structure of fs stores information on the feature set name, kernel file, ID matrix,
information of using multiple kernels, second-level mask and atlas. This field also contains information about
the second-level mask and/or the atlas (used to build the kernel).

One important subfield is the ID matrix, which contains information about the modalities selected in the
feature set arranged in six different columns: group, subject, modality, condition, block and scan.

e The name of the columns are stored in PRT.fs.id_col_names.

e The group numbers, subject numbers, modality labels, condition numbers, block labels and scan numbers
themselves are stored in PRT.fs.id_mat, whose dimension is the number of samples x 6. Columns in
PRT .fs.id_col_names and PRT.fs.id_mat are in corresponding order.

The ID matrix is referred to in the ‘Review kernel & CV’ reviewing tool in PRoNTo, where a graphical
display shows the structure of this matrix.

e In addition, there is a fas subfield in PRT.fs, that is different from PRT.fas. This subfield in fs refers to the
modality and scan indices of the feature set modalities in the fas structure. It is useful when modalities
are concatenated in samples (e.g. accessing the correct scans from multiple runs in an MRI experiment,
with each run linked to a different PRT fas file array).

As mentioned in the Data & Design module, in v3.0, different data formats (.mat, NIfTT and MEEG) are
supported. Users can specify which data type and modality shall be used to build the feature sets. Some
changes according to these are made in both GUI and Batch of this module, which will be more described as
follows.

22.4.2 Files created
e FAS .dat file(s).

e A kernel matrix (.mat with variable Phi, a cell array with a kernel in each cell).

238 CHAPTER 22. DEVELOPER’S MANUAL

e Updated masks and/or atlases (NIfTI resampled at the size of the input data images).

The .dat file refers to one PRT.fas structure and stores all features in the first-level mask for each modality.
It is a binary file. If computing multiple kernels using a second-level atlas is chosen by the user, the kernel
matrix will contain multiple cells. Each cell stores information of one kernel.

22.4.3 GUI behaviour

The GUI of this module takes the PRT.mat created in the Data & Design module. It provides interfaces for
users to further specify feature sets, their names, selected modalities, operations on the feature sets and atlas
for defining kernels.

In v3.0, users may specify three different data types (NIfTI, .mat and MEEG) in the Data & Design mod-
ule. If only the NIfTI or .mat file is specified, after loading PRT.mat, GUI calls for the Specify modality to
include panel. If more than two of the data types are specified, e.g. NIfTT and .mat, or all of them, GUI
calls for Specify type of data after loading PRT.mat. The reason for this design is that Specify modality to
include panel is different between MEEG and the other two types. The function prt_ui_main.m checks the type
of data (modalities) in the loaded PRT.mat and calls for these panels. Buttons on the panels have names of
the modalities. Their functions are defined using corresponding GUI files, such as prt_ui_fs_alldatatype.m and
prt_ui_fs_alldatatype.fig. Sub-functions like prt_ui_fs_alldatatype.m will gather modality information based on
the button name, and pass it to prt_ui_prepare_data.m. This function then calls for the right Specify modality
to include panel for the selected data type/modality. This panel accepts user inputs on which modalities to be
included and several other related inputs, then Prepare feature set window is called. After filling in the fields
of this window by users, prt_ui_prepare_data.m passes user inputs to prt_fs.m function.

Main functions in the Prepare feature set module, such as building the file array and computing feature set
matrices (including multiple kernels) are completed by prt_fs.m or prt_fs_ EEG.m. Here, we take prt_fs.m as an
example for some further illustrations. This function calls prt_init_fs.m to initialize the file arrays, kernels and
feature set parameters. Then it calls prt_fs_modality.m to build file arrays and kernels. The .dat files linked to
file arrays are created here. A sub-function within prt_fs.m named as prt_compute_ROI kernels builds kernels
based on the second-level atlas.

22.4.4 Batch behaviour

The ‘Prepare feature set’ module in the Batch is similar to GUI. However, the batch requires consistent names
across modules. Running important modules altogether will overwrite the PRT.mat, hence delete the links
between the PRT.mat and the computed feature set(s) and kernel(s). FAS will be recreated each time the
Batch is launched. Function prt_cfg_fs.m defines the tree of this Batch module. The function prt_run_fs.m
harvests user inputs from the tree. It checks the modality and data types, then calls prt_fs.m or prt_fs EEG.m
to execute computations on file arrays, kernels and feature set. After loading PRT.mat, types of data can be
selected under Data format field.

22.4.5 Functions called

Core:

1. prt_fs.m

The function gathers information on the modalities to build file arrays containing the (detrended) data
and computes the linear kernels. It resizes the 2nd level masks and atlases if needed. The 2nd-level masks
are used here as an important tool. It is used to define more precise scope for building the feature sets,
for example, restricting the analysis to certain brain regions. Multiple kernels can be built for multiple
modalities, or multiple regions of a specified atlas. prt_fs.m calls prt_fs_modality.m directly to compute
multiple kernels for different modalities, but calls prt_compute_ROI_kernels to build ROI defined kernels
for multiple regions in the atlas. A list of functions prt_fs.m calls is as follows:

e prt_init_fs.m to populate basic fields in prt.fs, like the file array structure, kernel data structure and
feature set parameters.

22.5. MODEL: SPECIFY NEW/FROM 239

e prt_fs_modality.m to write the kernel matrix to the user-defined path as well as the feature set if
needed.

e prt_compute_ROI_kernels. This is a sub-function within prt_fs.m. It reads voxel indexes within both
the 2nd-level mask and the 1st-level mask first. It then computes kernel for each region in the
user-specified atlas and stores indices in the image for the weight computation.

2. prt_init_fs.m

The function initialises the file arrays, kernels and feature set parameters.

3. prt_fs_modality.m

Code in this function are divided in two parts: building file arrays and computing kernels. If a file array has
been already built for a given modality, it wont be built again, but read from the existing file. Operations
like scaling are applied on the kernel only. To build multiple kernels, prt_fs.m calls prt_fs_modality.m
as many times as the number of kernels defined. It calls prt_get_defaults.m to get defaults of fs, and
prt_load_blocks.m to access one or more blocks of data to avoid memory overload.

GUI:

4. prt_ui_prepare_data.fig and prt_ui_prepare_data.m

This pair of functions define the GUI to specify how many feature sets will be used. These modalities can
either be concatenated (e.g. multiple runs of an experiment), or combined in multiple kernel settings (e.g.
sMRI grey and white matter). For each modality entered, the function calls prt_ui_prepare_datamod.m
to let users specify parameters for the selected modality, or data types in .mat or NIfTI formats. It calls
prt_ui_prepare_dataMEEG.m and prt_ui_prepare_dataMEEG.fig to let users specify parameters for MEEG
data type.

5. prt_ui_prepare_datamod.fig and prt_ui_prepare_datamod.m

This pair of files are called by prt_ui_prepare_data.m to accept user inputs about modalities, NIfTT and
.mat data types to compute the file array, kernels and feature set.

6. prt_ui_prepare_.dataMEEG.m and prt_ui_prepare_dataMEEG.fig

This pair of files are called by prt_ui_prepare_data.m to accept user inputs about MEEG data to compute
file array, kernels and feature sets.

Batch:

7. prt_cfg_fs.m and prt_run_fs.m

The fs configuration file constructs the tree structure for this module. It provides user interfaces for
specifications of the feature set for each data type and modality. The job execution function takes all
inputs from prt_cfg_fs.m. It arranges them into proper data structure and stores this structure in a variable
called ‘input’. It then passes PRT.mat and ‘input’ to prt_fs.m or prt_fs_ EEG.m to build file arrays and
compute kernels.

22.5 Model: Specify new/from

In v3.0, the ‘Specify model’ module of versions 2.X is split to ‘Model: Specify new’ and ‘Model: Specify from’
modules. They compute the inputs for the models but don’t estimate/run the models. The main inputs for
this module are: feature sets, where users select which feature set will be used to build the model, whether
to use kernel or not, model type (regression or classification), selection of samples and classes, machines, cross
validation (CV) strategy and data operations. ‘Model: Specify new’ is used when users want to specify a new
model to run. ‘Model: Specify from’ is used when users want to specify models similar to previous ones.

240

CHAPTER 22. DEVELOPER’S MANUAL

22.5.1 PRT fields created
Model: Specify new

Two subfields in PRT.model are created and filled: PRT.model.model name, which stores the name of the
model and PRT.model.input which stores all the other information. Another subfield PRT.model.output is only
created but is not filled here. It will be filled after the model is estimated (‘Model: Run’ module). Below is an
illustration of the information stored in PRT.model.input:

PRT.model.input.use_kernel: Whether to use kernel methods (1) or not (0, for non-kernel methods).
Non-kernel methods are available from v3.0.

PRT.model.input.type: Regression or classification. This field is called very often within PRoNTo.

PRT.model.input.machine: Stores information of the chosen machine. The algorithms can be found in the
subfolder PRoNTo/machines/. More details on how to call the machines can be found in the following
‘Model: Run’ section.

PRT.model.input.use_nested_cv: Whether to optimize hyperparameters (1) or not (0).

PRT.model.input.nested_param: A vector of user-defined parameters if PRT.model.input.use_nested_cv is
1. In versions 2.X, this can also be empty, which means to leave it for the algorithm to set values by
default. The default values are specified in prt_nested_CV.m at the ‘Model: Run’ step. In v3.0, this has
changed. All default parameters are automatically filled in the corresponding fields of GUI or Batch, once
‘Optimize hyperparameter’ field is activated. Hence from v3.0 they are taken as inputs by default from
user interfaces.

PRT.model.input.cv_type_nested: The CV strategy for the inner CV loop.

PRT.model.input.cv_k_nested: Value of k for the k-fold inner CV loop. For instance, if 10 is input, it
means that the strategy takes 90% of the data for training, and 10% of the data for test.

— Leave-one-out has k=0.

PRT.model.input.subsample: Whether to subsample the different classes accordingly or not, in order to
have balanced classes.

PRT.model.input.class: Contains the user-specified selection for each class.

— It’s a structure of size number of classes (classification) or 1 (regression). It specifies the groups,
subjects within that group and conditions for each class, with a similar structure as in PRT.group
(without the modalities). And we identify which indices in the global ID matrix are selected to build
the specified class.

— The CV matrix and everything else are built from here. This can be viewed in Review kernel & CV.
Note: its always good to have a check on the CV matrix to ensure the inputs do what you want.
You can also make a CV matrix yourself and input via Custom choice in Cross-validation scheme.
In the Review module, you can view the classes specified.

PRT.model.input.samp_idx: Index of the selected samples for this model, in the corresponding feature
set.

PRT.model.input.targets: Prediction targets for building the model.

PRT.model.input.covar: Values of the confounders to be regressed out.

PRT.model.input.cv_k: Value of k for the k-fold outer CV loop (i.e. the main or external CV).
PRT.model.input.cv_mat: CV matrix for the external CV.

PRT.model.input.cv_type: CV type for the external CV.

PRT.model.input.operations: Stores user selected data/kernel operations as an integer vector. The oper-
ations will be applied according to this order.

22.5. MODEL: SPECIFY NEW/FROM 241

Model: Specify from

‘Model: Specify from’ module allows users to define models similar to previously specified models, instead
of filling in all parameters multiple times. In GUI, this module is implemented in prt_ui_copy_model.m and
prt_ui_copy_model.fig. In Batch, fields that can be modified are the feature sets, model type and data oper-
ations. The batch functions define this module are prt_cfg_copy_model.m and prt_run_copy_model.m. ‘Model:
Specify from’ creates another structure in PRT.model. Similar to ‘Model: Specify new’, the model name and
input fields are filled after this step. All the subfields inside PRT.model.input structure are the same to those
created by ‘Model: Specify new’.

The two modules create and estimate inputs for estimating the model. The higher-level users and developers

can copy PRT.model and change any of the sub-fields listed above when it is needed manually. CV matrix is
computed based on CV schemes specified by the user.

22.5.2 Files created

No new files are created at this stage.

22.5.3 GUI behaviour

Model: Specify new

In GUI, users can choose only to specify a model, or to specify and run a model. It computes the sample
indices based on the classes, computes CV matrix based on the ID matrix (and labels if ‘Leave-per-Group-Out’)
and CV specifications, and it gathers the targets and covariates based on the class definition. ID matrix is used
here as a reference to obtain these sub-groups of indices, targets and covariates for building a particular model.
CV matrix can also be input by users via Custom CV. In v3.0, it also contains default hyperparameters of the
selected machines for building the model. The function pair of prt_ui_model.m and prt_ui_model.fig define the
GUI, arrange user inputs into appropriate structures and send them to several core functions (e.g., prt_model.m)
to implement the above computations.

Model: Specify from

In GUI, it is the same as the Specify new module, users can choose Specify model alone or Specify and
run model. After loading PRT.mat, users can select which previously built model is used as a reference.
Some parts of the window is automatically filled, i.e. these information is copied from the selected referential
models. For example, model type, and the main CV scheme. Users can change other activated fields, such as
feature sets, machines, inner CV scheme, and data operations. Since this module copies information from the
referential model, it does not carry out computations described in Specify new module. User defined changes
for the model will be filled in corresponding fields in PRT.model. The function pair of prt_ui_copy_model.m and
prt_ui_copy_model.fig define this module, organise user inputs, and updates PRT.

22.5.4 Batch behaviour

Model: Specify new

Batch provides similar interfaces and functions to the GUI, but the Specify model and run model modules
are separated. This module calls prt_model.m to configure and build PRT.model structure too. prt_cfg_model.m
and prt_run_model.m carry out this module in batch.

Model: Specify from

Unlike GUI, the list of built models is not automatically shown in the batch. Users shall input the exact
name of the previous model to copy from. Three fields can be changed: Feature sets, Model type and Data
operations. This module calls prt_run_copy_model.m to update PRT.model structure.

242 CHAPTER 22. DEVELOPER’S MANUAL

22.5.5 Functions called

Core:

1. prt_model.m

This function initialises the model data structure (by calling prt_init_model.m), computes targets and the
sample index.

e In PRoNTo v2.1, classification and regression are addressed differently. In classification, the codes
visit information stored in the design. For regression, only subject-level analysis is available, so the
codes do not go into the design. The sub-functions compute_targets and compute_target_reg inside
prt_model.m compute the prediction targets for classification and regression, respectively. Targets
that are not selected for this model are put to zeros. From PRoNTo v3.0 both classification and
regression compute the prediction targets using an updated version of the compute_targets sub-
function.

One note is that the labels of different classes are 1,2,3,..., here referring to Class 1, Class 2, Class 3, ...
respectively. They will be converted to class labels accepted by the actual machines inside the machine
function, if needed. For example, if Faces and Houses are selected by the user as Class 1 and Class
2, respectively, and if we use SVM, the labels 1 and 2 will be converted to -1 and 1 in the machine
prt_machine_svm_bin.m.

2. prt_compute_cv_mat.m

It computes the CV matrix. Inner and external CV loops call the same function. This function is accessed
in the Specify model and ‘Model: Run’ modules. In PRoNTo, CV schemes are shown in abbreviations,
for example:

e LOSO: leave-one-subject-out. If we have 56 subjects, and 10 folds. Then 5 subjects in each fold,
the remaining 6 will be distributed to the first 6 folds. As a result, 6 subjects in the 1 to 6 folds, 5
subjects in the remaining 4 folds. The reason to do this is for distributing subjects more evenly.

e LORO:leave-one-run-out. There is no leave-multiple-run-out option in PRoNTo, only leave-one-run-
out.

Other CV schemes can be found in Section 4.5 in this manual. PRoNTo also provides interfaces for users
to input their own CV design, i.e. the custom CV. Users can input their own CV matrix via this interface.
The custom CV saves the model and calls the compute_cv_mat.m if the user chooses a ‘basis’. Please note
that nested CV will not be computed in ‘Model: Specify new’ step, but during the model estimation.

GUI:

3. prt_ui_model.m and prt_ui_model.fig
The GUI functions that define the interfaces of Specify model module. It calls several other functions
among which:

4. prt_ui_select_class.m and prt_ui_select_class.fig

This function provide interfaces to users to select classes for classification problems.

5. prt_ui_select_reg_new.m and prt_ui_select_reg_new.fig

This function provide interfaces to users to select data for regression analysis in regression problems.

6. prt_ui_specify_CV _basis.m and prt_ui_specify_CV basis.fig

This function provides interfaces for users to input their custom CV information. It lets users load their
own CV design, or build their own CV based on several basic CV schemes available in PRoNTo, such as
LOBO. These inputs serve as ‘basis’ for users to further modify CV design manually in a pop-up window
after this step where prt_ui_specify_CV_basis.m calls prt_ui_custom_CV.m and prt_ui_custom_CV.fig to
allow more custom CV specification manually.

22.6. MODEL: RUN 243

7. prt_model.m

This function configures and builds the PRT.model structure.

8. prt_cv_model.m

This function runs a CV on a given model.

9. prt_ui_copy_model.m and prt_ui_copy_model.fig

This function pair defines the ‘Model: Specify from’ module.
Batch:

10. prt_cfg_model.m and prt_run_model.m

The configuration function defines the tree of the ‘Model: Specify new’ module and the interface be-
haviours in Batch. It provides interfaces for users to specify which feature sets to use, the model type
(classification and regression), machine type (kernel or non-kernel), inner and outer CV schemes, and
data operations. Default values for machine hyperparameters and arguments are automatically filled in
correspondent fields. Users can change these values. It gathers these information, then passes them to
prt_run_model.m. prt_run_model.m takes the user inputs and arranges them into a proper model structure.
It passes PRT.mat and this model structure to prt_-model.m.

11. prt_cfg_copy_model.m and prt_run_copy_model.m The configuration file defines the tree of the Specify
from module and the interface behaviours in Batch. It provides interfaces for users to choose which
previously built model to copy, and which fields in the model to modify. It passes these information to
prt_run_copy_model.m, which arranges these user inputs to a model structure with the new model name
(user-specified). prt_run_copy_model.m stores this new model to and updates PRT.mat.

22.6 Model: Run

‘Model: Specify new’ and ‘Model: Specify from’ modules set up the configuration of the model and build the
model structure. ‘Model: Run’ module performs the training and testing. It includes the selection of which
model to run, hyperparameter optimization by using inner CV schemes, model training and testing using ex-
ternal CV schemes, computing statistics for model performance measures, and PRT.mat updates. In v3.0, we
have moved permutations from the ‘Display results’ to this module. In GUI, this module can be run directly
from specify model stage. In Batch, it is separated from the ‘Model: Specify new/from’ modules.

Cross-validation

CV schemes are important to model training and testing. In PRoNTo, this is mainly performed by
prt_cv_model.m, which executes both external and inner CV. After some initialization steps, it begins the
main/external CV loops. If the user chooses to optimize hyperparameters, the external CV sends data infor-
mation of each fold to the inner CV. Users can choose different CV strategies for inner and external CV. The
function prt_nested_cv.m is called to optimize hyperparameters using the inner CV scheme. After this, the
best hyperparameter is returned to prt_cv_model.m within each external fold. Whether the hyperparameter is
optimized or not, one model is estimated per fold by calling prt_cv_fold.m. prt_cv_model.m passes PRT.mat file
and a data structure fdata to prt_cv_fold.m. The fdata structure contains information within each fold on ID
matrix, model index, CV matrix, class labels or targets, and kernels. prt_cv_fold.m returns the estimated model,
related parameter values and targets. This is followed by statistic computations for model performance measures
per external fold, by calling prt_stats.m. In prt_cv_model.m, statistics are calculated and stored at fold level
and model level. Model level statistical metrics are obtained by concatenating results across folds in versions
2.X, but by averaging metrics across folds in v3.0. PRT.mat is updated and saved at the end of prt_cv_model.m.

Hyperparameter optimization

In many situations, it is preferable to optimize hyperparameters to increase the predictive model perfor-
mance. If users choose this step, each external fold constructs fdata structure and sends it alongside with
PRT.mat to prt_nested_cv.m, which implements the inner CV loop. The training data in the external fold is

244 CHAPTER 22. DEVELOPER’S MANUAL

splitted into training and testing sets inside prt_nested_cv.m according to the user-specified inner CV scheme.
Before looping over inner CV folds, prt_nested_cv.m checks hyperpameter ranges. Hence, this function first
loops over hyperparameters within the range and then loops over inner folds for each hyperparameter. It calls
prt_cv_fold.m to perform the model training and testing. One model is created for each inner fold, generating
predictions. Within every loop using a certain hyperparameter, model performance metrics are calculated for
each inner fold. Statistic calculation is done by calling prt_stats.m. In version 2, we concatenate predictions from
each inner fold to obtain the model-level performance measures. In version 3, we average metrics across folds.
Among the metrics, we use balanced accuracy for classification and MSE for regression. This process generates
one metric value per hyperparameter. After completing the inner CV for all values of the hyperparameter,
we choose the best one according to the metrics, i.e. the hyperparameter generating the maximum balanced
accuracy is selected as the best one for classification and the hyperparameter generating the minimum MSE is
selected as the best one for regression. prt_nested_cv.m returns the best hyperparameter to prt_cv_model.m for
the outer model training and testing. In v3.0, hyperparameter optimization can be performed on models with
more than one hyperparameters.

The machines

Model training and testing for both external and inner CV are done by calling prt_cv_fold.m. This function
configures model parameters and applies user-specified data operations before feeding them to the machines
(e.g., prt_prepare_task input_STL.m). It calls prt_machine.m which will then distribute to the specific ma-
chine after some input checks. The machine-specific functions are in the machines folder, with machine in
their names. Some of them are wrapper functions of the core functions in several third-party libraries, such
as Libsvm, Liblinear and SimpleMKL. PRoNTo uses wrapper functions to organise inputs (data, class labels,
targets, function arguments and hyperparameters) to formats accepted by actual machines in those libraries,
and organize outputs from these machines to PRoNTo accepted formats. For instance, prt_machine_svm_bin.m
is a wrapper of binary SVM in Libsvm. PRoNTo takes the hyperparameter range from GUI or Batch, then
combines it with other machine arguments required by Libsvm. Training and testing datasets are organized
according to Libsvm conventions. Predictions and model parameters from the binary SVM machine are stored
according to PRoNTo conventions. Machine arguments include options provided by third-party libraries and
hyperparameters (e.g., C for SVM). We define machine options in prt_defaults.m.

Generally speaking, each prt_machine_*.m function accepts two inputs, a structure d containing the data
information and a structure args containing machine-specific information including options and hyperparameter
values. In structure d: d.train and d.test contain the training and testing data respectively. The d.tr_targets
refers to targets of the training data. There is no need to pass d.te_targets as model performance is evaluated
outside of the machine, in PRoNTo prt_stats.m. One flag d.use_kernel contains information about whether the
machine is a kernel machine or not. While this is functional from v3.0, in versions 2.X, this is by default always
true. The output of each machine contains prediction values, function values from the decision function, model
parameters and the type of the machine (classifier or regression).

Permutations

In v3.0, permutations have been moved to the ‘Model: Run’ module. prt_permutation.m implements the
permutation test and saves the results. It accepts PRT.mat, number of permutations specified by the user,
model ID (for which model to permute), path to save the results and whether to compute weights for mod-
els created by the permutations. If this option is selected, an extra field will be created inside PRT.model,
PRT.model.output.permutation. This structure contains relevant information of models using permuted data,
such as performance metrics, statistics, fold-level information (e.g., model parameters, function values, predic-
tions) and the permuted data used for each permutation. Saving the permutation parameters is only optional.
However if a user wants to build weights on the permutations then it is required to first save the permutation
parameters.

Results

During ‘Model: Run’ module, predictions, decision function values, weights and metrics measuring the model
performance are computed. These results are stored in several subfields in PRT.output.

22.6. MODEL: RUN 245

Within each main CV fold, statistics are computed at fold level. In versions 2.X, after looping over all folds,
we concatenate predictions from each fold and pass them to prt_stats.m together with true targets to compute
model-level statistics. In v3.0, after looping over all folds, we compute the model level statistics by averaging
fold-level stats across folds. In prt_stats.m, for classification, we compute the confusion matrix, accuracy,
balanced accuracy, accuracy by class, predictive value for each class, as well as AUC under ROC curve for binary
classification. They are implemented by compute_stats_classifier function. They call prt_tpr_fpr.m to compute
AUC under ROC. For regression, we compute mean square error (MSE), normalized MSE, correlation between
test and prediction, and squared correlation. They are implemented by compute_stats_regression function.
prt_stats.m stores the values in structure stats and returns it to prt_cv_model.m and prt_nested_cv.m.

22.6.1 PRT fields created

Two new fields are created in PRT.mat in this module: PRT.model.output.fold and PRT.model.output.stats. In
PRT.model.output.fold, several subfields are generated to store information of hyperparameter effects, predic-
tion values in each fold, fold-level statistics, decision function values, model parameters and other information
specific to some machines (e.g. kernel contributions for MKL models).

22.6.2 Functions called

Core:

1. prt_cv_model.m, prt_nested_cv.m and prt_cv_fold.m

prt_cv_model.m is where CV schemes are implemented within PRoNTo. It gets PRT.mat and user inputs
from the interface. Before looping over CV folds, it gets the model index, configure variables based on the
CV matrix, gets values and variables for model estimation, such as user-specified targets, class numbers,
kernels, and machine arguments. It also initializes outputs. prt_cv_.model.m calls prt_getKernelModel
to loads kernels/features for kernel/non-kernel machines. prt_cv_model.m calls prt_nested_cv.m to op-
timize hyperparameters using inner CV by passing PRT.mat and the aforementioned fdata structure.
prt_nested_cv.m returns the best hyperparameter value for external CV loops. prt_cv_model.m calls
prt_cv_fold.m to train and test the predictive models by passing PRT.mat and fdata structure. prt_nested_cv.m
also calls prt_cv_fold.m within each inner fold to estimate models. prt_cv_fold.m returns the model pa-
rameters and targets/labels. prt_cv_model.m also computes statistics for each fold and averaged statistics
for the model by calling prt_stats.m.

2. prt_stats.m

This function is called by prt_cv_model.m and prt_nested cv.m to calculate fold-level and model-level
metrics measuring the model performance. It takes predictions, model type, test targets, and class numbers
as inputs. For classification, the confusion matrix, accuracy, balanced accuracy, class accuracy, predictive
value and AUC under ROC are calculated. For regression, MSE (and normalized MSE), correlation and
squared correlation are calculated. These metric values are passed as outputs in a stats structure.

3. prt_machine.m and prt_machine_*.m functions

These functions are in the machines folder carrying out the actual modeling. prt_machine.m is called
by prt_cv_fold.m and passes data information and machine arguments to the machine-specific functions
prt_machine_*.m, which are generally wrapper functions of the actual machines provided by several third-
party libraries. These wrapper functions perform some initial checks on the inputs, re-structure data and
arguments to formats accepted by these machines, then checks outputs from the estimated models and
organize them into PRoNTo accepted structures. If developers want to add your own machines, make
sure the input and output are in formats compatible to both your own machine and PRoNTo.

4. prt_permutation.m

This function carries out the permutation tests. It accepts user inputs from GUI or Batch interfaces,
configures variables (e.g., CV matrix, fold numbers, and ID matrix), loads kernels/features for kernel /non-
kernel machines, permutes data according to user inputs in Data & Design module, runs models on the
permuted data, calculates statistics for model performance, computes p-value and saves the results.

GUI:

246 CHAPTER 22. DEVELOPER’S MANUAL

5. prt_ui_cv_model.m and prt_ui_cv_model.fig

This function pair define and implement the GUI interface for ‘Model: Run’. It loads the specified models
from the PRT and fills a list that the user can select from. It calls prt_cv_model.m and prt_permutation.m
to execute the ‘Model: Run’ module. prt_cv_model is called sequentially on the models selected for
estimation.

Batch:

6. prt_cfg_cv_model.m and prt_run_cv_model.m

The configuration file defines the tree structure of ‘Model: Run’ in Batch. It provides interfaces for users
to load PRT.mat, fills in permutation fields for users to choose, and provides fields for users to specify
related parameters. It passes user inputs to prt_run_cv_model.m for execution. prt_run_cv_model.m loads
PRT.mat and configure the specified model according to user inputs, then calls prt_cv_model.m to run
model estimation. If permutation is selected, it calls prt_permutation.m to perform the permutation tests.

22.7 Compute weights

Weights are computed in two steps. They are carried out by prt_compute_weights.m, and prt_weights_*.m for
specific machines. For NIfTT data, weight maps can be built as voxel-wise images or ROI-wise images. For mat
and MEEG data types, weights are built in similar manners to those for NIfTI, though some specific changes
have been made in related functions for the two types. Hence this section focus on the weight maps of NIfTI
images in the following descriptions. For multiple kernel learning, maps indicating kernel contributions with
ranking information can be obtained.

Weight computation

The function prt_compute_weights.m accepts information from PRT.mat and some user-defined information,
such as which model the weight image is for, where to save, flags indicating whether to build weights for each
permutation and/or for each ROI, and atlas for ROI-wise weight image if it is selected. If different modalities
were used without concatenating the samples, one weight map is built for each modality.

For each modality, weight computation is classified into classification and regression problems. One weight
image is built for each class in case of multi-class problems, whilst only one weight map is built for binary
classification and regression problems. These are implemented in the scripts prt_compute_weights_class.m and
prt_compute_weights_regre.m, respectively. Processing routines for classification and regression are similar to
each other. Take classification as an example to illustrate the routine. prt_compute_weights_class.m finds the
type of data (NIfTI, .mat or MEEG) and machine first, then creates image names. One part needs some care
is the multiple indexing step. In the ‘Data & Design’ module, users specify a 1st-level mask. The indices of
features (e.g., voxels in NIfTT files) based on this mask are stored in PRT.fas structure. In the feature set
preparation step, if users have specified a second-level mask and/or atlas, indices of features used to build
feature sets/kernels based on these are stored in PRT.fs structure. For example, in the ‘Prepare feature set’
module, we need a subset of images to build the file array, from which we use potentially a subset to build a
kernel. Furthermore, to avoid overloading the memory, the weight image is built slice by slice along the z axis,
since most images are 3-D files. So we need to take indices from that slice, within both the second-level and
the first-level masks. The three levels of indices are necessary to build weight maps. Hence, there is a need to
perform the multi-level indexing search. This includes getting the correct indices from the 1st-level file array
(.dat file) linking to each modality, from the 2nd-level feature sets (fs structure), and from each slice along z
axis, potentially within ROIs defined by 2nd-level mask and/or atlas.

The next step is to create maps and check if weight images need to be created for the permutation test.
Image initialization is performed before the weight computation. Weight images are created along z axis. One
image is built for each fold, which results in a 4-D image where the last map is an average over all folds. Data
operations are applied before weight computation. Then the data and information related to the machine used
to generate the model are sent to prt_weights.m. The code performing actual multiplication for weights is done
by prt_weights.m in the machines folder within prt_compute_weights_class.m and prt_compute_weights_regre.m.

22.7. COMPUTE WEIGHTS 247

This function calls other prt_weights_*.m in the machines folder. Since different machines have different for-
mulations, computing weights using outputs from these machines may vary too. Take prt_weights_sMKL_cla.m
as an example. The inputs are structure d and args similar to inputs to the machines. But the data loaded
in prt_compute_weights_class.m and prt_compute_weights_regre.m is d.datamat. By taking coefficients from
structure d and data from d.datamat, multiplications for weight values are carried out in these prt_weights_*.m
functions. prt_weights.m returns a weight vector to prt_compute_weights_class.m. Following procedures are to
build the weights, reshape them into the correct dimensions, normalize the weights for visualization and save
the images. In prt_compute_weights.m, the variable flag2 tells if we want to get one weight per region instead
of one weight per voxel, so weight computation will be changed according to this.

22.7.1 PRT fields created

In PRT.mat, extra fields are created: PRT.model.output.weight_img, PRT.model.output_weight _ROI if building
weights for ROls is selected, subfields saving ranking information of weights, and PRT.model.output_weight_ MOD
if weights for MKL are selected.

22.7.2 Files created

This module creates weight image files: weight maps with ‘weights_*’ and/or ‘ROI_weights_*’ in their names.
The default naming rule is to use ‘weights_’ appended with the model name. If there are multiple classes or
modalities, the class number or modality name will be appended to that name. Maps of ROIs are separated
from voxel-wise maps which can be identified by names. If building weight images for permutations is selected,
extra folders (with names perm_* for voxelwise weights and perm ROI_* for ROI-wise weights, respectively)
containing weight maps per permutation are created.

22.7.3 Functions called
1. prt_compute_weights.m, prt_compute_weights_class.m, and prt_compute_weights_regre.m

PRoNTo calls prt_compute_weights.m to implement weight image computation. It accepts several inputs:
PRT.mat, user defined inputs including model name, image name, path to save the maps, atlas, one
flag indicating whether to build weight images for permutations, and another flag indicating whether to
build ROI-wise weight images. It outputs image files with specific names. This function computes the
number of images needs to be built according to the number of modalities, and whether ROI-wise summary
weight maps are selected by users. It finds the right model, loops over feature sets and/or modalities (over
feature sets in v3.0, over modalities in versions 2.X, if building one kernel per modality) and saves PRT.mat.
Within feature set loops, it further assesses the number of images according to whether it is a classification
problem (class numbers) or regression problem. The actual weight map construction is carried out by
prt_compute_weights_class.m and prt_compute_weights_regre.m for classification and regression problems,
respectively. Computing weights for each voxel for a whole brain and for ROIs are processed differently
by calling the two functions. If ROI-wise weight images are selected to be built, a flag ‘flag2’ will be set
to 1 and sent to the two functions.

e prt_compute_weights_class.m and prt_compute_weights_regre.m also deal with weight computations
for permutations. The following procedures are initializing the image, building images slice by slice
along the z axis, building one image per fold, applying operations, building weights (a 4D image, the
last dimension is the number of folds plus one average map across folds), normalizing the weights
for visualization and save the images. They call prt_weights.m and prt_weights_*.m to perform the
actual multiplications for weight computations.

e prt_compute_weights_class.m and prt_compute_weights_regre.m save weight maps and return the im-
age names to prt_compute_weights.m. prt_compute_weights.m fills weight fields in PRT.model.output
and updates PRT.mat.

2. prt_weights.m, prt_weights_bin_linkernel.m, and prt_weights_*.m for other machines

These functions are in the machines folder. Formulations of different machines may vary, so weight
computations may be machine-specific. For the kernel machines, the coefficients are obtained from
the kernel space, then mapped back to the original space. When adding new machines, correspond-
ing weight computations shall be considered and added too. There are some general cases in PRoNTo,

248

CHAPTER 22. DEVELOPER’S MANUAL

where prt_weights_bin_linkernel.m can be used. Other prt_weights_*.m functions implement multiplica-
tions for machines beyond the linear kernel case.

One example of the machine-specific weight function is prt_weights_.sMKIL_cla.m. It accepts input struc-
tures d and args, creates weight vector as the output. A list of subfields in structure d is shown as
follows:

e d.datamat: the data being loaded in prt_compute_weights_class.m and prt_compute_weights_regre.m
of dimension number of #features x #number of examples, corresponding to the features in the
training set.

e d.coeffs: coefficients, such as alphas generated by using SVM.
e d.betas: this is the kernel contributions, specific to sMKL.

e d.idfeat_img: voxel indices of the features in the image.

Chapter 23

PRoNTo functions and the PRT
structure

Contents
23.1 List of PRoNTo functions e 249
23.2 The PRT structure e e e e e 249

23.1 List of PRoNTo functions

For the users interested in delving deeper into the PRoNTo functions, there is a set of HTML files of all the
functions inside the PRoNTo/manual/html_doc directory that can be opened with any application that supports
HTML.

The index.html is the main HTML file which has a short description of all the PRoNTo functions. Scrolling
to the end of it, the user will also find the index to all the subdirectories.

Clicking into a specific PRoNTo function, for example prt_cv_model, one could see:

e A synopsis section, which informs us that this is a function related to cross-validation for a given model,

e A further description section, with the way the inputs and the outputs of this function are structured,
potential notes, etc.

e A cross-reference information section, which informs us of the functions that prt_cv_model calls, as well
as the functions that call prt_cv_model.

e A subfunctions section, which lists all the subfunctions in our main function.

e And finally a source code section, which is just the function itself.

Users interested in customizing PRoNTo functions to their needs and/or further developing, are advised to
make use of the HTML file indexing to get a better sense of the relations between the PRoNTo functions.

23.2 The PRT structure

Another useful thing to have is the whole picture of the PRT structure. Exploring the PRT structure and
learning your way around it, will certainly prove to be quite useful for various reasons.

The most straight-forward way of exploring the PRT structure is through the MATLAB Workspace. But

this way has a couple of difficulties, and usually you cannot see the whole picture of the structure because of
MATLAB limitations.

249

250 CHAPTER 23. PRONTO FUNCTIONS AND THE PRT STRUCTURE

Another much more practical way of visualizing the PRT structure is by converting it to a JSON file format
and then opening it with any compatible application. There are various different software programs with which
you can visualize the structure in a much more meaningful way. You can even find Internet browsers (for
example Mozilla Firefor) that have built-in JSON viewer where simply dragging & dropping the .json file in
the browser will open it. A couple of other useful advantage of the JSON format is that:

e You can use it to store and/or transfer the information of a PRT structure without using much space (as
a JSON file format is just an array of strings), and without requiring MATLAB to be installed in order
to open it.

e You can parse the PRT structure quite easily.

The most straight-forward way of converting a PRT structure to a JSON file format and vice versa is through
the spm_jsonwrite() (to encode) and the jsondecode() (to decode) commands.

e spm _jsonwrite(‘prt_struct.json’,PRT) will encode your current PRT in a JSON file format with the
name prt_struct and directly save it in your current folder. That is an SPM function and hence requires
you to have SPM in your path.

e PRT _rec = jsondecode(fileread(‘prt_struct.json’)) will decodes it and recreate the PRT structure
in a struct called PRT_rec. That is a MATLAB built-in function introduced with version R2016b.

There are of course many more ways of encoding/decoding MATLAB to JSON and vice versa, such as for
example JSONIlab, or even using the MATLAB built-in function jsonencode and then saving it by yourself.

Inside the PRoNTo/manual you can find a prt_struct.json file that we created based on the PRT structure
of the tutorial in Chapter 13.

Part V

Appendix

251

Chapter 24

Appendix

24.1 One data file per subject

For behavioural data, it is common to save data from all subjects in a single file, with each row being a sample
(subject or trial) and each column being a variable (or feature). PRoNTo however does not accept this format
as multiple rows could arise from another input dimensionality of the data that the user wishes to keep (e.g.
2D connectivity matrix instead of vectorized).

We hence provide a script that transform a #samples x #features matrix into a series of .mat files. If the
data for each subject comes from a distance measure (e.g. correlation), an additional flag allows to turn the
vector back to its original 2D form.

The script takes in the matrix as well as a true-false statement (represented as 1 and 0 numericals) to decide
whether to infer 2D matrix from a distance vector (1 to try to perform this operation, 0 to keep the vector,
default: 0). Example: variable ‘fmri’ contains the connectivity vector (upper triangular only) for each of 293
subjects.

> [path_files] = script_create_one_file_per_row(fmri, 1);
The output is a new folder called Samples_mat that contains files ‘Samples_001.mat’, ..., ‘Samples_293.mat’

(here for 293 subjects). Each file contains one variable called ‘data’ that represents the data for this sample. In
the present case, ‘data’ is a 349*349 matrix.

50 100 150 200 250 300

Figure 24.1

253

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

o
¥

254 CHAPTER 24. APPENDIX

Script:

function [path_files] = script_create_one_file_per_row (data_matrix ,tosquare)
% Creates one file per row of a data matrix. The files will be saved in a

% subfolder , with the names ’Sample.’ prepended. The second input ’tosquare’
% reflects whether the data should be turned into a symmetric matrix or not
% (0, default value)

%
% Written for PRoNTo v3.0 by J. Schrouff

if nargin<l || isempty(data_matrix)
beep
disp (’At least one variable must be specified , the data matrix to convert’)
return
end
if nargin<2 || isempty(tosquare)
tosquare = 0;
end
nsamp = size (data_matrix 1) ;

d=dir(’.7);
path_files = fullfile (d(1).folder , Samples_mat’);
if “exist(path_files, dir’)
mkdir (path_files);
end
cd(path_files);
fprintf (["Sample (out of %d):’ ,repmat(
for i = 1:nsamp

N

",1,ceil (logl0(nsamp))), %d | ,nsamp, 1);

% Subject counter
if i>1
for idisp = 1l:ceil(logl0(i)) % delete previous counter display
fprintf(’\b’);

end

fprintf ("%’ ,i);
end
% Access sample’s data
datas = data_matrix(i,:);
if tosquare

try

data = squareform (datas);
catch
data = datas;
end
else
data = datas;
end
prep = [];
for idisp = 1:floor(logl0(nsamp))—floor (logl0(i)) % Add zeros in front of
name for easier access
prep = [prep, '0’];
end
fname = [’Sample_’ prep,num2str(i),’ .mat’];
save (fname, "data ’);
end
fprintf(’\n’);

24.2. COMPUTE ATLAS FOR CONNECTIVITY MATRIX

24.2 Compute atlas for connectivity matrix

In order to build connectivity matrices based on time series extracted from a brain parcellation, you first need
to have a list of anatomical parcels, originating from some brain parcellation, and also to have each of them

associated to a larger ‘network’.

In the example here, there are 349 anatomical parcels with their characteristics (columns A through F) and
their names (column G), and they are all associated to larger ‘networks’ (column H). You then need to save

your file in a .csv (or an Excel) file.

A B C D E F G
1 (X Y Z Color Size Hemisphe Parcel label MNetwork
2 | -11.7525 -19.8758 5.165738 1 1 Left Left-Thalamus-Proper Thalamus
3 | -15.0342 9.437552 6.913427 1 1 Left Left-Caudate Basal Ganglia
4 | -26.3662 -0.15686 -2.09155 1 1 Left Left-Putamen Basal Ganglia
5 | -26.0885 -24.4296 -15.1489 1 1 Left Left-Hippocampus Hippocampus
6 | -23.9093 -7.33952 -20.6358 1 1 Left Left-Amygdala Basal Ganglia
7 | -9.62982 10.96015 -8.78663 1 1 Left Left-Accumbens-area Basal Ganglia
8 | 12.49354 -19.226 5.663872 1 1 Right Right-Thalamus-Proper Thalamus
9 | 16.1554 9.458463 8.239097 1 1 Right Right-Caudate Basal Ganglia
10| 26.94456 0.54773 -2.24913 1 1 Right Right-Putamen Basal Ganglia
11| 27.74364 -23.3794 -14.995 1 1 Right Right-Hippocampus Hippocampus
|2 | 24.94255 -6.01077 -20.7379 1 1 Right Right-Amygdala Basal Ganglia
13| 9.98679 10.42404 -8.70542 1 1 Right Right-Accumbens-area Basal Ganglia
Figure 24.2
This file is then loaded in Matlab (double-clicking or ‘uiopen’) as a cell array. Note: Be careful to modify
the ‘Output Type’ field whenever needed.
b, Import - EAData\NSPN_multimodahlabel_fmri.csv x
© Deimteg COM™ deimiers: sange: e~ Output Type: [Replace ~ |unimportable cells with * | Nal -+ 7
Comma -
° Fed Wil g _ Variable Names Row: | : @ Ton . | La
DELIMITERS SELECTION IMPORTED DATA UNIMPORTABLE CELLS IMPCRT :
[1abel_fmri.csv |
A B C D E F G H
labelfmri
Number + Number * Number + Number * Number v Text - Text v Text -
1% Y z Color Size Hemisphere |Parcel label | Network -
2 [TT7s2007 10873842 [5.065738 |1 1 Left Left Thala... | Thalamus
3 [15034188 Jodsmssz [eoimzr 1 Left Left-Caudate |Basal Ganglid
4 [26366107 0136863 |-2001540 |1 1 Left Left-Putam... Basal Ganglid
5 [2608848 |-24420622 [15.148887 1 Left Left-Hippo... |Hippocam...
6 [23000325 | 7330916 20635755 |1 1 Left Left-Amyg... |Basal Ganglid
7 |os2os2 r0geois4 [s7eeeiz |1 1 Left Left-Accu... |Basal Ganglid
8 [lzd03s38 10203087 [se63872 |1 1 Right Right-Thala...| Thalamus
9 [l6.1s0308 (9453463 (2230007 |1 1 Right Right-Caud...| Basal Ganglid
10 poaddsss [o54Tr3 [2240121 |1 1 Right Right-Puta... |Basal Ganglid
11 prrdzed2 233743 14004088 |1 1 Right Right-Hipp... Hippocam...
12 p4sdasds 6010772 [2073Tese |1 1 Right Right-Amy... Basal Ganglid
13 jp.ase7e 0424042 [-BT05416 |1 1 Right Right-Accu...|Basal Ganglid
14 [11640738 83138934 [1.021667 |1 1 Left Left-Primar... Primary Vis...
15 [42022222 | 67.2035%6 (3683333 |1 1 Left Left-Medial... MT+ Comp..]
16 [12816017 | 72835408 (28034113 |1 1 Left Left-Sixth-... |Dorsal Stre...
17 11243883 | oo0030 2088827 |1 1 Left Left-Secon... |Early Visual...
18 [18037674 84936270 4380302 |1 1 Left Left-Third-... |Early Visual...
19 [20886303 | 82991656 | 4160443 |1 1 Left Left-Fourth... | Early Visual...
20 [22925101 [71401003 [15412055 1 Left Left-Eighth... Ventral Stre...
21 [z7574205 [19.610037 [s4087014 1 Left Left-Primar... Somatosen... .

The last column of the cell array will then represent the ‘network’ each time series belongs to. The variable
name of the whole cell array in this example is ‘labelfmri’, and it is only the last column (label fmri(:, end))

Figure 24.3

containing the ‘networks’ that you need to pass to the script.

> [atl_mat, ROI_names] = script_build_atlas_from_cell_array(label fmri(:, end));

10

11

12

13

14

15

16

17

18

19

20

22

256 CHAPTER 24. APPENDIX

This outputs and saves the atlas file and its corresponding labels for use in PRoNTo. Note: Please ensure
to rename both of these files if you need to create multiple atlases (otherwise they will be over-written).

The atlas is a 2D matrix of size 349*349 that contains an integer for each network i network j interaction.
Here, 25 ‘networks’ were defined, giving 325 pairwise interactions (n*(n-1)/2, with n the number of networks).
The matrix is upper diagonal to ensure to mask out redundant features (as correlations are undirected). Note:
For directed interactions, the full matrix would need to be generated (and the script to be modified).

50 100 150 200 250 300
Figure 24.4
Script:

function [atl.mat ,ROI_names] = script_build_atlas_from_cell_array (region_list)
if nargin<l || isempty(region_list)

beep;

disp ('Import excel file into cell array first’)

return
end
if size(region_list ,2)>1

beep

disp ('Please only provide the list of regions, no other variable’)

return
end
if “iscell(region_list (1))

beep

disp(’List of regions must be a cell array’)

return
end
if isstring(region_list{1})

region_list = cellstr(region_list); % Convert to cell array of characters
end

% Gather ROI names and labels
labs = unique(region_list);

23

24

25

26

27

28

29

30

31

32

33

35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

66

24.3. CONNECTIVITY MATRIX FROM MEEG

n = numel(labs);

% Build atlas (squareform)

% Initalize matrices

cnt=1;

a = zeros(numel(region_list) ,numel(region_list));
¢ = zeros(size(a));

% Loop over each pair of ’'networks’ and give it a unique number (i.e.

% the same unique number to all regions pertaining to the pair)
labels = cell ((n*(n-1))/2 + n,1);

for i=1:n

indi = ismember(region_list ,labs{i});
for j=i:n
indj = ismember(region_list ,labs{j});
nroil = nnz(indi);
nroi2 = nnz(indj);
roi = cntxones(nroil ,nroi2);

% Build diagonal matrix (i.e. (i,i) interactions)
if j—i
c(indi,indj)= roi;
end
a(indi,indj)= roi;
labels{cnt}=[labs{i}, =’ labs{j }];
cnt=cnt+1;
end
end

% Maybe regions were not sorted before we built the matrix. This will
% result in a matrix a that is not upper triangular (not symmetric). We
% correct for this with the following:

b = ata’—c;

% b is now symmetric, and we can extract its upper triangle to match the
% inputs from the connectivity matrix

mask = triu(true(size(b)),1);

atl_mat = b.xmask;

save(’atlas.mat’, atl_mat’);

% Save them in a file for display with the weights

ROI_names = labels;

save(’'Labels_atlas.mat’, " ROI_names’)

24.3 Connectivity matrix from MEEG

257

Below is a script provided, if one wants to create a connectivity matrix from averaged EEG or MEG trials (here
both). The script as it is, goes through all the subjects of the Multimodal SPM dataset, computes correlations
between all variables and creates the connectivity matrix, which is then saved inside each subject’s folder. These
connectivity matrices created by this script are also the ones we use in the tutorial. In order for this script to

run, you only need to modify the ‘prepath’ accordingly.

prepath = ’sxx\tutorials_.v3_with_data\Multimodal SPM _preprocessed\data\ ’;
subpath={ \EEG\ ~ "\MEG\ ’ };

12

13

14

15

16

17

18

19

20

21

22

23

24

10

11

12

13

14

15

16

17

18

19

20

258 CHAPTER 24. APPENDIX

fname = ’mapMcbdspmeeg_run_01_sss.mat’;

type = {’EEG.’, 'MEG.’ };

for i = 1:16
disp ([’Computing subject S’ ,num2str(i)])
for t = 1:2
fullp = [prepath,’S’ ,num2str (i) ,subpath{t}, type{t}];
filename = [fullp ,fname];

D = spm_ceg_load (filename);
dim = D.size();
for ¢ = 1:dim(end)
conn_mat = corr(D(:,:,¢c)’,D(:,:,¢)’);
1

mask = triu(true(size (conn_mat)) ,1);

conn_mat = conn_mat (mask) ;

cond = D.conditions (c¢);

savename = [fullp ,cond{1},’ connectivity matrix.mat’];

save (savename, 'conn_mat) ;
disp (type{t})
disp (['Size: ’,num?2str(size (conn_mat))])
end
end
end

Alternatively, the matrices can be saved as 2D arrays instead of taking only the upper triangular part
(remove line ‘conn_mat = conn_mat(mask)’). In this case, a second-level mask should however be provided
(save the defined mask in a separate file, i.e. save(mask.mat’, ‘mask’)).

24.4 Connectivity ROI weights

The reader is referred to 17.1.9 for information related to the use of these scripts. In order for thesee scripts to
run, you only need to modify the ‘prepath’ accordingly.

Script 1: Gather the atlas information (hard-coded here) and compute a summarized ‘network’ matrix (i.e.
#networks x #networks instead of #channels x #channels).

% Load atlas to access the mask

prepath = ’sxx\tutorials_v3_with_data\Multimodal SPM preprocessed\data\ ’;
addpath (prepath) ;

load ("EEG_atlas.mat)

id = find (mask) ;

% Atlas info for display and summarization

labs = {’OF’,’LF’,’CF’ ,’RF’,’LC’,’CC’,’RC’,’LP’,’CP’ ,’RP’, 0’ };
OF = [2,4:8];

LF=[9:11,18:21];

[
CF=[12:14,22:24];
RF=[15:17,25:28];
LC=[29:32,41:43];
CC=[33:35,44:46];
RC=1[36:39,47:49];
LP=[40,51:53,62,63];
CP=[54:58,64];
RP=[50,59,60,61,65,66];
0=[1,3,67:70];

ind = {OF,LF,CF,RF,LC,CC,RC,LP,CP,RP,0};

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

12

13

14

15

24.4. CONNECTIVITY ROI WEIGHTS 259

% load weights and access the average fold

% (this file should be in the same folder as your PRT.mat)
load (’ROI_weights_ConnEEG_atlas_MKL . mat ")

w_av = squeeze (weights (:,:,:,end));

% Weights, reconstructed on the original matrix
or_weights = zeros(size(mask,1) size (mask,2));
or_weights (id) = w_av;

% Summarize weights in each ROI as a single value for plotting
sum_weights = zeros(length (ind),length (ind));
w_sym = or_weights + or_weights ’;
for i = 1:length(ind)
for j=Il:length (ind)
sum_weights (i,j) = max(max(w_sym(ind{i},ind{j})));
end
end

% Imagesc matrix

cc = cbhrewer('seq’, Reds’,;200);

figure;

imagesc (sum_weights) ;

if min(min(sum_weights))==0 %if some weights are perfectly 0
cc(1,:)=[0.8 0.8 0.8];

end

colormap (cc);

colorbar;

set (geca, 'XTick’ ,1:numel(labs))

set (geca, 'YTick’ ,1:numel(labs))

set (gea, XTickLabel’ labs)

set (gea, YTickLabel’ labs)

% Use modified version of schemaball to plot the summarized weights
schemaball _JS (sum_weights ,labs ,cc,[0 1 1])

Script 2: Plot schemaball of kernel contributions from a symmetric 2D matrix (first input), the network
labels (a cell array, 2nd input), the colormap to plot the curves in (3rd input) and the color of the nodes to
represent within-network contributions (4th input). This code was modified from the schemaball.m written by
Oleg Komarov found on Matlabs file exchange.

function h = schemaball JS(r, lbls, ccolor, ncolor)

% SCHEMABALL Plots correlation matrix as a schemaball

%

% SCHEMABAIL(R) R is a square numeric matrix with values in [—1,1].
%

% NOTE: only the off—diagonal lower triangular section of R is

% considered , i.e. tril(r,—1).

%

% SCHEMABALL (..., LBLS, CCOLOR, NCOLOR) Plot schemaball with optional
% arguments (accepts empty args).

%

% — LBLS Plot a schemaball with custom labels at each node.
% LBLS is either a cellstring of length M, where

% M = size(r,1), or a M by N char array, where each

% row is a label.

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

260 CHAPTER 24. APPENDIX
%

% — COOLOR. Supply an RGB triplet that specifies the color of

% the curves. CURVECOLOR can also be a 2 by 3 matrix

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%
%
%
%
%
%

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%

%

%
%
%

with the color in the first row for negative
correlations and the color in the second row for
positive correlations.

— NCOLOR, Change color of the nodes with an RGB triplet.

H = SCHEMABALL (...) Returns a structure with handles to the graphic objects

h.1 handles to the curves (line objects), one per color shade.
If no curves fall into a color shade that handle will be NalN.

h.s handle to the nodes (scattergroup object)

h.t handles to the node text labels (text objects)

Examples

% Base demo

schemaball

% Supply your own correlation matrix (only lower off—diagonal triangular part

is considered)
x = rand (10)." 3;

x(:,3) = 1.3%xmean(x,2);

schemaball (x)

% Supply custom labels as [’aa’; ’'bb’; ’cc’; ...] or {’Hi’, how’,’are’,...}
schemaball (x, repmat((’a’:’j’) " ,1,2))

schemaball (x, {’Hi’, how’,’is’,’your’,’day?’, ’Do’,’you’,’like ’ ’schemaballs
?7,'NO! 7}

% Customize curve colors

schemaball ([],[],[1,0,1;1 1 0])

% Customize node color

schemaball ([],[],[],[0,1,0])

% Customize manually other aspects
h = schemaball;

set (h.1("isnan(h.1)), ’'LineWidth’,1.2)

set (h.s, "MarkerEdgeColor’, ’red’,’ LineWidth’,2,’SizeData’,100)

Additional features:

— <a href="matlab: web(http://www.mathworks.com/matlabcentral/fileexchange
/42279—schemaball’,” —browser ') ”>FEX schemaball page

— <a href="matlab: web(http://www.stackoverflow.com/questions /17038377 /how—to
—visualize —correlation —matrix—as—a—schemaball—in—matlab /17111675",” —browser ’)

”>O0rigin: question on Stackoverflow.com
— <a href="matlab: web(https://github.com/GuntherStruyf/matlab—tools/blob/
master /schemaball .m’,” —browser ’)”>Schemaball by Gunther Struyf

See also: CORR, CORRPLOT
Author: Oleg Komarov (oleg.komarov@hotmail. it)

67

68

69

70

71

72

73

74

75

76

T

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

115

24.4. CONNECTIVITY ROI WEIGHTS 261

% Tested on R2013a Win7 64 and Vista 32
% 15 jun 2013 — Created

%% Parameters

% Tweak these only

% Number of color shades/buckets (large N simply creates many perceptually
indifferent color shades)

N = 100;

% Points in [0, 1] for bezier curves: leave space at the extremes to detach a
bit the nodes.

% Smaller step will use more points to plot the curves.

t = (0.025: 0.05 :1)7;

% Nodes edge color

% ecolor = [.25 .103922 .012745];

ecolor = [0 0 0];

% Text color

tcolor = [.3 .3 .3];

9% Checks

% Ninput
narginchk (0,4)

% Some defaults
if nargin < 1 || isempty(r); r = (rand(50)*2—1).729; end

sz = size(r);

if nargin < 2 || isempty(lbls); lbls = cellstr (reshape(sprintf('%—4d’ ,1:sz(1))
,4,82(1))7); end

if nargin < 4 || isempty(ncolor); ncolor = [0 0 1]; end

% R

if “isnumeric(r) || any(abs(r(:)) > 1) || sz(l) "= sz(2) || numel(sz) > 2 || sz
(1) < 3

error ("schemaball:validR’, 'R should be a square numeric matrix with values
in [—1, 1].7)

end
% Lbls
if (Tischar(1lbls) || size(lbls,1) "= sz(1)) && (" iscellstr (lbls) || Tisvector(
Ibls) || length(1lbls) "= sz (1))
error ('schemaball:validLbls’,’LBLS should either be an M by N char array or
a cellstring of length M, where M is size(R,1).")
end

if ischar(1lbls)
Ibls = cellstr (1bls);

end
% Ccolor
if nargin < 3 || isempty(ccolor)
ccolor = hsv2rgb ([[linspace (.8333, .95, N); ones(1, N); linspace(1,0,N)],...
[linspace (.03, .1666, N); ones(1l, N); linspace(0,1,N)]]");
else
szC = size(ccolor);
if “isnumeric(ccolor) || sz2C(2) "= 3

error ('schemaball:validCcolor’, "CCOLOR should be a 1 by 3 or 2 by 3
numeric matrix with RGB colors.’)

elseif szC(1) =1

157

159

160

161

162

164

165

166

262 CHAPTER 24. APPENDIX

ccolor = [ccolor; ccolor];
ccolor = rgb2hsv(ccolor);
ccolor = hsv2rgb ([repmat(ccolor(1,1:2) ,N,1), linspace(ccolor(1,end) ,0,N)
repmat (ccolor (2,1:2) ,N,1), linspace (0,ccolor(2,end) ,N) ’]);
elseif szC(1) = 2
ccolor = rgb2hsv(ccolor);
ccolor = hsv2rgb ([repmat(ccolor(1,1:2) ,N,1), linspace(ccolor(1,end) ,0,N)
repmat (ccolor (2,1:2) ,N,1), linspace (0,ccolor(2,end) ,N) ’]);
else
N = floor (size(ccolor ,1)/2);
end
end
% Ncolor

szN = size(ncolor);
if “isnumeric(ncolor) || szN(2) "= 3 || szN(1) > 1
error ("schemaball: validNcolor ', 'NCOLOR should be a single RGB color, i.e. a
numeric row triplet.”)
end
ncolor = rgb2hsv(ncolor);
%% Engine

% Create figure
figure ('renderer’, zbuffer’,’visible ', off’)
axes ('NextPlot’, ’add ")

% Index only low triangular matrix without main diag
tf = tril(true(sz),—1);

% Index correlations into bucketed colormap to determine plotting order (darkest
to brightest)

N2 = 2xN;

[n, isrt] = histc(r(tf), linspace(min(r(tf)) ,max(r(tf)) + eps(100) ,N2 + 1));

plotorder = reshape ([N: —1:1; N+1:N2] ,N2,1);

% Retrieve pairings of nodes

[row,col] = find (tf);

% Use tau http://tauday.com/tau—manifesto

tau = 2xpi;
% Positions of nodes on the circle starting from (0,—1), useful later for label

orientation
step = tau/sz(1);

theta = —.25xtau : step : .7bhxtau — step;
% Get cartesian x—y coordinates of the nodes

x = cos(theta);
y = sin(theta);

% PLOT BEZIER CURVES

% Calculate Bx and By positions of quadratic Bezier curves with P1 at (0,0)

% B(t) = (1—t) "2«xP0 + t"2xP2 where t is a vector of points in [0, 1] and
determines, i.e.

167

168

169

171

172

173

174

176

177

178

179

181

182

183

204

205

207

208

209

210

24.4. CONNECTIVITY ROI WEIGHTS

263

% how many points are used for each curve, and P0—P2 is the node pair with (x,y)

coordinates .
t2 = [1-t, t]."2;
s.1 = NaN(N2,1) ;

% LOOP per color bucket
for ¢ = 1:N2

pos = plotorder(c);
idx = isrt = pos;
if nnz(idx)
Bx = [t2x*[x(col(idx)); x(row(idx))]; NaN(1,n(pos))];
By = [t2x[y(col(idx)); y(row(idx))]; NaN(1,n(pos))];
s.1(c¢c) = plot(Bx(:) ,By(:), Color’,ccolor(pos,:), LineWidth’ ,1);
end
end
% PLOT NODES

% Do not rely that r is symmetric and base the mean on lower triangular part

only
[row,col] = find(tf(end:—1:1,end:—1:1) | tf);
subs = col;
iswap = row < col;
tmp = row (iswap);
row (iswap) = col (iswap);
col (iswap) = tmp;

% Plot in brighter color those nodes with larger within connections
[Z,isrt] = sort(diag(r));

Z = (Z—min(Z)+0.01) /(max(Z)—min(Z) +0.01) ;

ncolor = hsv2rgb ([repmat(ncolor (1:2), sz(1),1) Zxncolor(3)]);

s.s = scatter (x(isrt),y(isrt), round(Z*48), ncolor , ’ fill 7);

% PLACE TEXT LABELS such that you always read ’'left to right’

ipos = x > 0;

s.t = zeros(sz(1),1);

(ipos) = text(x(ipos)x1.1, y(ipos)x*1.1, 1lbls(ipos),’ Color’ tcolor);

(s.t(ipos),{ Rotation’}, num2cell(theta(ipos)’/tau*360))

s.t("ipos) = text(x(ipos)*1.1, y(Tipos)=*1.1, 1bls(“ipos), Color’,tcolor);
(s.t("ipos),{ Rotation’}, num2cell(theta(ipos)’/taux360 — 180), Horiz’

right 7)

% ADJUST FIGURE height width to fit text labels
xtn = cell2mat (get(s.t, "extent ’));

post = cell2mat (get(s.t, 'pos’));

sg = sign(post(:,2));

posfa = cell2mat (get ([gef gea], "pos’));

)

% Calculate xlim and ylim in data units as x (y) position + extension along x (y

)
ylims = post (:,2) + xtn(:,4).*xsg;
ylims = [min(yhms)7 max(ylims) |;
xlims = post (:,1) + xtn(:,3) .%sg;
xlims = [min(ths), max(xlims) | ;

% Stretch figure
posfa(1,3) = ((diff(xlims)/2 — 1)xposfa(2,3) + 1) * posfa(1l,3);
posfa(1l,4) = ((diff(ylims)/2 — 1)xposfa(2,4) + 1) % posfa(l,4);

264 CHAPTER 24. APPENDIX

% Position it a bit lower (movegui slow)

posfa(1,2) = 100;

% Axis settings

set (gea, 'Xlim’,xlims, Ylim’,ylims, ’XColor’, none’, YColor’, none’ ,...
“elim 7, [min(r(tf)) ,max(r(tf))])

set (gef, ’'pos’ ,posfa(l,:), Visible’ on’)

axis equal

% Set colormap
colormap (gca, ccolor);

if nargout = 1
h = s;

end

end

Part VI

Bibliography

265

Bibliography

[1]

2]

8]

M Aizerman, E Braverman, and L. Rozonoer. Theoretical foundations of the potential function method in
pattern recognition learning. Automation and Remote Control, 25:821-837, 1964.

Francis R Bach, Gert R G Lanckriet, and Michael I Jordan. Multiple Kernel Learning, Conic Duality, and
the SMO Algorithm. In Proceedings of the Twenty-first International Conference on Machine Learning,
ICML ’04, pages 6—-, New York, NY, USA, 2004. ACM.

Christopher M Bishop. Pattern Recognition and Machine learning. Springer, 2006.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM transactions
on intelligent systems and technology (TIST), 2(3):27, 2011.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines and Other Kernel-
based Learning Methods. Cambridge University Press, Cambridge, 2000.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A library
for large linear classification. Journal of machine learning research, 9(Aug):1871-1874, 2008.

Tom Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861 — 874, 2006. ROC
Analysis in Pattern Recognition.

Volkmar Glauche. {MATLAB} batch system. http://sourceforge.net/projects/matlabbatch/.

Stefan Haufe, Frank Meinecke, Kai Gorgen, Sven Déhne, John-Dylan Haynes, Benjamin Blankertz, and
Felix Biefimann. On the interpretation of weight vectors of linear models in multivariate neuroimaging.
Neuroimage, 87:96-110, 2014.

J V Haxby, M I Gobbini, M L. Furey, A Ishai, J L. Schouten, and P Pietrini. Distributed and overlapping
representations of faces and objects in ventral temporal cortex. Science (New York, N.Y.), 293(5539):2425—
30, sep 2001.

J D Haynes and G Rees. {D}ecoding mental states from brain activity in humans. Nat. Rev. Neurosci.,
7:523-534, 2006.

Thomas Hofmann, Bernhard Scholkopf, and Alexander J Smola. Kernel methods in machine learning.
Annals of Statistics, 36(3):1171-1220, 2008.

Max A Little, Gael Varoquaux, Sohrab Saeb, Luca Lonini, Arun Jayaraman, David C Mohr, and Konrad P
Kording. Using and understanding cross-validation strategies. perspectives on saeb et al. GigaScience,
6(5):1-6, 2017.

A Marquand, M Howard, M Brammer, C Chu, S Coen, and J Mourao-Miranda. {Q }uantitative prediction
of subjective pain intensity from whole-brain f{M}{R}{I} data using {G}aussian processes. Neuroimage,
49:2178-2189, 2010.

Members and collaborators of the Wellcome Trust Centre for Neuroimaging. Statistical {P}arametric
{M}apping, {SPM8}. http://www.fil.ion.ucl.ac.uk/spm, 2008.

Gregory A Miller and Jean P Chapman. Misunderstanding Analysis of Covariance. Journal of Abnormal
Psychology, 110(1):40-48, 2001.

267

268

[17]

[18]

[19]

[20]

[21]

[22]

[23]

BIBLIOGRAPHY

Janaina Mourao-Miranda, Karl J Friston, and Michael Brammer. Dynamic discrimination analysis: a
spatial-temporal SVM. Neuroimage, 36(1):88-99, 2007.

K A Norman, S M Polyn, G J Detre, and J V Haxby. {B}eyond mind-reading: multi-voxel pattern analysis
of f{M}R}{I} data. Trends Cogn. Sci. (Regul. Ed.), 10:424-430, 2006.

F Pereira, T Mitchell, and M Botvinick. {M }achine learning classifiers and f{{M}{R}{I}: a tutorial overview.
Neuroimage, 45:199-209, 2009.

Alain Rakotomamonjy, Francis Bach, Stephane Canu, and Yves Grandvalet. SimpleMKL. Journal of
Machine Learning Research, 9:2491-2521, 2008.

Anil Rao and Janaina Mourao-Miranda. Feature adjustment in kernel space when using cross-validation.
Research Note - UCL Department of Computer Science, 2017.

Carl Edward. Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning. MIT
Press, 2006.

Jessica, Schrouff, Julien Cremers, Gaetan Garraux, L Baldassarre, Janaina Mourao-Miranda, and
Christophe Phillips. Localizing and comparing weight maps generated from linear kernel machine learning
models. In Pattern Recognition in Neuroimaging (PRNI), 2013 International Workshop on, pages 124-127.
IEEE, 2013.

Jessica Schrouff, J. M. Monteiro, L. Portugal, M. J. Rosa, C. Phillips, and J. Mourao-Miranda. Embedding
Anatomical or Functional Knowledge in Whole-Brain Multiple Kernel Learning Models. Neuroinformatics,
16(1):117-143, jan 2018.

Jessica Schrouff and Janaina Mourao-Miranda. Interpreting weight maps in terms of cognitive or clinical
neuroscience: nonsense? In 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI),
pages 1-4. IEEE, 2018.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge University
Press, Cambridge, 2004.

Daniel B Suits. Use of dummy variables in regression equations. Journal of the American Statistical
Association, 52(280):548-551, 1957.

Michael E. Tipping. Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine
Learning Research, 1(Jun):211-244, 2001.

Sebastian Weichwald, Timm Meyer, Ozan Ozdenizci, Bernhard Schélkopf, Tonio Ball, and Moritz Grosse-
Wentrup. Causal interpretation rules for encoding and decoding models in neuroimaging. Neuroimage,
110:48-59, 2015.

	Introduction
	Background
	Methods
	Inputs and preprocessing
	Machine learning algorithms

	Installing & launching the toolbox
	Installation
	Launching and batching
	Troubleshooting

	What's new?
	Version 3.0
	Version 2.1
	Version 2.0
	Version 1.1
	Version 1.0

	How to cite
	PRoNTo History
	Main contributors
	Acknowledgements

	I Description of PRoNTo tools
	Data & Design
	Introduction
	The PRT directory
	Groups
	Subjects/Samples
	Modalities/runs
	Select by samples
	Select by subjects

	Masks
	Review data and design
	HRF correction

	Load, Save and Quit
	Data & Design output
	Batch interface
	PRT structure
	Introduction
	Changes

	Prepare feature set
	Introduction
	Feature extraction and pre-processing
	Prepare feature set
	NIfTI and .mat data
	MEEG data

	Batch interface
	PRT structure

	Model Specification and Estimation
	Introduction
	Model specification
	Feature set
	Model type / pattern recognition algorithm
	Classification
	Regression
	Hyper-parameter optimization

	Cross-validation
	Model estimation
	Batch interface
	Model: Specify from
	Important changes from PRoNTo v3.0

	Display Model Performance
	Introduction
	Launching results display
	The main results display window
	Measuring model performance
	Classification
	Regression
	Permutation testing

	Visualizing the model performance
	Classification
	Regression
	Influence of the hyper-parameter on performance

	Computing Feature and Region Contributions
	Introduction
	Feature weights
	Atlas-based weights
	Batch interface

	Display weights
	Introduction
	Displaying weights
	Select image to display
	Weights map
	Anatomical image
	Additional plots

	List of input files

	II Batch interfaces
	Data & Design
	Directory
	Groups
	Group

	Masks
	Modality

	Review

	Feature set/Kernel
	Load PRT.mat
	Feature/kernel name
	Data format
	Nifti
	MEEG
	.mat

	Model: Specify new
	Load PRT.mat
	Model name
	Feature sets
	Feature set name

	Model Type
	Classification
	Regression

	Cross-validation type
	Leave one subject out
	k-folds CV on subjects
	Leave one subject per group out
	k-folds CV on subjects per group
	Leave one block out
	k-folds CV on blocks
	Leave one block per class out
	k-folds CV on block per class
	Leave one run/session out
	Custom

	Include all scans
	Data operations
	Mean centre features
	Other Operations

	Model: Run
	Load PRT.mat
	Model name
	Do permutation test?
	No permutation test
	Permutation test

	III Practical Tutorials
	Block design fMRI dataset
	GUI analysis
	Data & Design
	Prepare feature set
	Model: Specify new
	Model: Specify from (optional step)
	Model: Run
	Display model (optional step)
	Display results
	Compute weights (optional step)
	Display weights

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Specify from (optional step)
	Model: Run
	Compute weights (optional step)

	Regression dataset
	GUI analysis
	Data & Design
	Prepare feature set
	Model: Specify new
	Model: Specify from
	Display results

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new (KRR)
	Model: Run (KRR)
	Model: Specify and Run (RVR and GPR)

	Removing confounds (optional)
	Within- and between- subject regression

	Multiple Kernel Learning example
	GUI analysis
	Data & Design
	Prepare feature set
	Model: Specify new
	Model: Specify from
	Model: Run
	Display model (optional step)
	Display results
	Compute weights
	Display weights

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Run
	Compute weights (optional step)

	Removing confounds: a classification example
	Introduction
	GUI analysis
	Data & Design
	Prepare feature set
	Model: Specify new
	Model: Specify from
	Model: Run
	Display results

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Run
	Compute weights
	Display weights

	Effects of removing covariates

	Multi-modal face recognition example
	GUI analysis
	Data & design
	Prepare feature set
	Model: Specify new
	Model: Specify from
	Model: Run
	Display results
	Compute weights
	Display weights
	Using an atlas with .mat

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Run
	Compute weights
	Display results & weights
	Using an atlas with .mat

	Classification of semi-simulated ECoG data
	GUI analysis
	Data & design
	Prepare feature set
	Model: Specify new
	Model: Specify from
	Model: Run
	Display results
	Compute weights
	Display weights

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Run
	Display results
	Compute & Display weights

	Non-kernel machine example
	GUI analysis
	Data & Design
	Prepare feature set
	Model: Specify new
	Model: Specify from
	Model: Run
	Display results
	Compute weights
	Display weights

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Specify from
	Model: Run & Display results
	Compute & Display weights

	Within-subject Regression
	GUI analysis
	Data & Design
	Prepare feature set
	Model: Specify new
	Model: Run
	Display results

	Batch analysis
	Data & Design
	Feature set / Kernel
	Model: Specify new
	Model: Run & Display results

	New Machine Tutorial
	Introduction
	prt_new_machine.m
	Inputs
	Outputs

	How to import and test your new machine in Batch
	How to import your new machine in GUI
	prt_defaults.m
	prt_get_machine_ui.m
	prt_ui_copy_model.m
	prt_plot_nested_cv.m
	prt_weights_*.m
	Running your new machine

	IV Advanced topics
	Developer's manual
	Introduction
	PRoNTo folder structure
	Data & Design
	PRT fields created
	Files created
	GUI behaviour
	Batch behaviour
	Functions called

	Prepare feature set
	PRT fields created
	Files created
	GUI behaviour
	Batch behaviour
	Functions called

	Model: Specify new/from
	PRT fields created
	Files created
	GUI behaviour
	Batch behaviour
	Functions called

	Model: Run
	PRT fields created
	Functions called

	Compute weights
	PRT fields created
	Files created
	Functions called

	PRoNTo functions and the PRT structure
	List of PRoNTo functions
	The PRT structure

	V Appendix
	Appendix
	One data file per subject
	Compute atlas for connectivity matrix
	Connectivity matrix from MEEG
	Connectivity ROI weights

	VI Bibliography

