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1.1 Background

Advances in neuroimaging techniques have radically changed the way neuroscientists address ques-
tions about functional anatomy, especially in relation to behavioural and clinical disorders. Many
questions about brain function, previously investigated using electrophysiological recordings in
animals can now be addressed non-invasively in humans. Such studies have yielded important
results in cognitive neuroscience and neuropsychology. Amongst the various neuroimaging modal-
ities available, Magnetic Resonance Imaging (MRI) has become widely used due to its relatively
high spatial and temporal resolution, and because it is safe and non-invasive. By selecting spe-
cific MRI sequence parameters, different MR signals can be obtained from different tissue types,
giving images with high contrast among organs, between normal and abnormal tissues and/or
between activated and deactivated brain areas. MRI is often sub-categorized into structural MRI
(MRI) and functional MRI (fMRI). Examples of other of imaging modalities that measure brain
signals are Positron Emission Tomography (PET), Electroencephalography (EEG) recordings and
Magnetoencephalography (MEG) recordings. Neuroimaging data are inherently multivariate in
nature, since each measure (scan or recording) contains information from thousands of locations
(e.g. voxels in MRI or electrodes in EEG). Considering that most brain functions are distributed
processes involving a network of brain regions, it would seem desirable to use the spatially dis-
tributed information contained in the data to give a better understanding of brain functions in
normal and abnormal conditions.

The typical analysis pipeline in neuroimaging is strongly rooted in a mass-univariate statistical
approach, which assumes that activity in one brain region occurs independently from activity in
other regions. Although this has yielded great insights over the years, specially in terms of
function localization, and continues to be the tool of choice for data analysis, there is a growing
recognition that the spatial dependencies among signal from different brain regions should be
properly modeled. The effect of interest can be subtle and spatially distributed over the brain
- a case of high-dimensional, multivariate data modeling for which conventional tools may lack
sensitivity.

Therefore, there has been an increasing interest in investigating this spatially distributed infor-
mation using multivariate pattern recognition approaches, often referred as multi-voxel pattern
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8 CHAPTER 1. INTRODUCTION

analysis (MVPA) (see [11], [6] and [12]). Where pattern recognition has been used in neu-
roimaging, it has led to fundamental advances in the understanding of how the brain represents
information and has been applied to many diagnostic applications. For the latter, this approach
can be used to predict the status of the patient scanned (healthy vs. diseased or disease A vs. B)
and can provide the discriminating pattern leading to this classification.

Several active areas of research in machine learning are crucially important for the difficult
problem of neuroimaging data analysis: modelling of high-dimensional multivariate time series,
sparsity, regularisation, dimensionality reduction, causal modeling, and ensembling to name a few.
However, the application of pattern recognition approaches to the analysis of neuroimaging data is
limited mainly by the lack of user-friendly and comprehensive tools available to the fundamental,
cognitive, and clinical neuroscience communities. Furthermore, it is not uncommon for these
methods to be used incorrectly, with the most typical case being improper separation of training
and testing datasets.

1.2 Methods

PRoNTo (Pattern Recognition Neuroimaging Toolbox) is a toolbox based on pattern recognition
techniques for the analysis of neuroimaging data. Statistical pattern recognition is a field within
the area of machine learning which is concerned with automatic discovery of regularities in data
through the use of computer algorithms, and with the use of these regularities to take actions such
as classifying the data into different categories [2]. In PRoNTo, brain scans are treated as spatial
patterns and statistical learning models are used to identify statistical properties of the data that
can be used to discriminate between experimental conditions or groups of subjects (classification
models) or to predict a continuos measure (regression models).

PRoNTo is Matlabbased and includes five main modules: Data & Design, Prepare feature
set, Specify and Run model, Compute weights and Display Results. In addition it has some
review options to enable the user to review information about the data, features and models.
All modules were implemented using a graphical user interface (GUI) and the MATLAB Batch
System. Using the MATLAB Batch System the user can run each module as batch jobs, which
enables a very efficient analysis framework. All information about the data, experimental design,
models and results are saved in a structure called PRT. PRoNTo also creates additional files
during the analysis that are described in details in the next chapters.

In terms of neuroimaging modalities, PRoNTo accepts NIFI files and can be used to analyze
structural and functional Magnetic Resonance Imaging and PET. It assumes that the neuroimag-
ing data has been previously pre-processed using SPM or a similar software for neuroimaging
analysis. In general, raw fMRI data should be previously corrected for movement artefact (re-
aligned) and time difference in slice acquisition (slice time correction), mapped to a common
template (normalized) and spatially smoothed. The normalisation and spatial smoothing steps
might not be necessary for single subject analysis. In addition the General Linear Model (GLM)
can be also applied as a pre-processing step for pattern recognition analysis, in this case the GLM
coefficients (e.g. beta images in SPM) will correspond to the spatial patterns. Raw MRI data
should be previously ... . Raw PET data should be...

In PRoNTo different pattern recognition algorithms correspond to different machines. The
machine library in PRoNTo v1 includes three classification models: Support Vector Machine ([3]),
[10]), Gaussian Process Classifier ([13], [8]), Random Forest [4] and two regression models: Kernel
Ridge Regression [14] and Relevance Vector Regression [15]. New machines will be added to the
library in future versions of the toolbox.

The toolbox code will be distributed for free, but as copyright software under the terms of
the GNU General Public License as published by the Free Software Foundation.

PRoNTo should facilitate the interaction between machine learning and neuroimaging com-
munities. On one hand the machine learning community should be able to contribute to the
toolbox with novel published machine learning models. On the other hand the toolbox should
provide a variety of tools for the neuroscience and clinical neuroscience communities, enabling
them to ask new questions that cannot be easily investigated using existing statistical analysis
tools.
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1.3 Installing & launching the toolbox

In order to work properly, PRoNTo requires 2 other softwares:

• a recent version of Matlab. We used versions 7.5 (R2007b) to 7.14 (R2012a) to develop
PRoNTo, and it will not work with earlier versions1.

• SPM8[9] installed on your computer2.

PRoNTo latest public version can be downloaded, after registration, from the following ad-
dress: http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html.

1.3.1 Installation

After downloading the zipped file containing PRoNTo, the installation proceeds as follow:

1. Uncompress the zipped file in your favourite directory, for example C:\PRoNTo\;

2. Launch Matlab;

3. Go to the “File” menu → “Set path”;

4. Click on the “Add folder” button and select the PRoNTo folder, i.e. C:\PRoNTo\ if you
followed the example;

5. Click on save.

Some routines, in particular the ’machines’, are written in C++ (.cpp files) for increased
efficiency. We are trying to provide these compiled routines for the usual OS’s such as: Windows
XP (32 bits), Windows 7 (64 bits), Mac OS 10, Linux (32 and 64 bits). If your OS is not listed
or routines do not work properly then you should compile the routines for your specific OS3.

1.3.2 Launching and batching

Once installed, there are three ways to call up PRoNTo functionalities. To launch the toolbox
GUI, just type prt or pronto at the Matlab prompt and the main GUI figure will pop up, see
Fig. 1.1. From there on simply click on the processing step needed (see Part I of this manual).
Most functions of PRoNTo have been integrated into the matlabbatch batching system [5] (like
SPM8) and the batching GUI is launched from the main GUI by clicking on the Batch button
(see Part II of this manual). Of course most tools can also be called individually by calling them
directly from the Matlab prompt, or for scripting in a .m file (see Part IV of this manual).

1.4 Main contributors

PRoNTo is developed by the Machine Learning & Neuroimaging Laboratory, Computer Science
department, University College London, UK (http://www.mlnl.cs.ucl.ac.uk) and associated
researchers.

The main contributors, in alphabetical order, are:

Dr. John Ashburner is a reader at the Wellcome Trust Centre for Neuroimaging at the Uni-
versity College London Institute of Neurology. He is mainly interested in modeling brain
anatomy from MR scans, and more recently in applying pattern recognition methods to
make predictions about individual subjects. He is a co-developer of the SPM software
(intra- and inter-subject registration, tissue classification, visualization and image file for-
mats), which is used internationally by thousands of neuroimaging researchers. He has
authored or co-authored 90 papers in international journals (h-index of 50) and written a
number of book chapters;

1Any later Matlab version should work, in theory.
2SPM8 can be dowloaded from the following website: http://www.fil.ion.ucl.ac.uk/spm/software/. You

should install it in a suitable directory, for example C:\SPM8\, then make sure that this directory is on the
Matlabpath. No need to include the subdirectories!

3you can also contact us and we’ll try to come up with a solution for your system.

http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html
 http://www.mlnl.cs.ucl.ac.uk
http://www.fil.ion.ucl.ac.uk/spm/software/
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Figure 1.1: Main GUI interface: each button launches a specific processing step.

Dr. Carlton Chu is a research fellow in brain imaging at the National Institute of Mental
Health (NIMH), NIH. He received the B.Eng. degree (1st class Honours) from Auckland
University, New Zealand, in 2002 and the master of Biomedical Engineering from Univer-
sity of New South Wales, Australia, in 2004. Carlton obtained a PhD in Neuroimaging
method from University College London in 2009, working in the statistical methods group
at the prestigious Wellcome Trust Centre for Neuroimaging, creators of the famous “SPM”
program. There he developed innovative new pattern recognition methods to automatically
detect the early stages of neurodegenerative diseases such as Alzheimer’s and Huntingdon’s
just from structural brain images. In 2007, Carlton won the first prize in the 2nd Pittsburgh
Brain Activity Interpretation Competition (PBAIC), a prestigious international competi-
tion involving the application of machine learning to the problem of classification of brain
activity. He led a small research team to victory, acclaim from peers in the field, and
the $10K first prize. His current research interests include brain state decoding, neurode-
generative disease classification, and applying pattern recognition method to study brain
networks;

Dr. Andre Marquand is a Post-Doctoral Research Fellow at the Centre for Neuroimaging Sci-
ences, King’s College London (KCL) and an Honorary Post-Doctoral Research Fellow at
the Centre for Computational Statistics and Machine Learning at University College Lon-
don. His research focuses on the application of probabilistic machine learning techniques to
neuroimaging data, particularly for clinical applications. His recent work includes the ap-
plication of multi-class and multi-modality pattern classification methods to neuroimaging
and in particular to detecting the effects of psychotropic medication on patterns of brain
activity;

Dr. Janaina Mourao-Miranda is a Wellcome Trust Senior Research Fellow at Centre for
Computational Statistics and Machine Learning (CSML), UCL and at the Centre for Neu-
roimaging Sciences (CNS), KCL. Her research focuses on developing and applying pattern
recognition methods to analyze neuroimaging data, in particular brain activation and struc-
tural patterns that distinguish between controls and patients. Recent work includes the
development and application of spatio-temporal SVM, one-class SVM to detect patients as
outliers and in-depth studies of kernel methods for brain decoding;

Dr. Christophe Phillips is FRS-FNRS Research Associate at the Cyclotron Research Centre
and adjunct Assistant Professor at the Department of Electrical Engineering and Computer
Science, University of Liège, Belgium. His research focuses on the processing of multi-modal
neuroimaging data. Recent work within the field of “brain decoding” aimed at distinguishing
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between levels of consciousness in unresponsive patients or between typical and atypical
Parkinson Disease patients using Positron Emission Tomography (PET) imaging, as well
as tracking mnesic traces in trained healthy subjects with fMRI;

Dr. Jonas Richiardi is a post-doctoral research fellow, jointly affiliated to the EPFL engi-
neering school (Medical Image Processing Laboratory) and the Geneva university hospitals
(Department of Radiology and Medical Informatics). His research interests include brain
connectivity and resting-state networks analysis, interpretability of brain decoding results,
functional biomarkers, learning with graphs, machine learning for neuroimaging, and the
combination of imaging modalities with other biological information sources. He was co-
chair of the 2010 Brain Decoding Workshop at the Int. Conf. on Pattern Recognition and
a programme chair of the Pattern Recognition in NeuroImaging workshop 2011 and 2012;

Dr. Jane Rondina is a Wellcome Trust Post Doctoral Research Associate at Centre for Neu-
roimaging Sciences (CNS), KCL and researcher as an honorary member at Centre for Com-
putational Statistics and Machine Learning (CSML), UCL. Her current work includes the
development of a feature selection method for classification in neuroimaging and analysis of
features stability. Her research interests also include the development of pattern recognition
methods using data from different modalities / measures in neuroimaging;

Dr. Maria J. Rosa is a Wellcome Trust post doctoral research associate at Centre for Com-
putational Statistics and Machine Learning (CSML), UCL. Her areas of interest include
Bayesian model selection methods for fMRI and Dynamic Causal Modelling, EEG-fMRI
fusion, and more recently, machine learning for neuroimaging.

Ms Jessica Schrouff has a Master in Biomedical Engineering and is currently pursuing a Phd
in neuroimaging at the Cyclotron Research Centre, University of Liège, Belgium, under the
supervision of Dr C. Phillips. Her project focuses on the tracking of mnesic traces of learned
images in trained healthy subjects with fMRI and EEG data, as well as the classification of
patients from PET images.
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Data & design
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2.1 Introduction

The first step in a statistical analysis of neuroimaging data, whether it’s in a pattern recognition
or general linear model (GLM) framework, usually entails providing to the analysis software all
the information regarding the data and experimental design. PRoNTo is no exception. After
preprocessing the data (if required), the analysis in PRoNTo starts with the ‘Data and Design’
module. It is important to note that PRoNTo does not perform any spatial or temporal pre-
processing, and if not performed with another software, pattern recognition might be affected by
noise in the data.

In the ‘Data and design’ module the user can enter the image/scan files, experimental condi-
tions (TR, durations and onsets of events), as well as other parameters, covariates and regression
values. PRoNTo supports multi-modality datasets and therefore it allows the user to enter more
than one data modality, such fMRI, MRI, PET and ASL, per analysis. This module is therefore
essential for the rest of the framework and stores all the information that is needed from the data
to be used by the rest of the software modules, such as feature set preparation, model specification
and estimation.

Below is a summary of what the ‘Data and Design’ module does. The Methods section
discusses how the module is organised and what its main output is. It also mentions a few issues
that need to be taken into consideration when entering the information and how they affect
subsequent steps. This chapter then presents the graphical user interface (GUI) that is used
to enter the data and design information and how it is used. Finally, the chapter finishes by
mentioning the corresponding ‘Data and Design’ matlabbatch module, and particular issues that
do not apply to the GUI.

15
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2.2 Methods

2.2.1 Data and design input

PRoNTo provides two types of interfaces for entering the data and design information, a PRoNTo-
specific graphical user interface (GUI) and the matlabbatch system that is also currently used
by SPM. These two interfaces are also available for the other modules, as discussed in the Intro-
duction chapter.

The information that needs to be entered is almost exactly the same for both the GUI and
batch (the small differences are explained below in the matlabbatch section) and, more impor-
tantly, the output is exactly the same. Therefore it is up to the user to decide which system is
best suited for his/her analyses. For instance, the GUI can be used as a first approach to the
toolbox and by users not familiar with SPM, whilst the batch can be used by more advanced or
SPM users, who know how to take advantage of the batch system to optimise their analyses.

As mentioned, PRoNTo supports multi-modality analyses. Therefore the data and design
module is prepared to receive as input the following types of data: fMRI, sMRI, PET and beta
images (created from a previous GLM analysis). Other types of data can also be entered at the
user’s risk, as long as they comprise nifti files.

Regardless of which interface the user chooses to enter the data and design (GUI or batch),
the organisation is very similar and starts (after choosing the directory to save PRT.mat) with
the definition of Groups. In neuroimaging datasets, it is common to have a few subjects with a
lot of images/scans per subject, such as the time-series in fMRI. However, the opposite is also
common: lots of subjects with one image per subject, such as encountered in PET or MRI studies.
Therefore, for each group, PRoNTo provides two ways of entering the rest of the information, i.e.
subjects, modalities and design, which are referred to as the ‘select by subject’ or ‘select by scans’
option, respectively (as is shown below). If one chooses to enter the data by ‘scans’, PRoNTo
allows the user to enter, for each modality, all subjects (one image/scan per subject) at once,
which is a lot quicker than entering each subject at a time. It is important to note that when
using Regression models this is the only way of inputing the data. As explained below, only the
‘select by scans’ option allows the users to enter regression values (one value per subject/image).
This option however is not appropriate for modalities which have an experimental design and
more than one image per subject, such as fMRI. For these datasets the user should choose the
‘subjects’ option. For each subject one can specify the modalities, experimental conditions and
enter more than one image/scan. Both options are valid and produce exactly the same output
structure (if used with the same dataset).

2.2.2 Data and design output

The output of the ‘Data and Design’ module is the PRT structure (as discussed in the Introduc-
tion). This structure contains subfields with all the information that is needed from the data for
the subsequent analysis steps and it is saved in a ‘PRT.mat’ file. For advanced users the fields of
this structure can be edited directly and saved, therefore bypassing the need to use the GUI or
matlabbatch to create the PRT. However, this structure is the core of PRoNTo and should be
carefully created because it affects everything else.

2.2.3 Review

The ‘Data and Design’ module also allows the user to review the information that has been
entered (through the GUI, batch or manually). The main aim of the ‘Review’ function is to check
if the data and design has been correctly specified. It can also be used to inspect if the design
is appropriate for subsequent analysis. For example, the review window shows the number of
subjects in each group, and for modalities with experimental design, it can be used to show and
alter the number of used and unused scans (see below).

2.2.4 HRF correction

For datasets such as fMRI, there is a very important issue that needs to be carefully addressed
when specifying the data and design. As is well known, the hemodynamic response function
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(HRF) is a delayed and dispersed version of the underlying neuronal response to an experimental
event (Figure 2.1). This means that, depending on the TR, the effect of the HRF can be felt
over multiple scans, and therefore the acquired scans are not independent and might contain
information from both past and present events. This can confound subsequent analyses and
needs to be accounted for. For instance, in SPM, the stimulus time-series are convolved with a
canonical HRF. Although convenient in the GLM framework, the convolution approach is not
appropriate in the pattern recognition context. Therefore, the solution used in PRoNTo is to
discard all overlapping scans. This is done as follows: PRoNTo allows the user to control a delay
(time it takes for the hemodynamic response to peak after the stimulus) and overlap (width of
the response) parameter that determine the shape of the HRF. As can be seen in Figure 2.1, the
delay means that the scans corresponding to a given condition are actually shifted in time, and
the overlap means that the number of independent scans, for which the signal corresponds only
to a given condition, is smaller than the total number of acquired scans for each condition. Given
the delay, PRoNTo finds which scans correspond to each condition and discards the last scans in
the time-series for which the response has not yet peaked. It then uses the overlap to determine
which consecutive scans contain information from only one condition (i.e. the response does not
overlap with the response from the previous condition) and discards the ones for which there is
overlap (as shown in Figure 2.1, bottom right). The discarded scans are not actually deleted but
are not used in further analyses.

When using the GUI, the default value for the HRF parameters is 0 seconds and can only be
changed in the ‘Review’ window (as shown below). Therefore, for fMRI, the user should review
the data and design and change these parameters to a more appropriate value (e.g. 6 seconds
each). In the matlabbatch, the default value for these parameters is also 0 seconds but can be
changed directly within the batch (no need to open Review window). Again, for fMRI, these
values should be changed (e.g. to 6 seconds).

Importantly, if one wants to avoid discarding scans and having to correct for the shape of
the HRF, as explained in the above paragraph, one should use as input the beta (coefficients)
images obtained by first running a GLM analysis on the original data. This is normally the best
approach in case of rapid event-related design experiments, in which there can be a lot of overlap,
i.e. the number of discarded scans can be very high.

Figure 2.1: HRF correction. On the left is the standard HRF response. On the right is the effect
of the delay and overlap on the number of independent scans (C1, C2 and C3 correspond to
three different experimental conditions and the blue boxes correspond to various scans acquired
during each condition). In fMRI datasets, the nature of the HRF (i.e. being a delayed and
dispersed version of the neuronal response to an experimental event) might lead to less indepen-
dent scans/events than the ones originally acquired. In PRoNTo, this issue is accounted for by
discarding overlapping scans.

The steps to specify the information relative to the data and design using both the GUI and
the matlabbatch system are described in the following sections.
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2.3 Graphical User interface

The graphical user interface to specify the data and design is presented in Figure 2.2. This GUI
can be launched by typing ‘prt’ in the Matlab window and then clicking the first button on the
left, in the main steps panel.

Figure 2.2: Data and design graphical user interface. This interface allows the user to enter all the
information relative to the data, including the experimental design and masks. After introducing
all the fields, PRoNTo creates the PRT structure, which is saved in the specified directory, as
‘PRT.mat’ file.

2.3.1 PRT directory

The first thing the user should specify is the directory in which to save the PRT structure. This
can be done by browsing existing directories (previously created by the user) from the top of the
data and design interface (Figure 2.2). It is recommended to have different directories for different
datasets (not modalities) because PRoNTo overwrites an existing PRT in the selected directory.
The later modules in PRoNTo will then add more fields to this structure with further information,
such as the models, features and kernels used in subsequent analyses. The file created is called
‘PRT.mat’.

2.3.2 Groups

The group panel allows one to add or remove a group of subjects. The minimum number of
groups is one, but there is no maximum number. When ‘Add’ is clicked, the user should provide
a name to the group. Any alphanumeric string is sufficient and there should be no spaces in the
string (this applies to all names throughout the toolbox). The name of the group can be later
modified by right clicking on the name. When ‘Remove’ is clicked, all the information relative to
this group (including all subjects and corresponding data) is deleted. PRoNTo does not restore
the deleted information and it can only be re-entered again by clicking ‘Add’.

The following panel after ‘Groups’ is ‘Subjects/Scans’. Here, as mentioned above, there are
two ways of entering the data: by ‘subjects’ or by ‘scans’. The former is chosen by clicking ‘Add’
under the ‘Subjects/Scans’ panel and filling in the fields for each added subject at a time. The
latter is done by clicking the tick box ‘Scans’ under the ‘Subjects/Scans’ panel. The subjects
panel is then de-activated and the user can enter the modalities and files straight away. The fields
to be filled under these two options are described below.
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2.3.3 Subjects

Select by scans The ‘select by scans’ option allows the users to skip the subject step. To
identify that this option has been selected, PRoNTo writes ‘scans’ in the subjects panel (Figure
2.3). The user can then add modalities and for each modality a new window will appear (bottom
of Figure 2.3). It is important to remember that when the ‘scans’ box is clicked all the information
in the subjects panel is automatically deleted! Unselecting the ‘scans’ box also deletes all the
information!

Select by subjects The ‘Subjects/Scans’ panel allows the user to add/remove subjects. This
panel works exactly like the groups panel, but the subject name is automatically generated. This
name can be later modified by right clicking on it. For each subject one can then specify the
modalities in the next panel.

Figure 2.3: Data and design graphical user interface. If one chooses to specify everything using
the ‘Scans’ option (tick box below the ‘Subjects/Scans’ panel), one can introduce the data for
all subjects at once for each modality, but one cannot specify any design. This is the optimised
approach when one has a lot of subjects with only one image/scan per subject, such can be the
case of MRI and PET datasets.

2.3.4 Modalities

The modalities panel works like the group and subjects panel, but allows one to add and remove
modalities. When a modality is added, a name needs to be provided (unless the modality has
already been defined for a previous subject or through the masks menu, see below). It is impor-
tant to note that a different modality can be a different type of data, such as fMRI and PET,
or a different session of the same type of data, e.g. different runs/sessions of the same fMRI
experiment. This way the different sessions can be integrated later into the same model and
analysis.

The steps to enter the modality information are slightly different if one ticks the ‘scans’ box
or not.

Select by scans Here the data is assumed to have been acquired without an experimental
design, and therefore the ‘No design’ option is automatically selected and cannot be changed
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(bottom window in Figure 2.3). However, in select by scans, the user can also introduce ‘Covari-
ates’, i.e. a variable that covaries with the data (subjects) but of no interest to the subsequent
analyses. This option is not yet functional in version 1.0 of PRoNTo! The last empty field can be
used to enter ‘Regression targets’ (Figure 2.3). This option allows the users to introduce a real
number per subject to be used later for regression if that is the case. As mentioned above, this
is the only way of entering the data and regression values when doing Regression models!

Select by subjects When entering the data by subjects, the modality window allows one to
specify the experimental design (Figure 2.3). Here there are three option. The last option is simply
‘No design’, which means that for this modality there are no experimental conditions. The first
option is to load an SPM.mat with a previously specified design. This option can be chosen if the
user has created an SPM structure containing all the experimental fields using the SPM software.
In this case, the user does not need to specify anything else, only the files (scans/images) for
this subject/modality. The design information is extracted directly from the SPM structure and
saved in PRT.mat. Finally, the ‘Specify design’ option allows one to introduce all the conditions
(durations and onsets), TR and other parameters corresponding to the experimental paradigm
used for this subject and modality.

Figure 2.4: Data and design graphical user interface. The design menu in the modality window
(when one uses the select by subject option) allows one to load a previously specified design
from an SPM.mat file, create a new design or simply select no design, which usually applies to
modalities where there is no experimental task, such as MRI or PET.

Design To create a new design one selects the option ‘Specify design’ as explained in the
previous paragraph (Figure 2.4). This will then open another window (after choosing how many
conditions you have) (Figure 2.5). In this window one can then write the names, onsets, and
durations of each condition. The units in which this information is read is specified below. There
are two options ‘Scans’ or ‘Seconds’. If the unit scans is selected, it it good to bear in mind
that PRoNTo follows the convention, adopted in SPM, that the first scan is scan 0. In the
durations field, one can introduce as many values as the number of onsets or just simply one
value, which assumes the events all have the same duration. In this window there is also the
option of introducing the Interscan Interval (TR), which is always read in seconds. Finally, there
is also an option (which is again not yet functional in version 1.0 of PRoNTo!) to introduce
covariates, which, in this case, correspond to any variable that varies along with the experimental
events but of no interest for further analyses.
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One issue to have in mind when specifying the design is the following: if there are more scans
than experimental events, these extra scans will not be used in later analyses. They are not
deleted and the corresponding indexes can be found in the PRT structure:
PRT.group(g).subject(s).modality(m).design.conds(c).discardedscans.

Figure 2.5: Data and design graphical user interface. The ‘specify conditions’ window is available
from the modality interface when the user chooses to enter the data by subjects and clicks ‘specify
design’. This window is used to enter the conditions (names, onsets and durations) as well as the
units of design, TR and covariates.

Modify design The user can later modify a design by loading a PRT.mat in the Data and
Design window. Please note that if feature sets or models have been previously computed, they
will be discarded if changes are performed to the dataset. If the user wants to keep those, he/she
should change the directory before saving.

After loading a previously saved PRT, any change can be performed: subjects, groups or files
can be added or removed. If the design needs to be modified, a right-click on the name of the
concerned modality proposes to re-open the modality definition window. To review or modify
the onsets/durations/blocks, the user can access their definition via the specify design option.
Similar right-clicks allow renaming groups or subjects.

To modify the HRF parameters (delay or overlap), there is no need to load the PRT in Data
and Design. Loading it within the Data Review allows the user to keep all previously computed
feature sets and models. However, if the HRF parameters are changed, feature sets have to
be computed anew since they do not correspond to the modified design. Changing the desired
parameter and hitting return updates the PRT directly. Please remember to keep an eye on the
Matlab window, since important information are displayed on the workspace!

Files Finally, independent of the way the user entered the information (by subjects or scans)
the ‘Files’ option allows one to choose which image files to use (Figure 2.6). This will open
another window that shows all image files available in each directory. These can be selected one
by one or all at once, by using the mouse’s right button on the right panel of the window.

All that is needed for each group, subject and modality has been specified and can now be
viewed on the main window (Figure 2.7) under each panel. The last panel shows which files have
been entered for each modality and can be modified directly (click Modify). When Modify is
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Figure 2.6: This window is called when one clicks ‘Files’ and is used to select the scans/images
for each subject/modality.

clicked and no files are then selected all the previous files are deleted! Figure 2.7 shows how the
data and design interface should look like once all the fields have been specified (using select by
subject). The design and files for each modality can also be modified by right clicking on the
modality name in the modality panel. This option can be useful to visualise the design (onsets
and durations) that has been previously entered and change it if necessary. For instance, one can
check the design of the first subject and if changes are needed these can then be replicated for all
other subjects as explained above.

Figure 2.7: Data and design graphical user interface. After filling in all the fields using the select
by subject option (the select by scans case is very similar) the data and design interface should
look like this example figure.
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2.3.5 Masks

This popdown menu on the bottom of the main data and design window is where the user enters
a binary image mask for each modality. This mask can be previously created by the user (it has
to be in MNI space) or simply chosen from a list of default masks available in the masks directory
of PRoNTo. Every modality has to have a mask, which can be the same for all modalities. This
is a first-level mask and is used simply to optimise the prepare feature set step by discarding
all uninteresting features, such as voxels outside the brain. Later in the analysis one can choose
another mask (second-level mask) that is more relevant to the scientific question and that can, for
example, restrict the analysis to certain areas of the brain. To specify the mask one needs only
to select the modality and then enter an image file. If the modalities have not yet been created,
then one can create the modalities here, which will then appear in the modality panel.

2.3.6 Review

The ‘Review’ button allows one to review the data and design for each modality (Figure 2.8).
On the top right is the information relative to the number of groups and modalities that have
been entered. The plot on the left displays the number of subjects per group. This is particularly
important to check if the design is too unbalanced in terms of subjects. Then on the bottom right
panel is the design information for each modality (if the selected modalities have an experimental
design). Here, the user can view the number of conditions and can also edit the parameters that
control the HRF delay and overlap (as explained above). The user can change the default value of
0 seconds and the effect is immediately seen on the number of scans plotted on the left (number
of selected scans and number of discarded scans for each condition). The higher the value of
the HRF peak and overlap, the higher the number of discarded scans. One can also read on the
main Matlab window information regarding which group/subjects have had some scans discarded.
The information below the HRF parameters corresponds to the interval between successive scans
before and after the HRF delay/overlap correction. These values also change according to the
changes entered in the boxes above. Please note, as mentioned in the section ‘Modify design’,
that information regarding the PRT being updated after changing the HRF parameters is written
on the main Matlab window. Again if you have previously computed feature sets and models,
you have to recompute them because they do not correspond to the data anymore (changing the
HRF delay and overlap parameters changes the data). The information regarding which scans
have been removed or not from the analysis can be found in the PRT structure:
PRT.group(g).subject(s).modality(m).design.conds(c).hrfdiscardedscans.

2.3.7 Load, Save and Quit

The ‘Save’ button allows the user to create the PRT.mat file with the PRT structure containing
all the information that has been specified here (Figure 2.7). Incomplete information cannot be
saved. At least one group should have all the required fields so that PRT.mat can be created.
‘Load’ allows the user to load the data and design information from a previously saved PRT.mat.
The user can then edit the fields and update PRT by clicking again the ‘Save’ button. It’s very
important to click ‘Save’ because all the other steps in the analysis rely on the PRT structure.
Without this structure one cannot proceed. However, when the PRT.mat contains fields that have
been added by the ‘Prepare feature set’ or other modules, if the Save button is clicked, these
fields will be deleted. The option ‘Quit’ allows the user to leave the interface without saving the
information. This is also the case when the user closes the window without first using the Save
button.

2.4 matlabbatch interface

The ‘Data and Design’ module in the matlabbatch is called either by first typing ‘prt’ and clicking
the ‘Batch’ button or by typing ‘prt batch’. The user can then find on top of the batch a PRoNTo
menu and under this menu the first module corresponds to the data and design module.

The options presented in the ‘Data and Design’ GUI, mentioned above, are all available in
the matlabbatch interface (Figure 2.9). However, there are a few things in the batch that differ
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Figure 2.8: Data and design graphical user interface - ‘Review’ window. This window allows the
user to check the data and design, including the number of subjects per group. It also allows the
user to change the HRF delay and overlap parameters that control the number of discarded scans
(appropriate only for modalities such as fMRI). When there is no experimental design only the
top plot and information is shown.
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from the GUI. One issue to note here is that, when using the batch one needs to be very careful
with the names of the modalities specified for each subject (or using select by scans) and specified
for each mask. The number of modalities should be exactly the same for each group and subject
and the names should be consistent between groups/subjects and correspond to the names of the
modalities under the masks field. In the GUI the names are made automatically consistent. The
names of the conditions should also be the same across subjects and will be later used to define
classes in the ‘Specify model’ batch module.

Another issue is the HRF delay and overlap correction values. In the batch, the user can
directly alter these values (instead of having to use the ‘Review’ window) but the default is 0
seconds and should be changed (e.g. to 6 seconds) for modalities that depend on the HRF, such
as fMRI.

As mentioned in the Introduction, the batch job can be saved as a .mat, and loaded again
whenever needed, or as a .m that can be edited using the Matlab editor. This is a powerful tool
that can make the specification of the data and design a lot easier and quicker, for example by
editing and scripting existing batch files (for further information see the matlabbatch chapter
below).

Figure 2.9: Data and design module in matlabbatch. The matlabbatch contains two extra
options relative to the Data and Design interface. These options allow one to specify the delay
and overlap of the HRF response (in the GUI it can only be changed in the ‘Review’ window),
and which are then used to determine the number of discard scans.
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Chapter 3

Prepare feature set
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3.1 Introduction

One of the main inputs of a machine learning algorithm consists in a Nsamples ×Nfeatures data
matrix, containing the values of selected features for each sample. This matrix can either be
input directly into the machine or be used to compute a similarity matrix, or kernel, of the size
Nsamples ×Nsamples, which is then input into the classification/regression algorithm [see “kernel
trick” [7, 1]].

The ”Prepare Feature Set” step computes both the feature and similarity matrices from one
or more modalities, as defined in the previously built dataset (see chapter 2). It allows detrending
the features in the case of time series (such as fMRI) and scaling each image by a constant factor
(input by the user) in the case of quantitative modalities (such as PET). Masks can be specified
to perform the classification/regression on specific voxels only (e.g. Regions of Interest).

Please note that only modalities containing the same number of features (i.e. selected
voxels) can be included in the same FS. This will be typically the case when more than one
run was acquired for each subject, the different runs being entered as different ’modalities’ in the
dataset building (e.g. modality 1 is ’fMRI run1’, modality 2 is ’fMRI run2’,...). In all other cases,
a feature set has to be computed for each modality.

3.2 Methods and resources

After the selection of the dataset and of which modality to include in the FS, the toolbox accesses
each image, i.e. it gets the value of the voxels which are comprised in the first level mask selected
for that modality (mask specified at the data and design step, see chapter ”Data and Design”).
This access is performed by ’blocks’ of features, not to overload the RAM memory. In the case of
time-series, the user can specify detrending methods and parameters to apply to the time course of
each feature. Methods comprise a polynomial detrending (parameter: order of the polynomial) or
a Discrete Cosine Transform high-pass filter (SPM, ref, parameter: frequency cutoff in seconds).
An example of a linear detrending (polynomial detrending of order 1) was represented in Fig.
ṙeffig:lindetrend.

For each modality, the (detrended) features are then written in a file array (SPM, ref, with a
’.dat’ extension), on the hard drive (in the same directory as the dataset). Please note that in
the case of large datasets, this operation may require many Gb of free space on the hard drive
and long computational times. Therefore, if the first condition can’t be fulfilled, we recommend

27
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Figure 3.1: Example of detrending: the original signal over time of one feature (in blue) was
approximated by a polynomial of order 1 (red line), which was then substracted from the original
signal to give the detrended signal (in green).

the use of external drives for the whole analysis. Regarding the computational expenses, we
tried to minimize their effect by computing the features only once per modality: when preparing
other feature sets using the same modality and detrending parameters, the same file array will
be accessed.

Be careful that using the same modality but different detrending methods and/or parameters
will force the re-computation of the file array for the considered modality. In the same way,
changing the dataset (PRT.mat) from directory might lead to the re-computation of the feature
sets if the file arrays were not moved accordingly.

From the feature set(s), the kernel (similarity matrix) can then be computed. Different options
can be specified:

• All scans/ All conds: In all scans the similarity will be computed between all scans within
the time series of all subjects and in the all conds the similarity is computed only between
the scans corresponding to the specified conditions of interest (see ”Data and Design”). By
default, the toolbox will use all scans to compute the kernel. With large datasets however,
computational expenses can be reduced by selecting the last option. We would therefore
recommend this last option for cases similar to multi-subject fMRI studies with designed
stimulation.

• Additional mask for selected modality: this option allows the specification of a ’second-level’
mask, which would for example define Regions of Interest (ROIs) on which the classifica-
tion/regression can be performed. In this case, the voxels used to compute the kernel (and
only the kernel) would be the ones contained in both the first and second levels masks.
Therefore, using one first-level mask and two second-level masks would create two kernels
but one file array.

• Normalisation (has to be called scaling): allows the specification of constant values to scale
each scan. The user has to enter a .mat containing a variable called ’scaling’ and of the same
size as the number of scans in that modality. In case of quantitative modalities such as PET,
this step is required since it insures the convergence of the machine learning algorithm.

These three options are performed at the kernel level only. This means that any change in one
of these options would lead to the computation of a new kernel but not to the (re)computation
of the file arrays. The use of different second-level masks or scaling parameters can therefore be
easily envisaged.
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The PRT.mat structure saves all information linked to the file arrays in a fas field (standing
for “File Array Structure”), which size corresponds to the number of selected modality in all
feature sets. The selected options and link to the kernel are stored in a fs field (standing for
“Feature Set”), which size corresponds to the number of feature sets defined by the user.

3.3 Graphical User interfaces

After clicking on the “Prepare Feature Set” button in the main interface (see Fig. 3.2), a second
window will appear, allowing the user to select a dataset (Fig. 3.3.A), to name the FS (Fig.
3.3.B) and to define the number of modalities which should be included in the FS (Fig. 3.3.C),
see section 3.1 for a comment on this last point).

Figure 3.2: Main interface: button to launch the ’Prepare Feature Set’ step.

To define the number of modalities to include, the user should click in the appropriate box
(Fig. 3.3.C), type the number and then ’return’ (arrow for return?). This will launch a third
window, allowing the specification of the different options and parameters for each modality (Fig.
3.4). When the dataset contains only one modality, this window is launched automatically.

In this third window, the user has to choose which modality to include based on its name
(Fig. 3.4.A) and which scans to use to build the kernel (all or only those linked to the design,
Fig. 3.4.B). All other options are facultative. They include:

• the specification of a second-level mask (Fig. 3.4.C): type the full name (with path) of
the mask or browse to select the mask image. When left empty or untouched, voxels are
selected from the first-level mask specified in the data and design step.

• the detrending parameters (Fig. 3.4.D): by default, the parameter is set to ’No detrending’.
However, we recommend to perform a detrending in the case of time series data such as
fMRI (and only in that case). When selecting polynomial, the ’order’ parameter will appear,
with a default value of 1. Changing this value will increase the order of the polynomial
used to fit the data. If ’Discrete Cosine Transform’ is selected, the editable parameter
corresponds to the cutoff frequency (in seconds) of the high-pass filter. Please note that,
when including more than one run (’modality’) into a feature set, nothing will prevent the
user from using different detrending methods/parameters. We however highly recommend
to use a consistent detrending in the same FS.

• the scaling (Fig. 3.4.E): ‘no scaling’ is the default option. However, when dealing with
quantitative modalities such as PET, the user should provide one value per scan, stored in
a vector in a .mat file under the variable name ’scaling’.
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Figure 3.3: Interface of the ’Prepare Feature Set’ step: A. Dataset selection: type the full name
(with path) or browse to select the dataset to prepare. B. Type the FS name, which will be
used to save the kernel as a .mat on the hard drive. C. Number of modalities to select. D. List
containing the names of the modalities included in the FS (no user interaction possible). E. Click
to build the feature set and kernel.

Figure 3.4: Specification of options and parameters for each modality: A. Select the modality
name from a pull-down menu. B. All scans/All conds. C. Second-level mask selection. D. Detrend
and its parameter. E. Scaling of the scans or not.
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When working with Graphical User Interfaces (GUIs), some messages might appear in Mat-
labworkspace. These can display information about the operations currently performed or ex-
plain why the toolbox does not do as the user expected (e.g. when a file could not be loaded or
if information was input in a wrong format). Therefore we strongly encourage the user to have a
look at Matlabprompt when using GUIs.

3.4 matlabbatch interface

The matlabbatch system allows the input/selection of all parameters and options aforementioned.
Just note that the batch is based on the names of the modalities and/or conditions. Therefore,
for the batch to work properly, names should be consistent across all steps, starting from data
and design to the model specification and running. The hierarchy for the case of a feature set
containing one fMRI modality is displayed in (Fig. 3.5).

Figure 3.5: Matlabbatch GUI.

Note: Defining all important steps in one batch and running that batch will overwrite the
PRT.mat previously created and thus delete the links between the PRT.mat and the computed
kernel(s) and feature set(s). The file arrays would then be recomputed each time the batch is
launched. For large datasets, we therefore recommend splitting the batch in two parts: a data
and design and prepare feature set part and a second part comprising the model specification, run
model and compute weights modules. This would indeed allow changing, e.g. model parameters,
without recomputing the feature sets and kernels.
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Model Specification
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4.1 Introduction

The specification of a model is the core step of the pattern recognition pipeline and entails setting
up the combination of the different components making up the analysis. For example, model
specification is where you select which data features to use as input (i.e. a feature set), the type
of prediction to perform (e.g. classification or regression), which machine learning algorithm to
employ (e.g. support vector machines, Gaussian processes, ...), which cross-validation strategy to
employ (e.g. leave one subject out, leave one run out, ...) and which operations or manipulations
to apply to the data before the algorithm is trained. The framework provided by PRoNTo is
highly flexible and supports most types of pattern recognition analysis typically performed in
neuroimaging. This chapter provides an overview of each of the components making up a model
in PRoNTo. The presentation will focus on the user interface although it is important to note that
the batch system provides several advanced options not available in the user interface (described
below).

4.2 Beginning a model specification

To begin a model specification with the PRoNTo user interface, select “Specify model” from the
main PRoNTo window. This will launch the model specification window (Figure 4.1)

Next, select the PRT.mat containing your experimental parameters. Note that at least one
feature set must be defined in this structure before a model can be created. See chapter 3 for
details on constructing feature sets.

Enter a unique name to identify the model, which is used internally in PRoNTo, by the batch
system and for display purposes. It is a good idea to select a meaningful but short name (without
spaces). Note: the PRT.mat data structure retains a permanent record of all models created
but if a model with the specified name already exists in the PRT.mat data structure, it will be
automatically overwritten.

33
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Figure 4.1: Model specification graphical user interface

4.3 Feature set

The drop-down list entited ‘Feature set’ will be populated once a PRT.mat containing one or more
feature sets is selected. Select the appropriate feature set from the drop-down list. Note that a
single feature set may contain more than one data modality (see chapter 3). This might be useful
if more than one run is available for each subject, in which case each run could be coded as an
independent modality and a single-subject classifier might be specified using leave-one-run-out
cross-validation.

In the current release of PRoNTo, only kernel classifiers are supported via the user interface.
The capability to support non-kernel classifiers will be added in a future release. Thus, the “Use
kernel” radio button should always be set to true.

4.4 Model type / pattern recognition algorithm

In this part of the model specification input form, select the pattern recognition algorithm to em-
ploy (referred to in PRoNTo as a “machine”). In the current release, three classification algorithms
are supported (binary support vector machines, Gaussian processes (binary and multiclass) and
random forests) and three multivariate regression methods (Gaussian process regression, kernel
ridge regression 1 and relevance vector regression).

The PRoNTo user interface provides a mechanism for flexible definition of which components
of the experimental design should be used for each classification or regression model. Note that
this will not necessarily be the whole experiment; for example, in a complex fMRI experiment
there may be several groups, each containing multiple subjects, each in turn having multiple ex-
perimental conditions (e.g. corresponding to different subprocesses of a cognitive task). In such
cases, it is usually desirable to ask several different questions of the data, such as discriminating
between groups for a given experimental condition (“between group comparison”), discriminating
between experimental conditions for a fixed group (“between-task comparison”) or training in-
dependent pattern recognition models for different subsets of subjects. All of these can be easily

1Kernel ridge regression is equivalent to a maximum a posteriori approach to Gaussian process regression with
fixed prior variance and no explicit noise term
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Figure 4.2: Subject / condition selection panel for classification models

defined via the user interface by clicking the “Define classes” button (for classification) or “Select
subjects/scans” (for regression).

4.4.1 Classification

The class selection panel is displayed in figure 4.2. First, define the number of classes, noting
that that some classification algorithms (e.g. support vector machines) are limited to binary
classification, while other classification algorithms (e.g. Gaussian processes) support more than
two classes. Enter a name for each class - again, it is a good idea to make these names informative
but short. Notice that immediately after the number of classes has been specified, the group-,
subject- and condition selection panels are greyed out. To enable them, simply select one of the
classes from the drop-down menu.

For each class, select the subjects and conditions (if any) that collectively define that class.
It is possible to select multiple experimental conditions in the same class, but this complicates
model interpretability and potentially also model performance (since by definition conditions are
not identically distributed). If a condition or subject is erroneously selected, click on it in the
“selected subject(s)” or “selected condition(s)” panel and it will be removed from the list.

4.4.2 Regression

Regression is a generic term for all methods attempting to fit a model to observed data in order
to quantify the relationship between two groups of variables. Traditionally in neuroimaging
massively univariate strategies (e.g. GLM) have been largely used, where data for each voxel
are independently fit with the same model. Statistics test are used to make inferences on the
presence of an effect at each voxel (e.g. t-test). Multivariate regression, on the other hand,
takes into account several input variables (voxels) simultaneously, thus modeling the property of
interest considering existing relations among the voxels.

Although most studies exploring predictive analyses in neuroimaging have been related to
classification, regression analysis has aroused interest in neuroscience community for its ability
to decode continuous characteristics from neuroimaging data. This approach has potential to be
used when the examples (patterns) can be associated to a range of real values. The objective is
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Figure 4.3: Subject / condition selection panel for regression models

to predict a continuous value instead of predicting a class to which the example belongs. These
values usually refer to demographic, clinical or behavioral data (as age, blood pressure or scores
resulting from a test, for example). For validation, predicted values can be correlated to the
actual ones. Also, MSE (Mean Square Error) can be calculated, referring to the mean value of
the squared deviations of the predictions from the true values over the cross-validation.

The specification of which subjects and scans to include in regression models is similar to that
for classification, see Figure 4.3 and for the purposes of model specification in PRoNTo, regression
can be thought of as a classification problem with a single class. In the current release, regression is
only supported if there is a single scan per subject (e.g. structural images or parameter estimate
images from a GLM analysis). In a future release it will be possible to perform regression
where an independent regression target is supplied for each trial, block or condition. To perform
a regression, the regression targets are specified during the design stage. It is important to
emphasize that in the current implementation, regression is only supported using the ”select by
scans” option (see chapter 2).

4.5 Cross-validation

In the final part of the specify model input form, select the type of cross-validation to employ.
Cross-validation is a crucial part of the design and is used to assess the generalizability of the
model and to ensure the model has not overfitted the data. Typically this is done by partitioning
the data into one or more partitions: a ”training set”, used to train the model (e.g. fit parameters)
and a ”test set” used to assess performance on unseen data. By repeatedly repartitioning the data
in this way, it is possible to derive an approximately unbiased estimate of the true generalisation
error of the model.

The most common forms in neuroimaging applications are leave-one-subject out (LOSO; ex-
clude one subject for testing, train with the remaining), leave-one-run-out (LORO; leave one fMRI
run out for testing, train with the remainder) and leave-one-block-out (LOBO; leave out a single
block or event and train with the remainder). LOSO is suitable for multi-subject designs, while
LORO and LOBO are suitable for single subject designs, where the former is better suited to de-
signs having multiple experimental runs and the latter is appropriate if there is only a single run.
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Figure 4.4: Review cross-validation matrix

The current release of PRoNTo supports each of these, and also supports leave-one-subject-per-
group-out (LOSGO), which is appropriate if the subjects in each group are paired or for repeated
measures experimental designs. The functionality to provide arbitrary cross-validation resam-
pling approaches will be added in a future release. Information concerning the cross-validation
structure is stored internally in matrix format, and can be visualised by clicking ”Review Kernel
and CV” from the main ProNTo window (see 4.4 for an example). In the left panel, this figure
indicates which group, subject, modality and condition each scan in the feature set belongs to.
On the right, each cross-validation fold (partition) is displayed as a separate column and each
scan is colour coded according to whether it is in the training or test set (or if it is unused).

It should be emphasised that the type of cross-validation selected should be appropriate for
the experimental design. For example, it is nonsensical to select a leave-one-subject-out cross-
validation approach for single subject designs. It is also important to ensure that the training and
test sets are completely independent to avoid the cross-validation statistics becoming biased. This
is particularly important for fMRI, where successive scans in time are highly autocorrelated. For
example, if a leave-one-block-out approach is employed and the blocks are too close together then
the independence of the training and test set will be violated, and the cross-validation statistics
will be biased (techically this is governed by the autocorrelation length of the fMRI timeseries and
the temporal blurring induced by the haemodynamic response function). This can be avoided if
care is taken to ensure that overlapping scans are discarded from the design (see chapter 2), but
it is a very important issue, and the user should still take care to ensure that cross-validation
folds are sufficiently far apart in time (especially for LOBO cross-validation).

During this part of the model specification, it is also possible to select one or more operations
to apply to the data. Each of these operations is defined below:

• Sample averaging (within blocks): constructs samples by computing the average of all
volumes within each block or event for each subject and condition.

• Sample averaging (within subjects): constructs samples by computing the average of
all scans within all blocks for each subject and condition

• Mean centre features using training data: subtract the voxel-wise mean from each
data vector

• Divide data vectors by their norm: scales each data vector to lie on the unit hyper-
sphere by dividing it by its Euclidean norm

• Perform a GLM: currently not supported

A crucial point to note is that all operations are embedded within the cross-validation structure
such that they are applied independently to training and test sets. This prevents a very common
mistake in pattern recognition from occurring, whereby parameters are computed using the whole
data set prior to cross-validation. Observing a complete split between training and test sets during
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all phases of analysis ensures that accuracy measures are an appropriate reflection of the true
generalisation ability of the machine and are not biased because of improper applications of
preprocessing operations to the entire dataset.

Other points to note include: (i) the order of operations is potentially important. For example,
subtracting the mean then dividing each data vector by its norm is not the same as performing
the operations the other way around. (ii) operations (1) and (2) have no effect if no design is
specified or for events with a length of one TR.

At a minimum, we recommend that features should be mean centered over scans during cross-
validation.

4.6 Batch interface

The batch module provides all the functionality provided in the user interface and allows complex
analyses to be scripted in advance. As noted, the batch module also provides functionality not
available in the user interface. The most important difference is that the batch module allows cus-
tomised Matlab functions to be used as prediction machines. This functionality allows PRoNTo
to be easily extended to allow many types of classification and regression algorithms not provided
under the current framework. This can be achieved by selecting “Custom machine” under the
“Model Type” heading. This allows a function name to be specified (i.e. any *.m function in the
Matlab search path). The behaviour of this custom machine can then be controlled by a free-
format argument string. See the developer documentation and the examples in the machines/

subdirectory of the PRoNTo distribution for more information. Another important difference
between the batch and user interfaces is that mean centering data vectors across scans is enabled
by default in the batch.
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5.1 Introduction

The previous module allowed the user to specify one or more models. These include the machine
to be used, the cross-validation scheme and the classification/regression problem. After model
specification one needs to learn the models, i.e. use the training and test datasets to estimate the
parameters of the classifiers/regressors, and test how good the model is at making predictions.
This is done in the module of PRoNTo called ‘Run model(s)’.

In addition, for linear models, PRoNTo provides the option of recovering the model weights
in the original feature (voxel) space, and transforming the weights vector into an image, or map.
These maps contain at each voxel the corresponding weight of the linear model (together defining
the optimal hyperplane), and which related to how much this particular voxel contributed to the
classification/regression task in question. The weights can later be displayed using the ‘Display
results’ module (described below).

5.2 Methods

After running the model specification module described above, the PRT structure (stored in
PRT.mat) contains all the required inputs to run the model estimation. This information can be
found in ‘PRT.model(m).input’, where m is the index of the model. The inputs, which include the
cross-validation matrix, the target values or labels, and the machine (e.g. binary SVM, Random
Forests, etc.), are fed to the estimation routines, which will then add to the PRT an output field
(PRT.model(m).output) containing the estimated parameters, statistics, and other information
from the learning process.

The output of a linear model includes the coefficients from the primal/dual optimisation
problem. These coefficients are then multiplied by the training examples to obtain the model
weights (optimal hyperplane). The vector of model weights has the same dimensions of the
original voxel space, and can therefore be converted to a 3D image. This computation is done for
each fold. The resulting 3D images for all folds are then assembled into a single 4D NIFTI file
with dimensions [3D x (number of folds + 1)], where 1 corresponds to an extra 3D image with
the averaged weights over all folds. The NIFTI file is saved in the same directory as PRT.mat.
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5.3 Graphical user interface

Using the GUI, PRoNTo allows the user to estimate one or more models at one go. Clicking the
‘Run model’ button on PRoNTo’s main window will launch a small window shown in Figure 5.1.
The first thing that needs to be done using this window is to specify which PRT we would like
to work with. PRoNTo will then read the available models from this structure and display the
list of models on the left panel. These models can be selected (the selected models will show on
the right panel) by clicking each model individually or by clicking the ‘Select all’ button in the
middle of the panels. Finally, to estimate the model(s), one needs only to click the bottom button
‘Run model(s)’.

Figure 5.1: Model estimation GUI.

If the user wants to create images of the weights, using the GUI, the user first needs to click
the ‘Compute weights’ button on the main PRoNTo window. This will launch the window shown
in Fig 5.2. To estimate the weights and create the weight maps the user needs again to select a
PRT.mat file. Then PRoNTo will show the list of available models below, and the user can choose
one model for which to estimate the weights. The last option refers to the name of the image file,
which is saved in the same directory as PRT.mat, and that can have a name given by the user.
Alternatively, if left empty PRoNTo will name the file according to the machine corresponding
to the selected model.

5.4 matlabbatch interface

The corresponding matlabbatch module to estimate the models can be found on PRoNTo’s batch
menu as ‘Run model’. The options are the same as in the GUI: one option to choose the PRT.mat

and another to choose the model. The difference here is that the model names will not appear
automatically and the user needs to write down the name (string) of the model to run. This needs
to be exactly the name that was given to the model in the previous step. Another difference is the
fact that only one model can be specified for each batch module. To run more than one model,
more than one ‘Run model’ modules can be added to the jobs list and run sequentially.

The matlabbatch module to compute the weights has exactly the same options has the GUI.
The only difference being that instead of listing the available models in a given PRT, it will ask
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Figure 5.2: Weights computation GUI.

for the name (string) of the model to be used. Again the name of the model should be exactly
the name given in ‘Specify model’.
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Chapter 6

Results display
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6.1 Introduction

Once a machine (e.g. a classifier or a regression function) has been specified, its parameters have
been estimated over training data, and its performance has been evaluated over a test set in
cross-validation, it is necessary to examine the outcome of the whole procedure in details. The
results windows helps make various useful statistical statements about the predictive power of
a machine, which (if any) subjects or conditions are modelled best, and which machine has the
lowest error rate on a given dataset.

Another important aspect is to see what the machine has learned - some brain areas are
probably more informative about class membership than others. For example, in a visual task,
we would expect discriminative information in the occipital lobe. This is called information
mapping, and it is of particular import to be critical at this stage - if the discriminative weight of
a machine is concentrated in the eyes, for example, it is important to correct the analysis mask
that was used to exclude them. The question to ask is “which voxels drive the modelling, and
do they make sense with respect to the experimental paradigm and neurophysiology” ? In the
case of linear kernels, the classifier/regression weight vector is a linear combination or weighted
average of the training examples, and can be plotted as an image representing a weight map.
The weight map is therefore a spatial representation of the decision function, i.e. every voxel
contributes with a certain weight to the decision function. Pattern recognition models (classifiers
or regression functions) are multivariate, i.e. they take into account correlations in the data. Since
the discrimination or prediction is based on the whole brain pattern, rather than on individual
regions or voxels, all voxels contribute to the classification or regression and no conclusions should
be drawn about a particular subset of voxels in isolation.

Finally, examining model output and parameters is helpful in diagnosing the potentially bad
performance of a particular mode - for example, if the machine cannot perform above chance, it
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could be due to an inappropriate experimental paradigm, noisy data, insufficient amount of data,
wrong choice of features, wrong choice of machine. It is important to recognise that any of these
factors could cause the modelling to fail. The results window can help pinpointing the source of
error.

6.2 Launching results display

Make sure all previous steps have been performed (Data and Design, Chapter 2; Prepare feature
set, Chapter 3; Specify Model and Run Model, Chapter 4 ). Optionally, you may want to generate
a weight map for your machine (Compute Weights, Chapter 5), but this is not mandatory.

In the Review Options panel, press Display Results. At the “Select PRT.mat” window,
navigate to where your PRT.mat file is stored (using the left column), and select it in the right
column. The window should then look something like Figure 6.1.

Figure 6.1: Selecting a PRT.mat for results display.

Click on Done, and the main results window opens (see an example initial state in Figure 6.2).
In the Model pane in the top-right corner, you can check that you have loaded the correct PRT.mat
by checking the list of model names appearing in the Model selector. For example, in Figure 6.2,
we have one single model called mySVM AudRest, with several cross-validation folds.

6.3 The main results display window

The window is divided into four panes; going clockwise from top left to bottom left, they are:

Plot : this pane displays the plots for the various analyses that can be performed on test results.
With the exception of the confusion matrix plot, these cannot be interacted with.

Model : this pane allows the user to select the model to analyse, whether to analyse a particular
fold or all folds at once, and which plot to produce. The stats sub-pane allows the user to
generate a variety of statistics on the test, including accuracy statistics for classifiers, and
p-values on these parameters via permutation testing.

Weight map : if a weight map has been computed (see Chapter 5) and loaded, this displays
three projections of the map and allows to navigate it. If Fold: All folds / Average is
selected, then this displays an average weight map across folds rather than the weight map
of a single fold.
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Figure 6.2: Initial state of the results display main window.

Anatomical img : if an anatomical image has been loaded, this will display three projections,
and the cross-hair will be synchronised with the weight map.

To populate the Plot pane, first click on a model in the Model selector, then on ’all folds’ (or
a particular fold) in the Fold selector, and finally on a plot in the Plot selector. The next section
details the plots available.

6.4 Analysing a machine’s performance graphically

Looking at a machine output’s graphically can often yield insights into the performance of the
machine, and where modelling assumptions may prove false.

6.4.1 Predictions plot

A predictions plot displays, for a particular fold, the output value of the machine’s decision
function for each test sample (e.g., for a linear SVM, this could be wTxi + b, for a probabilistic
classifier this could be a posterior probability P (Ω = ω|xi)). A well-performing classifier will
yield very different function values for samples of different classes. By observing which fold have
more or less overlapping function values, it is possible to understand which block / subject /
condition might have a test distribution of features that departs from the training set.

On the plot, each class is represented by a different marker, and indicated in the legend.
Figure 6.3 shows an example predictions plot. Here fold 1 is particularly well-behaved.

6.4.2 Receiver Operating Characteristic (ROC) plot

In two-class classification, there is always a trade-off between class 1 and class 2 errors. Indeed, a
classifier predicting class 1 regardless of input would have excellent accuracy on class 1, but bad
accuracy on class2. This is also known as the sensitivity / specificity trade-off. The ROC curve
is a graphical depiction of this trade-off, showing how one error rate varies as a function of the
other. An ideal classifier would have an ROC passing through the top-left corner. The area under
curve (AUC) is a summary measure of classifier performance, where higher is better (1 represents
perfect performance, 0.5 represents random performance). As with all summary measures, the
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Figure 6.3: Example predictions plot for a two-class problem modelled by an SVM.

AUC is but one way of comparing performance of machines, and cannot be used alone to declare
a machine statistically significantly superior to another on a given dataset.

Figure 6.4 shows an example of such a plot.

Figure 6.4: Example ROC curve for a two-class problem modelled by an SVM.

6.4.3 Histogram plot

The histogram plot is a smoothed density version of the predictions plot, showing how function
values are distributed. A good classifier would have minute overlap between the densities. The
error rate of the classifier is proportional to the area of the overlap. The ROC curve can be
thought of as the result of sweeping a decision threshold over the range of functional values, and
recording the joint sensitivity/specificity values for each decision threshold setting. A typical
linear SVM would have a decision threshold at 0.

Figure 6.5 shows an example of such a plot.

Figure 6.5: Example function values histogram curve for a two-class problem modelled by an
SVM.



6.5. STATISTICAL ANALYSIS OF A MACHINE’S PERFORMANCE 47

6.5 Statistical analysis of a machine’s performance

One of the main questions to ask of a model is how precise its predictions are. In regression,
goodness-of-fit is often assesed via mean squared error. In classification, a common practice is to
compute prediction accuracy, both for each class and for all test data. Once an accuracy value
has been obtained, it is also possible to obtain a p-value for the accuracy, reflecting how certain
we are that the result is not due to chance.

6.5.1 Confusion matrix plot

The confusion matrix shows counts of predicted class labels ω̂n = f(xn) (in rows) versus true
class labels ωn (in columns). An ideal confusion matrix is diagonal: all predicted class labels
correspond to the truth. Off-diagonal elements represent errors. It is important to check that
none of the classes is “sacrificed” to gain accuracy in other classes - in other words, if all classes
are equally important to classify, no class should have more off-diagonal than on-diagonal entries.
Many summary statistics, including class accuracy, total accuracy, sensitivity, and specificity, can
be computed from the confusion matrix.

Figure 6.5 shows an example of a confusion matrix.

Figure 6.6: Example confusion matrix for all folds of a two-class problem modelled by an SVM.

6.5.2 The statistics table

The statistics table (see Figure 6.7 for an example in a classification setting) gives a summary of
the model’s performance. The accuracy p is the total number of correctly classified test samples
divided by the total number of test samples N , irrespective of class. The accuracy is exactly
equivalent to

p = 1− 1

N

∑
n

l01(ωn, f(xn)), (6.1)

where l01(ωn, f(xn)) is a 0-1 loss function that counts each classification error as costing 1
and each classification success as costing 0:

l01(ωn, f(xn)) =

{
0 ωn = f(xn)
1 ωn 6= f(xn)

(6.2)

Balanced accuracy takes the number of samples in each class into account, and gives equal
weight to the accuracies obtained on test samples of each class. In other words, the class-specific
accuracy is computed by restricting the sum of equation 6.1 to be taken over C disjoint subsets
of the whole testing data, where each subset contains only test samples from one class. This
produces a set of class-specific accuracies {p1, . . . , pC}, from which the balanced accuracy can be
computed as

pbal =
1

C

∑
pc. (6.3)
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Balanced accuracy is the measure of choice when there is class imbalance (one class, called
the majority class, has much more data than others).

The table also gives the class accuracies {p1, . . . , pC}, useful to check whether the model
favours some classes over others. If class 1 represents control subjects, and class 2 represents
patients, then class 1 accuracy is equivalent to specificity, and class 2 accuracy is equivalent to
sensitivity.

Figure 6.7: Example statistics tables for all folds of a two-class problem modelled by an SVM.

6.5.3 Permutation testing

Much of statistical theory and machine learning theory rests on the assumption that the data
is IID (independently and identically distributed). However, in functional neuroimaging this
assumption is often not met, due to e.g. within-run correlations and haemodynamic effects.
Therefore, classical estimates of confidence intervals (such as the binomial confidence interval)
may not always be appropriate. Permutation testing is a non-parametric procedure that allows
to obtain meaningful confidence intervals and p-values in this case. Because it requires retraining
the model a number of times, which can be costly in computation time, this is not done by
default. After filling in the repetitions field with a number of repetitions R, pressing the
Permutation test button will run for the specified number of times, and produce a p-value for
accuracy statistics (see Figure 6.7). The smallest increment in p-value is proportional to 1/R
(e.g. 20 repetitions gives you increments of 0.05).

6.6 Visualising a weight map

By clicking on the [...] button next to the Load weight map field, a dialogue opens that allows
you to select the weight map .img file that was computed previously (see Chapter 5 for the
procedure). Similarly, a co-registered anatomical image can be loaded in the Anatomical img

pane of the window. See Figure 6.8 for an example.
The weight map is then displayed with a cross-hair and a colorbar. The colorbar indicates

the relative importance of the voxel in the decision function of the machine. This value is also
indicated in the intensity field of the Anatomical img pane. Note that all voxels in the mask
contribute to the decision function, since the analysis is multivariate. Contrary to common
practice in Statistical Parametric Mapping, which is a mass-univariate approach, it does not
make sense to isolate part of the pattern and report only on the peaks of the distribution of the
decision function’s weight map.
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Figure 6.8: Example weight map over all folds for a two-class problem modelled by an SVM.
In this rest versus auditory condition example, the voxels with the highest relative weight are
located around auditory areas (notably Heschl’s gyrus), bilaterally.
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Part II

Batching system
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Chapter 7

Data & Design

Specify the data and design for each group (minimum one group).

7.1 Directory

Select a directory where the PRT.mat file containing the specified design and data matrix will be
written.

7.2 Groups

Add data and design for one group. Click ’new’ or ’repeat’ to add another group.

7.2.1 Group

Specify data and design for the group.

Name

Name of the group. Example: ’Controls’.

Select by

Depending on the type of data at hand, you may have many images (scans) per subject, such as
a fMRI time series, or you may have many subjects with only one or a small number of images
(scans) per subject , such as PET images. If you have many scans per subject select the option
’subjects’. If you have one scan for many subjects select the option ’scans’.

Subjects Add subjects/scans.

Subject Add new modality for this subject.
Modality Add new modality.
Name Name of modality. Example: ’BOLD’. The names should be consistent accross sub-

jects/groups and the same names specified in the masks.
Interscan interval Specify interscan interval (TR). The units should be seconds.
Scans Select scans (images) for this modality. They must all have the same image dimensions,

orientation, voxel size etc.
Data & Design Specify data and design.
Load SPM.mat Load design from SPM.mat (if you have previously specified the experimental

design with SPM).
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Specify design Specify design: scans (data), onsets and durations.
Units for design The onsets of events or blocks can be specified in either scans or seconds.
Conditions Specify conditions. You are allowed to combine both event- and epoch-related

responses in the same model and/or regressor. Any number of condition (event or epoch) types
can be specified. Epoch and event-related responses are modeled in exactly the same way by
specifying their onsets [in terms of onset times] and their durations. Events are specified with
a duration of 0. If you enter a single number for the durations it will be assumed that all
trials conform to this duration.For factorial designs, one can later associate these experimental
conditions with the appropriate levels of experimental factors.

Condition Specify condition: name, onsets and duration.
Name Name of condition (alphanumeric strings only).
Onsets Specify a vector of onset times for this condition type.
Durations Specify the event durations. Epoch and event-related responses are modeled in

exactly the same way but by specifying their different durations. Events are specified with a
duration of 0. If you enter a single number for the durations it will be assumed that all trials
conform to this duration. If you have multiple different durations, then the number must match
the number of onset times.

Multiple conditions Select the *.mat file containing details of your multiple experimental
conditions.

If you have multiple conditions then entering the details a condition at a time is very inefficient.
This option can be used to load all the required information in one go. You will first need to
create a *.mat file containing the relevant information.

This *.mat file must include the following cell arrays (each 1 x n): names, onsets and dura-
tions. eg. names=cell(1,5), onsets=cell(1,5), durations=cell(1,5), then names2=’SSent-DSpeak’,
onsets2=[3 5 19 222], durations2=[0 0 0 0], contain the required details of the second condition.
These cell arrays may be made available by your stimulus delivery program, eg. COGENT. The
duration vectors can contain a single entry if the durations are identical for all events.

Time and Parametric effects can also be included. For time modulation include a cell array
(1 x n) called tmod. It should have a have a single number in each cell. Unused cells may contain
either a 0 or be left empty. The number specifies the order of time modulation from 0 = No Time
Modulation to 6 = 6th Order Time Modulation. eg. tmod3 = 1, modulates the 3rd condition by
a linear time effect.

For parametric modulation include a structure array, which is up to 1 x n in size, called pmod.
n must be less than or equal to the number of cells in the names/onsets/durations cell arrays.
The structure array pmod must have the fields: name, param and poly. Each of these fields is in
turn a cell array to allow the inclusion of one or more parametric effects per column of the design.
The field name must be a cell array containing strings. The field param is a cell array containing
a vector of parameters. Remember each parameter must be the same length as its corresponding
onsets vector. The field poly is a cell array (for consistency) with each cell containing a single
number specifying the order of the polynomial expansion from 1 to 6.

Note that each condition is assigned its corresponding entry in the structure array (condition
1 parametric modulators are in pmod(1), condition 2 parametric modulators are in pmod(2), etc.
Within a condition multiple parametric modulators are accessed via each fields cell arrays. So for
condition 1, parametric modulator 1 would be defined in pmod(1).name1, pmod(1).param1, and
pmod(1).poly1. A second parametric modulator for condition 1 would be defined as pmod(1).name2,
pmod(1).param2 and pmod(1).poly2. If there was also a parametric modulator for condition
2, then remember the first modulator for that condition is in cell array 1: pmod(2).name1,
pmod(2).param1, and pmod(2).poly1. If some, but not all conditions are parametrically modu-
lated, then the non-modulated indices in the pmod structure can be left blank. For example, if
conditions 1 and 3 but not condition 2 are modulated, then specify pmod(1) and pmod(3). Sim-
ilarly, if conditions 1 and 2 are modulated but there are 3 conditions overall, it is only necessary
for pmod to be a 1 x 2 structure array.

EXAMPLE:
Make an empty pmod structure:
pmod = struct(’name’,”,’param’,,’poly’,);
Specify one parametric regressor for the first condition:
pmod(1).name1 = ’regressor1’;
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pmod(1).param1 = [1 2 4 5 6];
pmod(1).poly1 = 1;
Specify 2 parametric regressors for the second condition:
pmod(2).name1 = ’regressor2-1’;
pmod(2).param1 = [1 3 5 7];
pmod(2).poly1 = 1;
pmod(2).name2 = ’regressor2-2’;
pmod(2).param2 = [2 4 6 8 10];
pmod(2).poly2 = 1;
The parametric modulator should be mean corrected if appropriate. Unused structure entries

should have all fields left empty.
Covariates Select a .mat file containing your covariates (i.e. any other data/information you

would like to include in your design). This file should contain a variable ’R’ with a matrix of
covariates.

No design Do not specify design. This option can be used for modalities (e.g. structural
scans) that do not have an experimental design.

Scans Depending on the type of data at hand, you may have many images (scans) per subject,
such as a fMRI time series, or you may have many subjects with only one or a small number of
images (scans) per subject, such as PET images. Select this option if you have many subjects
per modality to spatially normalise, but there is one or a small number of scans for each subject.
This is a faster option with less information to specify than the ’select by subjects’ option. Both
options create the same ’PRT.mat’ but ’select by scans’ is optimised for modalities with no design.

Modality Specify modality, such as name and data.
Name Name of modality. Example: ’BOLD’. The names should be consistent accross sub-

jects/groups and the same names specified in the masks.
Files Select scans (images) for this modality. They must all have the same image dimensions,

orientation, voxel size etc.
Regression targets (per scans) Enter one regression target per scan. or enter the name

of a variable. This variable should be a vector [Nscans x 1], where Nscans is the number of
scans/images.

Covariates Select a .mat file containing your covariates (i.e. any other data/information you
would like to include in your design). This file should contain a variable ’R’ with a matrix of
covariates.

7.3 Masks

Select first-level (pre-processing) mask for each modality. The name of the modalities should be
the same as the ones entered for subjects/scans.

7.3.1 Modality

Specify name of modality and file for each mask. The name should be consistent with the names
chosen for the modalities (subjects/scans).

Name

Name of modality. Example: ’BOLD’. The names should be consistent accross subjects/groups
and the same names specified in the masks.

File

Select one first-level mask (image) for each modality. This mask is used to optimise the prepare
data step. In ’specify model’ there is an option to enter a second-level mask, which might be used
to select only a few areas of the brain for subsequent analyses.
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7.4 HRF overlap

If using fMRI data please specify the width of the hemodynamic response function (HRF). This
will be used to calculate the overlap between events. Leave as 0 for other modalities (other than
fMRI).

7.5 HRF delay

If using fMRI data please specify the delay of the hemodynamic response function (HRF). This
will be used to calculate the overlap between events. Leave as 0 for other modalities (other than
fMRI).

7.6 Review

Choose ’Yes’ if you would like to review your data and design in a separate window.
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Feature set / Kernel

Compute feature set according to the design specified

8.1 Load PRT.mat

Select data/design structure file (PRT.mat).

8.2 Name

Target name for kernel matrix. This should containonly alphanumerical characters or underscores
( ).

8.3 Modalities

Add modalities

8.3.1 Modality

Specify modality, such as name and data.

Name

Name of modality. Example: ’BOLD’. Must match design specification

Scans / Conditions

Which task conditions do you want to include in the kernel matrix? Select conditions: select
specific conditions from the timeseries. All conditions: include all conditions extracted from the
timeseries. All scans: include all scans for each subject. This may be used for modalities with
only one scan per subject (e.g. PET), if you want to include all scans from an fMRI timeseries
(assumes you have not already detrended the timeseries and extracted task components)

All scans No design specified. This option can be used for modalities (e.g. structural scans)
that do not have an experimental design or for an fMRI designwhere you want to include all scans
in the timeseries

All Conditions Include all conditions in this kernel matrix
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Voxels to include

Specify which voxels from the current modality you would like to include

All voxels Use all voxels in the design mask for this modality

Specify mask file Select a mask for the selected modality.

Detrend

Type of temporal detrending to apply

None Do not detrend the data

Polynomial detrend Perform a voxel-wise polynomial detrend on the data (1 is linear de-
trend)

Order Enter the order for polynomial detrend (1 is linear detrend)

Discrete cosine transform Use a discrete cosine basis set to detrend the data.

Cutoff of high-pass filter (second) The default high-pass filter cutoff is 128 seconds
(same as SPM)

Scale input scans

Do you want to scale the input scans to have a fixed mean (i.e. grand mean scaling)?

No scaling Do not scale the input scans

Specify from *.mat Specify a mat file containing the scaling parameters for each modality.
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Specify model

Construct model according to design specified

9.1 Load PRT.mat

Select data/design structure file (PRT.mat).

9.2 Model name

Name for model

9.3 Use kernels

Are the data for this model in the form of kernels/basis functions? If ’No’ is selected, it is assumed
the data are in the form of feature matrices

9.4 Feature sets

Enter the name of a feature set to include in this model. This can be kernel or a feature matrix.

9.5 Model Type

Select which kind of predictive model is to be used.

9.5.1 Classification

Specify classes and machine for classification.

Classes

Specify which elements belong to this class. Click ’new’ or ’repeat’ to add another class.

Class Specify which groups, modalities, subjects and conditions should be included in this class

Name Name for this class, e.g. ’controls’
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Groups Add one group to this class. Click ’new’ or ’repeat’ to add another group.
Group Specify data and design for the group.
Group name Name of the group to include. Must exist in PRT.mat
Subjects Subject numbers to be included in this class. Note that individual numbers (e.g.

1), or a range of numbers (e.g. 3:5) can be entered
Conditions / Scans Which task conditions do you want to include? Select conditions: select

specific conditions from the timeseries. All conditions: include all conditions extracted from the
timeseries. All scans: include all scans for each subject. This may be used for modalities with
only one scan per subject (e.g. PET), if you want to include all scans from an fMRI timeseries
(assumes you have not already detrended the timeseries and extracted task components)

Specify Conditions Specify the name of conditions to be included
Condition Specify condition:.
Name Name of condition to include.
All Conditions Include all conditions in this model
All scans No design specified. This option can be used for modalities (e.g. structural scans)

that do not have an experimental design or for an fMRI designwhere you want to include all scans
in the timeseries

Machine

Choose a prediction machine for this model

SVM Classification Binary support vector machine.

Arguments Arguments for prt machine svm bin. You should use -t 4 if you selected ’use
kernels’ option, and -t 0 otherwise. See libSVM documentation for details.

Gaussian Process Classification Gaussian Process Classification

Arguments Arguments for prt machine gpml

Multiclass GPC Multiclass GPC

Arguments Arguments for prt machine gpclap

Random Forest Random Forest. Breiman, Leo (2001).”Random Forests”.
Machine Learning 45:5-32. This is a wrapper around
Peter Geurt’s implementation in his Regression Tree
package.

Ntrees Number of trees in the forest.

Custom machine Choose another prediction machine

Function Choose a function that will perform prediction.

Arguments Arguments for prediction machine.

9.5.2 Regression

Add group data and machine for regression.

Groups

Add one group to this regression model. Click ’new’ or ’repeat’ to add another group.
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Group Specify data and design for the group.

Group name Name of the group to include. Must exist in PRT.mat

Subjects Subject numbers to be included in this class. Note that individual numbers (e.g.
1), or a range of numbers (e.g. 3:5) can be entered

Modality name Name of modality. We only allow one modality for regression model per
group at this moment

Example: ’BOLD’. Must match design specification

Machine

Choose a prediction machine for this model

Kernel Ridge Regression Kernel Ridge Regression.

Regularization Regularization for prt machine krr.

Relevance Vector Regression Relevance Vector Regression. Tipping, Michael E.; Smola,
Alex (2001).

”Sparse Bayesian Learning and the Relevance Vector Machine”. Journal of Machine Learning
Research 1: 211?244.

Gaussian Process Regression Gaussian Process Regression

Arguments Arguments for prt machine gpr

Custom machine Choose another prediction machine

Function Choose a function that will perform prediction.

Arguments Arguments for prediction machine.

9.6 Cross-validation type

Choose the type of cross-validation to be used

9.6.1 Leave one subject out

Leave a single subject out each cross-validation iteration

9.6.2 Leave one subject per group out

Leave out a single subject from each group at a time. Appropriate for repeated measures or
paired samples designs.

9.6.3 Leave one block out

Leave out a single block or event from each subject each iteration. Appropriate for single subject
designs.

9.6.4 Leave one run/session out

Leave out a single run (modality) from each subject each iteration. Appropriate for single subject
designs with multiple runs/sessions.
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9.6.5 Custom

Load a cross-validation matrix. Note that an interface will be provided for this functionality in
a later release

9.7 Include all scans

This option can be used to pass all the scans for each subject to the learning machine, regardless
of whether they are directly involved in the classification or regression problem. For example, this
can be used to estimate a GLM from the whole timeseries for each subject prior to prediction.
This would allow the resulting regression coefficient images to be used as samples.

9.8 Data operations

Specify operations to apply

9.8.1 Mean centre features

Select an operation to apply.

9.8.2 Other Operations

Include other operations?

No operations

No design specified. This option can be used for modalities (e.g. structural scans) that do not
have an experimental design or for an fMRI designwhere you want to include all scans in the
timeseries

Select Operations

Add zero or more operations to be applied to the data before the prediction machine is called.
These are executed within the cross-validation loop (i.e. they respect training/test independence)
and will be executed in the order specified.

Operation Select an operation to apply.
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Run model

Trains and tests the predictive machine using the cross-validation structure specified by the model.

10.1 Load PRT.mat

Select PRT.mat (file containing data/design structure).

10.2 Model name

Name of a model. Must match your entry in the
’Specify model’ batch module.
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Part III

Data processing examples
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Chapter 11

Data set 1

This is where we explain how how to process data set 1.
This will arrive soon...
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Chapter 12

Data set 2

This is where we explain how how to process data set 2.
This will arrive soon...
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Part IV

Advanced topics
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Chapter 13

PRT structure

This is how the main PRT structure is organised.
PRT

• group

• gr name

• subject

• subj name()

• modality()

• mod name

• TR

• scans

• design

• conds

• cond name()

• onsets()

• durations()

• rt trial()

• scans()

• blocks()

• discardedscans()

• hrfdiscardedscans()

• stats

• overlap

• goodscans

• discscans

• meanovl

• stdovl

• mgoodovl

• sgoodovl

• goodovl

• TR

• unit

• covar

• masks

• mod name
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• fname

• fs

• fs name

• k file

• id col names

• fas

• im

• ifa

• modality

• mod name

• detrend

• param dt

• mode

• idfeat fas

• normalise

• type

• scaling

• id mat

• fas

• mod name

• dat

• detrend

• param dt

• hdr

• fname

• dim

• mat

• pinfo

• dt

• n

• descrip

• private

• idfeat img

• model

• model name()

• input()

• use kernel

• type

• machine

• function

• args

• class

• class name()

• group()

• gr name



75

• subj

• num()

• modality()

• fs

• fs name

• samp idx

• targets

• targ allscans

• cv mat

• operations

• cv type

• output()

• fold

• targets()

• predictions()

• stats()

• con mat

• acc

• c acc

• b acc

• acc lb

• acc ub

• func val()

• type()

• alpha()

• b()

• totalSV()

• stats

• con mat

• acc

• c acc

• b acc

• acc lb

• acc ub
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This is the list of PRoNTo functions, including the subdirectories: machines and utils.

14.1 pronto.m

Function launching PRoNTo (Pattern Recognition for Neuroimaging Toolbox),

see prt.m for more details

14.2 prt.m

Pattern Recognition for Neuroimaging Toolbox, PRoNTo.

This function initializes things for PRoNTo and provides some low level

functionalities

14.3 prt apply operation.m

function to apply a data operation to the training, test and

in.train: training data

in.tr id: id matrix for training data
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in.use kernel: are the data in kernelised form

in.tr targets: training targets (optional field)

in.pred type: ’classification’ or ’regression’ (required for tr targets)

A test set may also be specified, which require the following fields:

in.test: test data

in.testcov: test covariance (only if use kernel = true)

in.te targets: test targets

in.te id: id matrix for test data

opid specifies the operation to apply, where:

1 = Temporal Compression

2 = Sample averaging (average samples for each subject/condition)

3 = Mean centre features over subjects

4 = Divide data vectors by their norm

5 = Perform a GLM (fMRI only)

N.B: - all operations are applied independently to training and test

partitions

- see Chu et. al (2011) for mathematical descriptions of operations

1 and 2 and Shawe-Taylor and Cristianini (2004) for a description

of operation 3.

References:

Chu, C et al. (2011) Utilizing temporal information in fMRI decoding:

classifier using kernel regression methods. Neuroimage. 58(2):560-71.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for Pattern

analysis. Cambridge University Press.

14.4 prt check design.m

FORMAT [conds] = prt check design(cond,tr,units,hrfoverlap)

Check the design and discards scans which are either overlapping between

conditions or which do not respect a minimum time interval between

conditions (due to the width of the HRF function).

INPUT

- cond : structure containing the names, durations and onsets of the

conditions

- tr : interscan interval (TR)

- units : 1 for seconds, 0 for scans

- hrfoverlap : value to correct for BOLD overlap (in seconds)

- hrfdelay : value to correct for BOLD delay (in seconds)

OUTPUT

the same cond structure containing supplementary fields:

- scans : scans retained for further classification

- discardedscans: scans discarded because they overlapped between

conditions

- hrfdiscardedscans: scans discarded because they didn’t respect the

minimum time interval between conditions

- blocks: represents the grouping of the stimuli (for

cross-validation)

- stats: struct containing the original time intervals, the
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time interval with only the ’good’ scans, their

means and standard deviation

14.5 prt compute weights.m

FORMAT prt compute weights(PRT,in)

This function calls prt weights to compute weights

Inputs:

PRT - data/design/model structure (it needs to contain

at least one estimated model).

in - structure with specific information to create

weights

.model name - model name (string)

.img name - (optional) name of the file to be created

(string)

.pathdir - directory path where to save weights (same as the

one for PRT.mat) (string)

Output:

empty - does not return anything (it creates an .img file)

14.6 prt cv model.m

Function to run a cross-validation structure on a given model

Inputs:

-------

PRT containing the specified model plus the following arguments:

in.fname: filename for PRT.mat (string)

in.model name: name for this model (string)

Outputs:

--------

Writes the following fields in the PRT data structure:

PRT.model(m).output.fold(i).targets: targets for fold(i)

PRT.model(m).output.fold(i).predictions: predictions for fold(i)

PRT.model(m).output.fold(i).stats: statistics for fold(i)

PRT.model(m).output.fold(i).custom: optional fields

Notes: - The PRT.model(m).input fields are set by prt init model, not by

this function

14.7 prt cv opt param.m

Function to pass optional parameters into the classifier. This is

primarily used for complex data prediction methods that need to know

something about the experimental design that is normally not accessible

to generic prediction functions (e.g. task onsets or TR). Examples of

this kind of classifier include multi-class classifier using kernel

regression (MCKR) and the machine that implements nested

cross-validation.
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Inputs:

-------

PRT: main data structure

ID: id matrix for the current cross-validation fold

CV: cross-validation structure (current fold only)

Outputs:

--------

Provides the following fields for use by the classifier

param.id fold: the id matrix for this fold

param.model id: id for the model being computed

param.PRT: PRT data structure

14.8 prt data conditions.m

PRT DATA CONDITIONS M-file for prt data conditions.fig

PRT DATA CONDITIONS, by itself, creates a new PRT DATA CONDITIONS or

raises the existing singleton*.

H = PRT DATA CONDITIONS returns the handle to a new PRT DATA CONDITIONS

or the handle to the existing singleton*.

PRT DATA CONDITIONS(’CALLBACK’,hObject,eventData,handles,...) calls the

local function named CALLBACK in PRT DATA CONDITIONS.M with the given

input arguments.

PRT DATA CONDITIONS(’Property’,’Value’,...) creates a new

PRT DATA CONDITIONS or raises the existing singleton*. Starting from the

left, property value pairs are applied to the GUI before

prt data conditions OpeningFcn gets called. An unrecognized property name

or invalid value makes property application stop. All inputs are passed

to prt data conditions OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.9 prt data modality.m

PRT DATA MODALITY M-file for prt data modality.fig

PRT DATA MODALITY, by itself, creates a new PRT DATA MODALITY or raises

the existing singleton*.

H = PRT DATA MODALITY returns the handle to a new PRT DATA MODALITY or

the handle to the existing singleton*.

PRT DATA MODALITY(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT DATA MODALITY.M with the given input arguments.

PRT DATA MODALITY(’Property’,’Value’,...) creates a new PRT DATA MODALITY
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or raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt data modality OpeningFcn gets called.

An unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt data modality OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.10 prt data review.m

PRT DATA REVIEW M-file for prt data review.fig

PRT DATA REVIEW, by itself, creates a new PRT DATA REVIEW or raises the

existing singleton*.

H = PRT DATA REVIEW returns the handle to a new PRT DATA REVIEW or the

handle to the existing singleton*.

PRT DATA REVIEW(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT DATA REVIEW.M with the given input arguments.

PRT DATA REVIEW(’Property’,’Value’,...) creates a new PRT DATA REVIEW or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt data review OpeningFcn gets

called. An unrecognized property name or invalid value makes property

application stop. All inputs are passed to prt data review OpeningFcn

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.11 prt defaults.m

Sets the defaults which are used by the Pattern Recognition for

Neuroimaging Toolbox, aka. PRoNTo.

FORMAT prt defaults

This file can be customised to any the site/person own setup.

Individual users can make copies which can be stored on their own

matlab path. Make sure your ’prt defaults’ is the first one found in the

path. See matlab documentation for details on setting path.

Care must be taken when modifying this file!

The structure and content of this file are largely inspired by SPM:

http://www.fil.ion.ucl.ac.uk/spm
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14.12 prt fs.m

Function to build file arrays containing the (linearly detrended) data

and compute a linear (dot product) kernel from them

Inputs:

-------

in.fname: filename for the PRT.mat (string)

in.fs name: name of fs and relative path filename for the kernel matrix

in.mod(m).mod name: name of modality to include in this kernel (string)

in.mod(m).detrend: detrend (scalar: 0 = none, 1 = linear)

in.mod(m).param dt: parameters for the kernel detrend (e.g. DCT bases)

in.mod(m).mode: ’all cond’ or ’all scans’ (string)

in.mod(m).mask: mask file used to create the kernel

in.mod(m).normalise: 0 = none, 1 = normalise kernel, 2 = scale modality

in.mod(m).matnorm: filename for scaling matrix

Outputs:

--------

Calls prt init fs to populate basic fields in PRT.fs(f)...

Writes PRT.mat

Writes the kernel matrix to the path indicated by in.fs name

14.13 prt func2html.m

Script to generate the list of .m functions into html files

which can be browsed around with your favourite browser.

Note that this script relies on the M2HTML package which is *NOT*

distributed with PRoNTo!

For more information, please read the M2HTML tutorial and FAQ at:

$<$http://www.artefact.tk/software/matlab/m2html/$>$

14.14 prt get defaults.m

Get/set the defaults values associated with an identifier

FORMAT defaults = prt get defaults

Return the global "defaults" variable defined in prt defaults.m.

FORMAT defval = prt get defaults(defstr)

Return the defaults value associated with identifier "defstr".

Currently, this is a ’.’ subscript reference into the global

"prt def" variable defined in prt defaults.m.

FORMAT prt get defaults(defstr, defval)

Sets the defaults value associated with identifier "defstr". The new

defaults value applies immediately to:

* new modules in batch jobs

* modules in batch jobs that have not been saved yet

This value will not be saved for future sessions of PRoNTo. To make
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persistent changes, edit prt defaults.m.

The structure and content of this file are largely inspired by SPM &

Matlabbatch.

http://www.fil.ion.ucl.ac.uk/spm

http://sourceforge.net/projects/matlabbatch/

14.15 prt get filename.m

out = prt get filename(ids)

14.16 prt init fs.m

function to initialise the kernel data structure

------------------------------------------------

FORMAT: Two modes are possible:

fid = prt init fs(PRT, in)

[fid, PRT, tocomp] = prt init fs(PRT, in)

USAGE 1:

-------------------------------------------------------------------------

function will return the id of a feature set or an error if it doesn’t

exist in PRT.mat

Input:

------

in.fs name: name for the feature set (string)

Output:

-------

fid : is the identifier for the feature set in PRT.mat

USAGE 2:

-------------------------------------------------------------------------

function will create the feature set in PRT.mat and overwrite it if it

already exists.

Input:

------

in.fs name: name for the feature set (string)

in.fname: name of PRT.mat

in.mod(m).mod name: name of the modality

in.mod(m).detrend: type of detrending

in.mod(m).mode: ’all scans’ or ’all cond’

in.mod(m).mask: mask used to create the feature set

in.mod(m).param dt: parameters used for detrending (if any)

in.mod(m).normalise: scale the input scans or not

in.mod(m).matnorm: mat file used to scale the input scans

Output:

-------

fid : is the identifier for the model constructed in PRT.mat
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Populates the following fields in PRT.mat (copied from above):

PRT.fs(f).fs name

PRT.fs(f).fas

PRT.fs(f).k file

Also computes the following fields:

PRT.fs(f).id mat: Identifier matrix (useful later)

PRT.fs(f).id col names: Columns in the id matrix

Note: this function does not write PRT.mat. That should be done by the

calling function

14.17 prt init model.m

function to initialise the model data structure

FORMAT: Two modes are possible:

mid = prt init model(PRT, in)

[mid, PRT] = prt init model(PRT, in)

USAGE 1:

------------------------------------------------------------------------

function will return the id of a model or an error if it doesn’t

exist in PRT.mat

Input:

------

in.model name: name of the model (string)

Output:

-------

mid : is the identifier for the model in PRT.mat

USAGE 2:

-------------------------------------------------------------------------

function will create the model in PRT.mat and overwrite it if it

already exists.

Input:

------

in.model name: name of the model to be created (string)

in.use kernel: use kernel or basis functions for this model (boolean)

in.machine: prediction machine to use for this model (struct)

in.type: ’classification’ or ’regression’

Output:

-------

Populates the following fields in PRT.mat (copied from above):

PRT.model(m).input.model name

PRT.model(m).input.type

PRT.model(m).input.use kernel

PRT.model(m).input.machine

Note: this function does not write PRT.mat. That should be done by the

calling function
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14.18 prt latex.m

Extract information from the toolbox m-files and output them as usable

.tex files which can be directly included in the manual.

There are 2 types of m2tex operations:

1. converting the job configuration tree, i.e. * cfg * files defining the

batching interface into a series of .tex files.

NOTE: Only generate .tex files for each exec branch of prt batch.

2. converting the help header of the functions into .tex files.

These files are then included in a manually written prt manual.tex file,

which also includes chapter/sections written manually.

File derived from that of the SPM8 distribution.

http://www.fil.ion.ucl.ac.uk/spm

14.19 prt load.m

Function to load the PRT.mat and check its integrity regarding the

kernels and feature sets that it is supposed to contain. Updates the set

feature name if needed.

input : name of the PRT.mat, path included

output : PRT structure updated

14.20 prt load blocks.m

Load one or more blocks of data.

This script is a effectively a wrapper function that for the routines

that actually do the work (SPM nifti routines)

The syntax is either:

img = prt load blocks(filenames, block size, block range) just to specify

continuous blocks of data

or

img = prt load blocks(filenames, voxel index) to access non continuous

blocks

14.21 prt model.m

Function to configure and build the PRT.model data structure

Input:

------

PRT fields:

model.fs(f).fs name: feature set(s) this CV approach is defined for



14.22. PRT NORMALISE KERNEL.M 87

model.fs(f).fs features: feature selection mode (’all’ or ’mask’)

model.fs(f).mask file: mask for this feature set (fs features=’mask’)

in.fname: filename for PRT.mat

in.model name: name for this cross-validation structure

in.type: ’classification’ or ’regression’

in.use kernel: does this model use kernels or features?

in.operations: operations to apply before prediction

in.fs(f).fs name: feature set(s) this CV approach is defined for

in.class(c).class name

in.class(c).group(g).subj(s).num

in.class(c).group(g).subj(s).modality(m).mod name

EITHER: in.class(c).group(g).subj(s).modality(m).conds(c).cond name

OR: in.class(c).group(g).subj(s).modality(m).all scans

OR: in.class(c).group(g).subj(s).modality(m).all cond

in.cv.type: type of cross-validation (’loso’,’losgo’,’custom’)

in.cv.mat file: file specifying CV matrix (if type=’custom’);

Output:

-------

This function performs the following functions:

1. populates basic fields in PRT.model(m).input

2. computes PRT.model(m).input.targets based on in.class(c)...

3. computes PRT.model(m).input.samp idx based on targets

4. computes PRT.model(m).input.cv mat based on the labels and CV spec

14.22 prt normalise kernel.m

This function normalises the kernel matrix such that each entry is

divided by the product of the std deviations, i.e.

K new(x,y) = K(x,y) / sqrt(var(x)*var(y))

14.23 prt permutation.m

Function to compute permutation test

Inputs:

-------

PRT: PRT structured including model

n permu: number of permutations

modelid: model ID

Outputs:

--------

for classification

permutation.c acc: Permuted accuracy per class

permutation.b acc: Permuted balanced accuracy

permutation.pvalue b acc: p-value for c acc

permutation.pvalue c acc: p-value for b acc



88 CHAPTER 14. LIST OF PRONTO FUNCTIONS

for regression

permutation.corr: Permuted correlation

permutation.mse: Permuted mean square error

permutation.corr: p-value for corr

permutation.mse: p-value for mse

14.24 prt preproc.m

Function to preprocess the images, by loading each one of them (or the

ones corresponding to the selected scans when a design was specified),

applying the masks on them and, if asked, detrend along each voxel along

the time series.

INPUT:

fname filename and path to PRT.mat

OUTPUT:

results are saved on disk.

14.25 prt remove confounds.m

[Kr, R] = prt remove confounds(K,C)

Function to remove confounds from kernel.

14.26 prt stats.m

Function to compute predictions machine performance statistcs statistics

Inputs:

----------------

model.predictions: predictions derived from the predictive model

model.type: what type of prediction machine (e.g. ’classifier’,’regression’)

tte: true targets (test set)

ttr: true targets (training set - needed to get the number of classes)

flag: ’fold’ for statistics in each fold

’model’ for statistics in each model

Outputs:

-------------------

Classification:

stats.con mat: Confusion matrix (nClasses x nClasses matrix, pred x true)

stats.acc: Accuracy (scalar)

stats.b acc: Balanced accuracy (nClasses x 1 vector)

stats.c acc: Accuracy by class (nClasses x 1 vector)

stats.c pv: Predictive value for each class (nClasses x 1 vector)

Regression:

stats.mse: Mean square error between test and prediction

stats.corr: Correlation between test and prediction
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14.27 prt struct2latex.m

Function that takes in a structure S and writes down the latex code

describing the whole structure and substructures recursively.

The routine specifically generates the ’adv PRTstruct.tex’ file that is

included, in the prt manual.

Bits of the code and copied/inspired by spm latex.m from the SPM8

distribution: http://www.fil.ion.ucl.ac.uk/spm

14.28 prt text input.m

PRT TEXT INPUT M-file for prt text input.fig

PRT TEXT INPUT, by itself, creates a new PRT TEXT INPUT or raises the

existing singleton*.

H = PRT TEXT INPUT returns the handle to a new PRT TEXT INPUT or the

handle to the existing singleton*.

PRT TEXT INPUT(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT TEXT INPUT.M with the given input arguments.

PRT TEXT INPUT(’Property’,’Value’,...) creates a new PRT TEXT INPUT or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt text input OpeningFcn gets called.

An unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt text input OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.29 prt ui compute weights.m

PRT UI COMPUTE WEIGHTS M-file for prt ui compute weights.fig

PRT UI COMPUTE WEIGHTS, by itself, creates a new PRT UI COMPUTE WEIGHTS

or raises the existing singleton*.

H = PRT UI COMPUTE WEIGHTS returns the handle to a new PRT UI COMPUTE WEIGHTS

or the handle to the existing singleton*.

PRT UI COMPUTE WEIGHTS(’CALLBACK’,hObject,eventData,handles,...) calls

the local function named CALLBACK in PRT UI COMPUTE WEIGHTS.M with the

given input arguments.

PRT UI COMPUTE WEIGHTS(’Property’,’Value’,...) creates a new PRT UI COMPUTE WEIGHTS

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt ui compute weights OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt ui compute weights OpeningFcn
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via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.30 prt ui cv model.m

PRT UI CV MODEL M-file for prt ui cv model.fig

PRT UI CV MODEL, by itself, creates a new PRT UI CV MODEL or raises the

existing singleton*.

H = PRT UI CV MODEL returns the handle to a new PRT UI CV MODEL or the

handle to the existing singleton*.

PRT UI CV MODEL(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI CV MODEL.M with the given input

arguments.

PRT UI CV MODEL(’Property’,’Value’,...) creates a new PRT UI CV MODEL or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt ui cv model OpeningFcn gets

called. An unrecognized property name or invalid value makes property

application stop. All inputs are passed to prt ui cv model OpeningFcn

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.31 prt ui design.m

PRT UI DESIGN M-file for prt ui design.fig

PRT UI DESIGN, by itself, creates a new PRT UI DESIGN or raises the

existing singleton*.

H = PRT UI DESIGN returns the handle to a new PRT UI DESIGN or the handle

to the existing singleton*.

PRT UI DESIGN(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI DESIGN.M with the given input arguments.

PRT UI DESIGN(’Property’,’Value’,...) creates a new PRT UI DESIGN or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt ui design OpeningFcn gets called.

An unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt ui design OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".
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See also: GUIDE, GUIDATA, GUIHANDLES

14.32 prt ui kernel construction.m

PRT UI KERNEL MATLAB code for prt ui kernel.fig

PRT UI KERNEL, by itself, creates a new PRT UI KERNEL or raises the

existing singleton*.

H = PRT UI KERNEL returns the handle to a new PRT UI KERNEL or the handle

to the existing singleton*.

PRT UI KERNEL(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI KERNEL.M with the given input arguments.

PRT UI KERNEL(’Property’,’Value’,...) creates a new PRT UI KERNEL or raises

the existing singleton*. Starting from the left, property value pairs are

applied to the GUI before prt ui kernel OpeningFcn gets called. An

unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt ui kernel OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.33 prt ui main.m

PRT UI MAIN M-file for prt ui main.fig

PRT UI MAIN, by itself, creates a new PRT UI MAIN or raises the existing

singleton*.

H = PRT UI MAIN returns the handle to a new PRT UI MAIN or the handle to

the existing singleton*.

PRT UI MAIN(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI MAIN.M with the given input arguments.

PRT UI MAIN(’Property’,’Value’,...) creates a new PRT UI MAIN or raises

the existing singleton*. Starting from the left, property value pairs are

applied to the GUI before prt ui main OpeningFcn gets called. An

unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt ui main OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
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14.34 prt ui model.m

PRT UI KERNEL CONSTRUCTION M-file for prt ui kernel construction.fig

PRT UI KERNEL CONSTRUCTION, by itself, creates a new

PRT UI KERNEL CONSTRUCTION or raises the existing singleton*.

H = PRT UI KERNEL CONSTRUCTION returns the handle to a new

PRT UI KERNEL CONSTRUCTION or the handle to the existing singleton*.

PRT UI KERNEL CONSTRUCTION(’CALLBACK’,hObject,eventData,handles,...)

calls the local function named CALLBACK in PRT UI KERNEL CONSTRUCTION.M

with the given input arguments.

PRT UI KERNEL CONSTRUCTION(’Property’,’Value’,...) creates a new

PRT UI KERNEL CONSTRUCTION or raises the existing singleton*. Starting

from the left, property value pairs are applied to the GUI before

prt ui kernel construction OpeningFcn gets called. An unrecognized

property name or invalid value makes property application stop. All

inputs are passed to prt ui kernel construction OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.35 prt ui prepare data.m

PRT UI KERNEL MATLAB code for prt ui kernel.fig

PRT UI KERNEL, by itself, creates a new PRT UI KERNEL or raises the

existing singleton*.

H = PRT UI KERNEL returns the handle to a new PRT UI KERNEL or the handle

to the existing singleton*.

PRT UI KERNEL(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI KERNEL.M with the given input arguments.

PRT UI KERNEL(’Property’,’Value’,...) creates a new PRT UI KERNEL or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt ui kernel OpeningFcn gets called.

An unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt ui kernel OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.36 prt ui prepare datamod.m

PRT UI KERNEL MODALITY M-file for prt ui kernel modality.fig
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PRT UI KERNEL MODALITY, by itself, creates a new PRT UI KERNEL MODALITY

or raises the existing singleton*.

H = PRT UI KERNEL MODALITY returns the handle to a new

PRT UI KERNEL MODALITY or the handle to the existing singleton*.

PRT UI KERNEL MODALITY(’CALLBACK’,hObject,eventData,handles,...) calls

the local function named CALLBACK in PRT UI KERNEL MODALITY.M with the

given input arguments.

PRT UI KERNEL MODALITY(’Property’,’Value’,...) creates a new

PRT UI KERNEL MODALITY or raises the existing singleton*. Starting from

the left, property value pairs are applied to the GUI before

prt ui kernel modality OpeningFcn gets called. An unrecognized property

name or invalid value makes property application stop. All inputs are

passed to prt ui kernel modality OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.37 prt ui results.m

PRT UI RESULTS MATLAB code for prt ui results.fig

PRT UI RESULTS, by itself, creates a new PRT UI RESULTS or raises the

existing singleton*.

H = PRT UI RESULTS returns the handle to a new PRT UI RESULTS or the

handle to the existing singleton*.

PRT UI RESULTS(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI RESULTS.M with the given input arguments.

PRT UI RESULTS(’Property’,’Value’,...) creates a new PRT UI RESULTS or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt ui results OpeningFcn gets called.

An unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt ui results OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.38 prt ui results help.m

PRT UI RESULTS HELP MATLAB code for prt ui results help.fig

PRT UI RESULTS HELP, by itself, creates a new PRT UI RESULTS HELP or

raises the existing singleton*.
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H = PRT UI RESULTS HELP returns the handle to a new PRT UI RESULTS HELP

or the handle to the existing singleton*.

PRT UI RESULTS HELP(’CALLBACK’,hObject,eventData,handles,...) calls the

local function named CALLBACK in PRT UI RESULTS HELP.M with the given

input arguments.

PRT UI RESULTS HELP(’Property’,’Value’,...) creates a new

PRT UI RESULTS HELP or raises the existing singleton*. Starting from the

left, property value pairs are applied to the GUI before

prt ui results help OpeningFcn gets called. An unrecognized property

name or invalid value makes property application stop. All inputs are

passed to prt ui results help OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.39 prt ui reviewCV.m

PRT UI REVIEWCV M-file for prt ui reviewCV.fig

PRT UI REVIEWCV, by itself, creates a new PRT UI REVIEWCV or raises the

existing singleton*.

H = PRT UI REVIEWCV returns the handle to a new PRT UI REVIEWCV or the

handle to the existing singleton*.

PRT UI REVIEWCV(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI REVIEWCV.M with the given input

arguments.

PRT UI REVIEWCV(’Property’,’Value’,...) creates a new PRT UI REVIEWCV or

raises the existing singleton*. Starting from the left, property value

pairs are applied to the GUI before prt ui reviewCV OpeningFcn gets

called. An unrecognized property name or invalid value makes property

application stop. All inputs are passed to prt ui reviewCV OpeningFcn

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.40 prt ui reviewmodel.m

PRT UI REVIEWMODEL M-file for prt ui reviewmodel.fig

PRT UI REVIEWMODEL, by itself, creates a new PRT UI REVIEWMODEL or raises

the existing singleton*.

H = PRT UI REVIEWMODEL returns the handle to a new PRT UI REVIEWMODEL or

the handle to the existing singleton*.
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PRT UI REVIEWMODEL(’CALLBACK’,hObject,eventData,handles,...) calls the

local function named CALLBACK in PRT UI REVIEWMODEL.M with the given

input arguments.

PRT UI REVIEWMODEL(’Property’,’Value’,...) creates a new PRT UI REVIEWMODEL

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt ui reviewmodel OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt ui reviewmodel OpeningFcn

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.41 prt ui select class.m

PRT UI SELECT CLASS M-file for prt ui select class.fig

PRT UI SELECT CLASS, by itself, creates a new PRT UI SELECT CLASS or

raises the existing singleton*.

H = PRT UI SELECT CLASS returns the handle to a new PRT UI SELECT CLASS

or the handle to the existing singleton*.

PRT UI SELECT CLASS(’CALLBACK’,hObject,eventData,handles,...) calls the

local function named CALLBACK in PRT UI SELECT CLASS.M with the given

input arguments.

PRT UI SELECT CLASS(’Property’,’Value’,...) creates a new PRT UI SELECT CLASS

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt ui select class OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt ui select class OpeningFcn

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.42 prt ui select reg.m

PRT UI SELECT REG M-file for prt ui select reg.fig

PRT UI SELECT REG, by itself, creates a new PRT UI SELECT REG or raises

the existing singleton*.

H = PRT UI SELECT REG returns the handle to a new PRT UI SELECT REG or

the handle to the existing singleton*.

PRT UI SELECT REG(’CALLBACK’,hObject,eventData,handles,...) calls the
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local function named CALLBACK in PRT UI SELECT REG.M with the given input

arguments.

PRT UI SELECT REG(’Property’,’Value’,...) creates a new PRT UI SELECT REG

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt ui select reg OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt ui select reg OpeningFcn

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.43 prt ui stats.m

PRT UI STATS MATLAB code for prt ui stats.fig

PRT UI STATS, by itself, creates a new PRT UI STATS or raises the

existing singleton*.

H = PRT UI STATS returns the handle to a new PRT UI STATS or the handle

to the existing singleton*.

PRT UI STATS(’CALLBACK’,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT UI STATS.M with the given input arguments.

PRT UI STATS(’Property’,’Value’,...) creates a new PRT UI STATS or raises

the existing singleton*. Starting from the left, property value pairs

are applied to the GUI before prt ui stats OpeningFcn gets called. An

unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt ui stats OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one

instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

14.44 prt ui sure.m

14.45 machines

14.45.1 machines\prt KRR.m

w = prt KRR(K,t,reg)

14.45.2 machines\prt machine.m

Run machine function for classification or regression
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FORMAT output = prt machine(d,m)

Inputs:

d - structure with information about the data, with fields:

Mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation

of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) or in

form of features (false)

Optional fields: the machine is respnsible for dealing with this

optional fields (e.g. d.testcov)

m - structure with information about the classification or

regression machine to use, with fields:

.function - function for classification or regression (string)

.args - function arguments (either a string, a matrix, or a

struct). This is specific to each machine, e.g. for

an L2-norm linear SVM this could be the C parameter

Output:

output - output of machine (struct).

Mandatory fields:

.predictions - predictions of classification or regression

[Nte x D]

Optional fields: the machine is responsible for returning

parameters of interest. For exemple for an SVM this could be the

number of support vector used in the hyperplane weights computation

14.45.3 machines\prt machine RT bin.m

Run binary Ensemble of Regression Tree - wrapper for Pierre Geurt’s

RT code

FORMAT output = prt machine RT bin(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation

of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) of in

form of features (false)

args - vector of RT arguments

args(1) - number of trees (default: 501)

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.func val - value of the decision function
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.type - which type of machine this is (here, ’classifier’)

14.45.4 machines\prt machine gpclap.m

Run multiclass Gaussian process classification (Laplace approximation)

FORMAT output = prt machine gpclap(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation

of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.testcov - testing covariance (cell array of matrices row vectors,

each [Nte x Nte])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) or in

form of features (false)

args - argument string, where

-h - optimise hyperparameters (otherwise don’t)

-c covfun - covariance function:

’covLINkcell’ - simple dot product

’covLINglm’ - construct a GLM

experimental args (use at your own risk):

-p - use priors for the hyperparameters. If specified, this

indicates that a maximum a posteriori (MAP) approach

will be used to set covariance function

hyperparameters. The priors are obtained

by calling prt gp priors(’covFuncName’)

N.B.: for the arguments specifying functions, pass in a string, not

a function handle. This script will generate a function handle

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.type - which type of machine this is (here, ’classifier’)

.func val - predictive probabilties

.loghyper - log hyperparameters

.nlml - negative log marginal likelihood

.mu - test latent means

.s2 - test latent variances

.alpha - GP weighting coefficients

14.45.5 machines\prt machine gpml.m

Run Gaussian process model - wrapper for gpml toolbox

FORMAT output = prt machine gpml(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,
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each [Ntr x D]). each matrix contains one representation

of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.testcov - testing covariance (cell array of matrices row vectors,

each [Nte x Nte])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) or in

form of features (false)

args - argument string, where

-h - optimise hyperparameters (otherwise don’t)

-f iter - max # iterations for optimiser (ignored if -h not set)

-l likfun - likelihood function:

’likErf’ - erf/probit likelihood (binary only)

-c covfun - covariance function:

’covLINkcell’ - simple dot product

’covLINglm’ - construct a GLM

-m meanfun - mean function:

’meanConstcell’ - suitable for dot product

’meanConstglm’ - suitable for GLM

-i inffun - inference function:

’prt infEP’ - Expectation Propagation

experimental args (use at your own risk):

-p - use priors for the hyperparameters. If specified, this

indicates that a maximum a posteriori (MAP) approach

will be used to set covariance function

hyperparameters. The priors are obtained by calling

prt gp priors(’covFuncName’)

N.B.: for the arguments specifying functions, pass in a string, not

a function handle. This script will generate a function handle

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.type - which type of machine this is (here, ’classifier’)

.func val - predictive probabilties

.mu - test latent means

.s2 - test latent variances

.loghyper - log hyperparameters

.nlml - negative log marginal likelihood

.alpha - GP weighting coefficients

.sW - likelihood matrix (see Rasmussen & Williams, 2006)

.L - Cholesky factor

14.45.6 machines\prt machine gpr.m

Run Gaussian process regression - meta-wrapper for regression with gpml FORMAT output = prt machine gpml(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation
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of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.testcov - testing covariance (cell array of matrices row vectors,

each [Nte x Nte])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) or in

form of features (false)

args - argument string, where

-h - optimise hyperparameters (otherwise don’t)

-f iter - max # iterations for optimiser (ignored if -h not set)

-l likfun - likelihood function:

’likErf’ - erf/probit likelihood (binary only)

-c covfun - covariance function:

’covLINkcell’ - simple dot product

’covLINglm’ - construct a GLM

-m meanfun - mean function:

’meanConstcell’ - suitable for dot product

’meanConstglm’ - suitable for GLM

-i inffun - inference function:

’prt infEP’ - Expectation Propagation

experimental args (use at your own risk):

-p - use priors for the hyperparameters. If specified, this

indicates that a maximum a posteriori (MAP) approach

will be used to set covariance function

hyperparameters. The priors are obtained by calling

prt gp priors(’covFuncName’)

N.B.: for the arguments specifying functions, pass in a string, not

a function handle. This script will generate a function handle

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.type - which type of machine this is (here, ’classifier’)

.func val - predictive probabilties

.mu - test latent means

.s2 - test latent variances

.loghyper - log hyperparameters

.nlml - negative log marginal likelihood

.alpha - GP weighting coefficients

.sW - likelihood matrix (see Rasmussen & Williams, 2006)

.L - Cholesky factor

14.45.7 machines\prt machine krr.m

Kernel ridge regression

FORMAT output = prt machine svm bin(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation
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of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) of in

form of features (false)

args - libSVM arguments

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.func val - value of the decision function

.type - which type of machine this is (here, ’classifier’)

14.45.8 machines\prt machine rvr.m

Relevance vector regression (training and testing)

FORMAT output = prt machine svm bin(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation

of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.tr targets - training labels (for classification) or values (for

regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) of in

form of features (false)

args - libSVM arguments

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.func val - value of the decision function

.type - which type of machine this is (here, ’classifier’)

14.45.9 machines\prt machine svm bin.m

Run binary SVM - wrapper for libSVM

FORMAT output = prt machine svm bin(d,args)

Inputs:

d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,

each [Ntr x D]). each matrix contains one representation

of the data. This is useful for approaches such as

multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x D])

.tr targets - training labels (for classification) or values (for
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regression) (column vector, [Ntr x 1])

.use kernel - flag, is data in form of kernel matrices (true) of in

form of features (false)

args - libSVM arguments

Output:

output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]

* Optional fields:

.func val - value of the decision function

.type - which type of machine this is (here, ’classifier’)

14.45.10 machines\prt rvr.m

Optimisation for Relevance Vector Regression

[w,alpha,beta,ll] = prt rvr(Phi,t)

Phi - MxM matrix derived from kernel function of vector pairs

t - the values to be matched

w - weights

alpha - 1/variance for the prior part of the model

beta - 1/variance for the likelihood part of the model

ll - the negative log-likelihood.

[w,alpha,beta,nu,ll]=spm rvr(K,t,opt)

K - a cell-array of MxM dot-product matrices.

t - the values to be matched

opt - either ’Linear’ or ’Gaussian RBF’

’Linear’ is for linear regression models, where

the optimal kernel is generated by

[nu(1)*K1 + nu(1)*K2... ones(size(K1,1),1)]

’Gaussian RBF’ is for regression using Gaussian radial basis

functions. The kernel is generated from

P1 = nu(1)*K1 + nu(1)*K2 ... ;

P2 = repmat(diag(P1) ,1,size(P1,2)) +...

repmat(diag(P1)’,size(P1,1),1) - 2*P1;

Phi = exp([-0.5*P2 ones(size(P1,1),1)]);

w - weights

alpha - 1/variance for the prior part of the model

beta - 1/variance for the likelihood part of the model

nu - parameters that convert the dot-product matrices into

a kernel matrix (Phi).

ll - the negative log-likelihood.

The first way of calling the routine simply optimises the

weights. This involves estimating a restricted maximum

likelihood (REML) solution, which maximises P(alpha,beta$|$t,Phi).

Note that REML is also known as Type II Maximum Likelihood

(ML-II). The ML-II solution tends towards infinite weights for

some the regularisation terms (i.e. 1/alpha(i) approaches 0).

The appropriate columns are removed from the model when

this happens.

The second way of calling the routine also estimates additional

input scale parameters as described in Appendix C of Tipping (2001).

This method is much slower, as a full optimisation for the scale
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parameters is done after each update of the alphas and beta.

see: http://research.microsoft.com/mlp/RVM/relevance.htm

Refs:

The Relevance Vector Machine.

In S. A. Solla, T. K. Leen, and K.-R. Mller (Eds.),

Advances in Neural Information Processing Systems 12,

pp. 652-658. Cambridge, Mass: MIT Press.

Michael E. Tipping

Sparse Bayesian Learning and the Relevance Vector Machine

Journal of Machine Learning Research 1 (2001) 211-244

14.45.11 machines\prt weights.m

Run function to compute weights

FORMAT weights = prt weights(d,m)

Inputs:

d - data structure

(fields of .d can vary depending on weights function)

m - machine structure

.function - function to compute weights (string)

.args - function arguments

Output:

weights - weights vector [Nfeatures x 1]

14.45.12 machines\prt weights bin linkernel.m

Run function to compute weights for linear kernel binary classifiers

FORMAT weights = prt weights bin linkernel (d,args)

Inputs:

d - data structure

.datamat - data matrix [Nfeatures x Nexamples]

.coeffs - coefficients vector [Nexamples x 1]

args - function arguments (can be empty)

Output:

weights - vector with weights [Nfeatures x 1]

14.45.13 machines\prt weights svm bin.m

Run function to compute weights for binary SVM

FORMAT weights = prt weights svm bin (d,args)

Inputs:

d - data structure

.datamat - data matrix [Nfeatures x Nexamples]

.coeffs - coefficients vector [Nexamples x 1]

args - function arguments (can be left empty)

Output:

weights - vector with weights [Nfeatures x 1]
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14.46 utils

14.46.1 utils\prt centre kernel.m

This function centres the kernel matrix, respecting the independence of

training and test partitions. See Shawe-Taylor and Cristianini for

background on this approach.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for Pattern

analysis. Cambridge University Press.

14.46.2 utils\prt checkAlphaNumUnder.m

check whether a given string is alphanumerical or underscore

FORMAT out = prt checkAlphaNumUnder(s)

Inputs:

s - a string of arbitrary length to check

Output:

out - logical 1 if the all chars in the string are alphanumerical

logical 0 otherwise

Based on isalpha num in the identification toolbox

14.46.3 utils\prt normalise kernel.m

This function normalises the kernel matrix such that each entry is

divided by the product of the std deviations, i.e.

K new(x,y) = K(x,y) / sqrt(var(x)*var(y))
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