PRoNTo Manual

The PRoNIo Development Group

(and honorary members)

John Ashburner
Carlton Chu

Andre Marquand
Janaina Mourao-Miranda
Joao Matos Monteiro
Ana Morgado
Christophe Phillips
Jonas Richiardi

Jane Rondina

Maria J. Rosa
Jessica Schrouff

Machine Learning & Neuroimaging Laboratory

Centre for Computational Statistics and Machine Learning
Computer Science department, UCL

Malet Place, London WC1E 6BT, UK

April 26, 2013

http://www.mlnl.cs.ucl.ac.uk/pronto

http://www.mlnl.cs.ucl.ac.uk/pronto

Contents

1 Introduction
1.1 Background
1.2 Methods e e

1.3.1
1.3.2
1.3.3

1.3 Installing & launching the toolbox

Installation L L
Launching and batching 0 oL
Troubleshooting e

Main contributors L. e e
Acknoweldgements

Graphical User Interface

Data & design

Introduction e e e e e e e e e e e
Methods

2.2.1
2.2.2
2.2.3
224

Data and design input L
Data and design output L o Lo
Review e
HRF correction

Graphical User interface o

2.3.1
2.3.2
2.3.3
234
2.3.5
2.3.6
2.3.7

PRT directory e
GIOUPS « v v v o e e e e e e e e e e e
Subjects
Modalities e e e e
Masks o e e e
Review o e
Load, Save and Quit

matlabbatch interface

Prepare feature set

Introduction e
Methods and resources e e e e e
Graphical User interfaces. e
matlabbatch interface

Model Specification

Introduction e e
Beginning a model specification L oL oL oo
Feature set e
Model type / pattern recognition algorithm

4.4.1
4.4.2

Classification
Regression L

Cross-validation
Batch interface e

13

15
15
16
16
16
16
16
18
18
18
19
19
23
23
23
23

27
27
27
29
31

4 CONTENTS
5 Model and Weights Estimation 39
5.1 Introductiono 39
5.2 Methods o e 39
5.3 Graphical user interface e 40
5.4 matlabbatch interface Lo 40

6 Results display 43
6.1 Introduction e e e 43
6.2 Launching results display L L 44
6.3 The main results display window L oo 44
6.4 Analysing a machine’s performance graphically 45
6.4.1 Predictions plot L Lo 45

6.4.2 Receiver Operating Characteristic (ROC) plot 45

6.4.3 Histogram plot L 46

6.5 Statistical analysis of a machine’s performance 47
6.5.1 Confusion matrix plot L oL 47

6.5.2 The statistics table oL 47

6.5.3 Permutation testing oo 48

6.6 Visualising a weight map oL o 48

II Batching system 51
7 Data & Design 53
7.1 Directory o . 53
T2 GIOUDPS -« v v o e e e e e e e e 53
7.2.1 GIoup . .« v v o 53

7.3 Masks e 55
7.3.1 Modality 55

74 HRFoverlap e 56
7.5 HRF delay o o e 56
7.6 Review e e 56

8 Feature set / Kernel 57
8.1 Load PRTmat e 57
8.2 Name o 57
8.3 Modalities o e e e 57
8.3.1 Modalityo 57

9 Specify model 59
9.1 Load PRTmat e 59
9.2 Model name e e e 59
9.3 Usekernels e 59
9.4 Featuresets L 59
9.5 Model Type o o e 59
9.5.1 Classification 59

9.5.2 Regression. L 60

9.6 Cross-validation type L 61
9.6.1 Leave one subject out L Lo oL 61

9.6.2 Leave one subject per groupout L. 61

9.6.3 Leave one blockout o o 61

9.6.4 Leave one run/session out Lo 61

9.6.5 Custom e e e e 62

9.7 Include all scans L e 62
9.8 Dataoperations L e 62
9.8.1 Mean centre features L Lo 62

9.8.2 Other Operations o it 62

CONTENTS

10 Run model

10.1
10.2

Load PRT.mat e
Model name e e e e

IIT Data processing examples

11 Block design fMRI dataset

11.1 GUT analysis o0 o oo e e e e
11.1.1 Data & Design e
11.1.2 Prepare feature set
11.1.3 Specify model L
11.1.4 Display model (optional step)
11.1.5 Compute weights (optional step)
11.1.6 Display results e

11.2 Batch analysis. e
11.2.1 Data & Design
11.2.2 Feature set / Kernel L
11.2.3 Specifymodel L
11.2.4 Runmodel e
11.2.5 Compute weights (optional step)

12 Regression dataset

12.1 GUIL analysis o 0 o e
12.1.1 Data & Design
12.1.2 Prepare featureset Lo
12.1.3 Specify modelo L
12.1.4 Display results e

12.2 Batch analysis L
1221 Data & Design
12.2.2 Feature set/Kernel
12.2.3 Specify model (KRR)
1224 Runmodel (KRR)
12.2.5 Specify and Run model (RVR and GPR)

IV Advanced topics

13 Developer’s guide

13.1
13.2

Introduction L e
Code organisationo e e
13.2.1 Userinterface e e e e e e
13.2.2 Machine learning oL L
13.2.3 Machines e e e e e

14 PRT structure

15 List of PRoNTo functions

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9

PrOnto.dIl . . . o v b oo e
Prém . . . oL e e e e e e e e e
prt_apply_operation.mo L oL Lo
prt_check_design.m
prt_compute_weights.m L
priccvomodel.m L. oL e e e e
Pré_Ccv_opt_param.imo e e e e e e e e e e e e e e e
prt_data_conditions.m L.
prt_.data_modality.m L

15.10 prt_datareview.m L L e e e e e e e e

63
63
63

65

67
67
68
70
72
72
74
74
78
78
80
82
82
83

85
85
85
86
87
89
91
91
92
92
93
93

6 CONTENTS

15.11 prtdefaults.m 110
15.12 prifsam . . . Lo e 111
15.13 prt_func2htmlmo 111
15.14 prtgetdefaultsmo Lo 111
15.15 prt_getfilename.mo 112
15.16 prtinitfsm oL e 112
15.17 prtinitomodel.m . . . Lo L oL o 113
15.18 prtdatex.am oL oL e 114
15.19 prtdoad.m oL oL e 114
15.20 prtdoad-blocks.m Lo 114
15.21 prtomodel.m . . . L oL L L e e e e 114
15.22 prt_normalise kernel.m Lo 115
15.23 prt_permutation.m oL Lo e 115
15.24 pPro_preproCc.ml o e e e e e e e e e 116
15.25 prtremove_confounds.m oL oL Lo 116
15.26 pristats.m . . . Lo 116
15.27 prtstructlatex.mo Lo 117
15.28 prt_textinput.mo o 117
15.29 prt_ui_compute_weights.mo L 117
15.30 prt_uicevomodelm oL Lo oL 118
15.31 prtouidesignam oL L e e 118
15.32 prt_ui_kernel_construction.m L L Lo oL 119
1533 prtuimain.mo e e e e e e 119
15.34 prt_uimodel.m . . . Lo Lo 120
15.35 prt_uiprepare_data.m Lo L 120
15.36 prt_ui_prepare_.datamod.m Lo Lo 120
15.37 prt_uiresults.m . . . Lo e 121
15.38 prt_uiresults_helpm Lo L 121
15.39 prt_uireviewCVam L oL 122
15.40 prt_uireviewmodel.mo L L oL oL 122
15.41 prtouiselect_classm .. Lo L oL oL oL e 123
15.42 prtouisselectregam oL oL e 123
1543 prt_uistatsm . . .o Lo Lo 124
15,44 pré_uisure.mn L Lo e e e e e e e e 124
15.45 machines L e 124
15.45.1 machines\prt . KRR.m Lo 124
15.45.2 machines\prt-machine.m o0 Lo oL oL 124
15.45.3 machines\prt_-machine RT bin.m 125
15.45.4 machines\prt_machine_gpclap.m 126
15.45.5 machines\prt_machine_gpmlam L. 126
15.45.6 machines\prt_machine_ gpr.mo oL L. 127
15.45.7 machines\prt_machine_krrmo oo Lo 128
15.45.8 machines\prt_machinervrom Lo o L L 129
15.45.9 machines\prt_machine_svm binm.o L0 129
15.45.10 machines\pré_rvramo oL 130
15.45.11 machines\prt_weights.m Lo Lo 131
15.45.12 machines\prt_weights_bin_linkernelm 131
15.45.13 machines\prt_weights_svm_binam oL L. 131
1546 utils L e e e 132
15.46.1 utils\prt_centre kernel.mo Lo Lo 132
15.46.2 utils\prt_checkAlphaNumUnder.m 132
15.46.3 utils\prt_normalise kernelmo oo L. 132

V Bibliography 133

Chapter 1

Introduction

Contents
1.1 Backgroundo oo 7
1.2 Methods o e 8
1.3 Installing & launching the toolbox 9
1.3.1 Installationo Lo 9
1.3.2 Launching and batching 0L 9
1.3.3 Troubleshooting o 9
1.4 Main contributors 11
1.5 Acknoweldgements oL o Lo 12

1.1 Background

Advances in neuroimaging techniques have radically changed the way neuroscientists address ques-
tions about functional anatomy, especially in relation to behavioural and clinical disorders. Many
questions about brain function, previously investigated using electrophysiological recordings in
animals can now be addressed non-invasively in humans. Such studies have yielded important
results in cognitive neuroscience and neuropsychology. Amongst the various neuroimaging modal-
ities available, Magnetic Resonance Imaging (MRI) has become widely used due to its relatively
high spatial and temporal resolution, and because it is safe and non-invasive. By selecting spe-
cific MRI sequence parameters, different MR signals can be obtained from different tissue types,
giving images with high contrast among organs, between normal and abnormal tissues and/or
between activated and deactivated brain areas. MRI is often sub-categorized into structural MRI
(MRI) and functional MRI (fMRI). Examples of other of imaging modalities that measure brain
signals are Positron Emission Tomography (PET), Electroencephalography (EEG) recordings and
Magnetoencephalography (MEG) recordings. Neuroimaging data are inherently multivariate in
nature, since each measure (scan or recording) contains information from thousands of locations
(e.g. voxels in MRI or electrodes in EEG). Considering that most brain functions are distributed
processes involving a network of brain regions, it would seem desirable to use the spatially dis-
tributed information contained in the data to give a better understanding of brain functions in
normal and abnormal conditions.

The typical analysis pipeline in neuroimaging is strongly rooted in a mass-univariate statistical
approach, which assumes that activity in one brain region occurs independently from activity in
other regions. Although this has yielded great insights over the years, specially in terms of
function localization, and continues to be the tool of choice for data analysis, there is a growing
recognition that the spatial dependencies among signal from different brain regions should be
properly modeled. The effect of interest can be subtle and spatially distributed over the brain
- a case of high-dimensional, multivariate data modeling for which conventional tools may lack
sensitivity.

Therefore, there has been an increasing interest in investigating this spatially distributed infor-
mation using multivariate pattern recognition approaches, often referred as multi-voxel pattern

8 CHAPTER 1. INTRODUCTION

analysis (MVPA) (see [12], [7] and [13]). Where pattern recognition has been used in neu-
roimaging, it has led to fundamental advances in the understanding of how the brain represents
information and has been applied to many diagnostic applications. For the latter, this approach
can be used to predict the status of the patient scanned (healthy vs. diseased or disease A vs. B)
and can provide the discriminating pattern leading to this classification.

Several active areas of research in machine learning are crucially important for the difficult
problem of neuroimaging data analysis: modelling of high-dimensional multivariate time series,
sparsity, regularisation, dimensionality reduction, causal modeling, and ensembling to name a few.
However, the application of pattern recognition approaches to the analysis of neuroimaging data is
limited mainly by the lack of user-friendly and comprehensive tools available to the fundamental,
cognitive, and clinical neuroscience communities. Furthermore, it is not uncommon for these
methods to be used incorrectly, with the most typical case being improper separation of training
and testing datasets.

1.2 Methods

PRoNTo (Pattern Recognition Neuroimaging Toolbox) is a toolbox based on pattern recognition
techniques for the analysis of neuroimaging data. Statistical pattern recognition is a field within
the area of machine learning which is concerned with automatic discovery of regularities in data
through the use of computer algorithms, and with the use of these regularities to take actions such
as classifying the data into different categories [2]. In PRoNTo, brain scans are treated as spatial
patterns and statistical learning models are used to identify statistical properties of the data that
can be used to discriminate between experimental conditions or groups of subjects (classification
models) or to predict a continuos measure (regression models).

PRoNTo is MATLABbased and includes five main modules: Data & Design, Prepare feature
set, Specify and Run model, Compute weights and Display Results. In addition it has some
review options to enable the user to review information about the data, features and models.
All modules were implemented using a graphical user interface (GUI) and the MATLAB Batch
System. Using the MATLAB Batch System the user can run each module as batch jobs, which
enables a very efficient analysis framework. All information about the data, experimental design,
models and results are saved in a structure called PRT. PRoNTo also creates additional files
during the analysis that are described in details in the next chapters.

In terms of neuroimaging modalities, PRoNTo accepts NIFI files and can be used to analyze
structural and functional Magnetic Resonance Imaging and PET. It assumes that the neuroimag-
ing data has been previously pre-processed using SPM or a similar software for neuroimaging
analysis. In general, raw fMRI data should be previously corrected for movement artefact (re-
aligned) and time difference in slice acquisition (slice time correction), mapped to a common
template (normalized) and spatially smoothed. The normalisation and spatial smoothing steps
might not be necessary for single subject analysis. In addition the General Linear Model (GLM)
can be also applied as a pre-processing step for pattern recognition analysis, in this case the GLM
coefficients (e.g. beta images in SPM) will correspond to the spatial patterns. Raw MRI data
should be previously Raw PET data should be...

In PRoNTo different pattern recognition algorithms correspond to different machines. The
machine library in PRoNTo v1 includes three classification models: Support Vector Machine ([3]),
[11]), Gaussian Process Classifier ([11], [9]), Random Forest [1] and two regression models: Kernel
Ridge Regression [16] and Relevance Vector Regression [17]. New machines will be added to the
library in future versions of the toolbox.

The toolbox code will be distributed for free, but as copyright software under the terms of
the GNU General Public License as published by the Free Software Foundation.

PRoNTo should facilitate the interaction between machine learning and neuroimaging com-
munities. On one hand the machine learning community should be able to contribute to the
toolbox with novel published machine learning models. On the other hand the toolbox should
provide a variety of tools for the neuroscience and clinical neuroscience communities, enabling
them to ask new questions that cannot be easily investigated using existing statistical analysis
tools.

1.3. INSTALLING & LAUNCHING THE TOOLBOX 9

1.3 Installing & launching the toolbox
In order to work properly, PRoNTo requires 2 other softwares:

e a recent version of MATLAB. We used versions 7.5 (R2007b) to 7.14 (R2012a) to develop
PRoNTo, and it will not work with earlier versions'.

e SPMS[10] installed on your computer?.

PRoNTo latest public version can be downloaded, after registration, from the following ad-
dress: http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html.

1.3.1 Installation

After downloading the zipped file containing PRoNTo, the installation proceeds as follow:
1. Uncompress the zipped file in your favourite directory, for example C:\PRoNTo\;
2. Launch MATLAB;
3. Go to the “File” menu — “Set path”;

4. Click on the “Add folder” button and select the PRoNTo folder, i.e. C:\PRoNTo\ if you
followed the example;

5. Click on save.

Some routines, in particular the 'machines’, are written in C++ (.cpp files) for increased
efficiency. We are trying to provide these compiled routines for the usual OS’s such as: Windows
XP (32 bits), Windows 7 (64 bits), Mac OS 10, Linux (32 and 64 bits). If your OS is not listed
or routines do not work properly then you should compile the routines for your specific OS®.

1.3.2 Launching and batching

Once installed, there are three ways to call up PRoNTo functionalities. To launch the toolbox
GUI, just type prt or pronto at the MATLAB prompt and the main GUI figure will pop up, see
Fig. 1.1. From there on simply click on the processing step needed (see Part I of this manual).
Most functions of PRoNTo have been integrated into the matlabbatch batching system [5] (like
SPMS) and the batching GUI is launched from the main GUI by clicking on the Batch button
(see Part IT of this manual). Of course most tools can also be called individually by calling them
directly from the MATLAB prompt, or for scripting in a .m file (see Part IV of this manual).

1.3.3 Troubleshooting
Compiling libsvim

Some problems when using SVMs might arise due to libsvm, in which case, you might need
to compile it on your own. The first thing that needs to be done is to download the desired
libsvm version (usually the latest one) from the following website: http://www.csie.ntu.edu.
tw/~cjlin/libsvm/. Then, the process will depend on your operating system.

If the steps described bellow do not work, please refer to the README file that comes with
libsvm.

1 Any later MATLAB version should work, in theory.

2SPMS8 can be dowloaded from the following website: http://www.fil.ion.ucl.ac.uk/spm/software/. You
should install it in a suitable directory, for example C:\SPM8\, then make sure that this directory is on the
MaATLABpath. No need to include the subdirectories!

3you can also contact us and we’ll try to come up with a solution for your system.

http://www.mlnl.cs.ucl.ac.uk/pronto/prtsoftware.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.fil.ion.ucl.ac.uk/spm/software/

10

CHAPTER 1. INTRODUCTION

B PRoNTo :: [M[[=1]%

Pattern Recognition for Neuromaging
data
Toolbox

~ Mainsteps [Review options

Data & Design Review data

Prepare feature set Review kernel & Cv

[Transform the data set to a feature set fkernel and Feature matrix} |

Specify model Display resul

Run modsl

i

at

i

Campute weights

Figure 1.1: Main GUI interface: each button launches a specific processing step.

Microsoft Windows

Make sure you have a C++ compiler install. If not, you can install Microsoft Visual C/C++;

Copy the libsvm folder to the ‘machines’ directory of your PRoNTo instalation
(e.g. C:\PRoNTo\machines\);

Open a DOS command window and change to the libsvm folder in the previous step (cd
C:\PRoNTo\machines\1libsvm-3.17\). If the environment variables of VC++ have not
been set, run the following command:

C:\Program Files\Microsoft Visual Studio 10.0\VC\bin\vcvars32.bat. This com-
mand might be different, depending on the path of your Visual Studio installation;

In the libsvm folder run the command: nmake -f Makefile.win clean all
If no errors appear, open MATLAB;

Change to the ‘matlab’ folder inside the libsvm folder (e.g. C:\PRoNTo\machines\libsvm-
3.17 \matlab\);

Run make in the MATLAB Command Window. If there are no errors, you have just
successfully compiled libsvm to be used with MATLAB.

Remember, if you want to use the version that you have just compiled, you have to add the
libsvin folder to your path in MATLAB. If you have more than one libsvin folder inside the
‘machines’ folder, please remove one of them from the MATLAB path. You should only have one
libsvm folder in your path.

Unix (Mac OS or Linux)

Make sure you have a C++ compiler installed. If you are using Mac OS, please install
‘Xcode’. On Linux systems, you should already have ‘gcc’ installed;

Copy the libsvm folder to the ‘machines’ directory of your PRoNTo instalation
(e.g. /home/<username>/PRoNTo/machines/);

Open a terminal window and change to the ‘machines’ directory: cd PRoNTo/machines/

Compile libsvm by running the following command: make

1.4. MAIN CONTRIBUTORS 11

e If no errors appear, open MATLAB;

e Change to the ‘matlab’ folder inside the libsvin folder (e.g. PRoNTo/machines/libsvim-
3.17/matlab/);

e Run make in the MATLAB Command Window. If there are no errors, you have just
successfully compiled libsvm to be used with MATLAB.

Remember, if you want to use the version that you have just compiled, you have to add the
libsvm folder to your path in MATLAB. If you have more than one libsvim folder inside the
‘machines’ folder, please remove one of them from the MATLAB path. You should only have one
libsvm folder in your path.

1.4 Main contributors

PRoNTo is developed by the Machine Learning & Neuroimaging Laboratory, Computer Science
department, University College London, UK (http://www.mlnl.cs.ucl.ac.uk) and associated
researchers.

The main contributors, in alphabetical order, are:

Dr. John Ashburner is a reader at the Wellcome Trust Centre for Neuroimaging at the Uni-
versity College London Institute of Neurology. He is mainly interested in modeling brain
anatomy from MR scans, and more recently in applying pattern recognition methods to
make predictions about individual subjects. He is a co-developer of the SPM software
(intra- and inter-subject registration, tissue classification, visualization and image file for-
mats), which is used internationally by thousands of neuroimaging researchers. He has
authored or co-authored 90 papers in international journals (h-index of 50) and written a
number of book chapters;

Dr. Carlton Chu is a research fellow in brain imaging at the National Institute of Mental
Health (NIMH), NIH. He received the B.Eng. degree (1st class Honours) from Auckland
University, New Zealand, in 2002 and the master of Biomedical Engineering from Univer-
sity of New South Wales, Australia, in 2004. Carlton obtained a PhD in Neuroimaging
method from University College London in 2009, working in the statistical methods group
at the prestigious Wellcome Trust Centre for Neuroimaging, creators of the famous “SPM”
program. There he developed innovative new pattern recognition methods to automatically
detect the early stages of neurodegenerative diseases such as Alzheimer’s and Huntingdon’s
just from structural brain images. In 2007, Carlton won the first prize in the 2nd Pittsburgh
Brain Activity Interpretation Competition (PBAIC), a prestigious international competi-
tion involving the application of machine learning to the problem of classification of brain
activity. He led a small research team to victory, acclaim from peers in the field, and
the $10K first prize. His current research interests include brain state decoding, neurode-
generative disease classification, and applying pattern recognition method to study brain
networks;

Dr. Andre Marquand is a Post-Doctoral Research Fellow at the Centre for Neuroimaging Sci-
ences, King’s College London (KCL) and an Honorary Post-Doctoral Research Fellow at
the Centre for Computational Statistics and Machine Learning at University College Lon-
don. His research focuses on the application of probabilistic machine learning techniques to
neuroimaging data, particularly for clinical applications. His recent work includes the ap-
plication of multi-class and multi-modality pattern classification methods to neuroimaging
and in particular to detecting the effects of psychotropic medication on patterns of brain
activity;

Dr. Janaina Mourao-Miranda is a Wellcome Trust Senior Research Fellow at Centre for
Computational Statistics and Machine Learning (CSML), UCL and at the Centre for Neu-
roimaging Sciences (CNS), KCL. Her research focuses on developing and applying pattern
recognition methods to analyze neuroimaging data, in particular brain activation and struc-
tural patterns that distinguish between controls and patients. Recent work includes the

 http://www.mlnl.cs.ucl.ac.uk

12

CHAPTER 1. INTRODUCTION

development and application of spatio-temporal SVM, one-class SVM to detect patients as
outliers and in-depth studies of kernel methods for brain decoding;

Dr. Christophe Phillips is FRS-FNRS Research Associate at the Cyclotron Research Centre

and adjunct Assistant Professor at the Department of Electrical Engineering and Computer
Science, University of Liege, Belgium. His research focuses on the processing of multi-modal
neuroimaging data. Recent work within the field of “brain decoding” aimed at distinguishing
between levels of consciousness in unresponsive patients or between typical and atypical
Parkinson Disease patients using Positron Emission Tomography (PET) imaging, as well
as tracking mnesic traces in trained healthy subjects with fMRI;

Dr. Jonas Richiardi is a post-doctoral research fellow, jointly affiliated to the EPFL engi-

neering school (Medical Image Processing Laboratory) and the Geneva university hospitals
(Department of Radiology and Medical Informatics). His research interests include brain
connectivity and resting-state networks analysis, interpretability of brain decoding results,
functional biomarkers, learning with graphs, machine learning for neuroimaging, and the
combination of imaging modalities with other biological information sources. He was co-
chair of the 2010 Brain Decoding Workshop at the Int. Conf. on Pattern Recognition and
a programme chair of the Pattern Recognition in Neurolmaging workshop 2011 and 2012;

Dr. Jane Rondina is a Wellcome Trust Post Doctoral Research Associate at Centre for Neu-

roimaging Sciences (CNS), KCL and researcher as an honorary member at Centre for Com-
putational Statistics and Machine Learning (CSML), UCL. Her current work includes the
development of a feature selection method for classification in neuroimaging and analysis of
features stability. Her research interests also include the development of pattern recognition
methods using data from different modalities / measures in neuroimaging;

Dr. Maria J. Rosa is a Wellcome Trust post doctoral research associate at Centre for Com-

putational Statistics and Machine Learning (CSML), UCL. Her areas of interest include
Bayesian model selection methods for fMRI and Dynamic Causal Modelling, EEG-fMRI

fusion, and more recently, machine learning for neuroimaging.

Ms Jessica Schrouff has a Master in Biomedical Engineering and is currently pursuing a Phd

1.5

in neuroimaging at the Cyclotron Research Centre, University of Liege, Belgium, under the
supervision of Dr C. Phillips. Her project focuses on the tracking of mnesic traces of learned
images in trained healthy subjects with fMRI and EEG data, as well as the classification of
patients from PET images.

Acknoweldgements

PRoNTo v1.1 (2012) is the deliverable of a Pascal Harvest project coordinated by Dr. J. Mourao-
Miranda and its development was possible with the financial and logistic support of

the Department of Computer Science, University College London (http://www.cs.ucl.
ac.uk);

the Wellcome Trust (http://www.wellcome.ac.uk/);

PASCAL2 (http://www.pascal-network.org) and its HARVEST programme;
the Fonds de la Recherche Scientifique-FNRS (http://www.fnrs.be), Belgium;
Fundagdo para a Ciéncia e Tecnologia - FCT (http://www.fct.pt), Portugal;

Swiss National Science Foundation (PP00P2-123438) and Center for Biomedical Imaging
(CIBM) of the EPFL and Universities and Hospitals of Lausanne and Geneva.

The EU Marie Curie Action under grant FP7-PEOPLE-2011-I0F # 299500.

http://www.cs.ucl.ac.uk
http://www.cs.ucl.ac.uk
http://www.wellcome.ac.uk/
http://www.pascal-network.org
http://www.fnrs.be
http://www.fct.pt

Part 1

Graphical User Interface

13

Chapter 2

Data & design

Contents
2.1 Introduction 15
2.2 Methods e 16
2.2.1 Data and design input o oo 16
2.2.2 Data and design output Lo oL 16
2.2.3 Review e 16
2.2.4 HRF correction 16
2.3 Graphical User interface, 18
2.3.1 PRT directory o o e 18
2.3.2 GIOUDPS .« .« v v v v e e e e e e e e e e e 18
2.3.3 Subjects 19
2.3.4 Modalities L 19
2.3.5 Masks o e 23
2.3.6 Review o 23
2.3.7 Load, Save and Quit Lo 23
2.4 matlabbatch interface. 23

2.1 Introduction

The first step in a statistical analysis of neuroimaging data, whether it’s in a pattern recognition
or general linear model (GLM) framework, usually entails providing to the analysis software all
the information regarding the data and experimental design. PRoNTo is no exception. After
preprocessing the data (if required), the analysis in PRoNTo starts with the ‘Data and Design’
module. It is important to note that PRoNTo does not perform any spatial or temporal pre-
processing, and if not performed with another software, pattern recognition might be affected by
noise in the data.

In the ‘Data and design’ module the user can enter the image/scan files, experimental condi-
tions (TR, durations and onsets of events), as well as other parameters, covariates and regression
values. PRoNTo supports multi-modality datasets and therefore it allows the user to enter more
than one data modality, such fMRI, MRI, PET and ASL, per analysis. This module is therefore
essential for the rest of the framework and stores all the information that is needed from the data
to be used by the rest of the software modules, such as feature set preparation, model specification
and estimation.

Below is a summary of what the ‘Data and Design’ module does. The Methods section
discusses how the module is organised and what its main output is. It also mentions a few issues
that need to be taken into consideration when entering the information and how they affect
subsequent steps. This chapter then presents the graphical user interface (GUI) that is used
to enter the data and design information and how it is used. Finally, the chapter finishes by
mentioning the corresponding ‘Data and Design’ matlabbatch module, and particular issues that
do not apply to the GUIL

15

16 CHAPTER 2. DATA & DESIGN

2.2 Methods

2.2.1 Data and design input

PRoNTo provides two types of interfaces for entering the data and design information, a PRoNTo-
specific graphical user interface (GUI) and the matlabbatch system that is also currently used
by SPM. These two interfaces are also available for the other modules, as discussed in the Intro-
duction chapter.

The information that needs to be entered is almost exactly the same for both the GUI and
batch (the small differences are explained below in the matlabbatch section) and, more impor-
tantly, the output is exactly the same. Therefore it is up to the user to decide which system is
best suited for his/her analyses. For instance, the GUI can be used as a first approach to the
toolbox and by users not familiar with SPM, whilst the batch can be used by more advanced or
SPM users, who know how to take advantage of the batch system to optimise their analyses.

As mentioned, PRoNTo supports multi-modality analyses. Therefore the data and design
module is prepared to receive as input the following types of data: fMRI, sMRI, PET and beta
images (created from a previous GLM analysis). Other types of data can also be entered at the
user’s risk, as long as they comprise nifti files.

Regardless of which interface the user chooses to enter the data and design (GUI or batch),
the organisation is very similar and starts (after choosing the directory to save PRT.mat) with
the definition of Groups. In neuroimaging datasets, it is common to have a few subjects with a
lot of images/scans per subject, such as the time-series in fMRI. However, the opposite is also
common: lots of subjects with one image per subject, such as encountered in PET or MRI studies.
Therefore, for each group, PRoNTo provides two ways of entering the rest of the information, i.e.
subjects, modalities and design, which are referred to as the ‘select by subject’ or ‘select by scans’
option, respectively (as is shown below). If one chooses to enter the data by ‘scans’, PRoNTo
allows the user to enter, for each modality, all subjects (one image/scan per subject) at once,
which is a lot quicker than entering each subject at a time. It is important to note that when
using Regression models this is the only way of inputing the data. As explained below, only the
‘select by scans’ option allows the users to enter regression values (one value per subject/image).
This option however is not appropriate for modalities which have an experimental design and
more than one image per subject, such as fMRI. For these datasets the user should choose the
‘subjects’ option. For each subject one can specify the modalities, experimental conditions and
enter more than one image/scan. Both options are valid and produce exactly the same output
structure (if used with the same dataset).

2.2.2 Data and design output

The output of the ‘Data and Design’ module is the PRT structure (as discussed in the Introduc-
tion). This structure contains subfields with all the information that is needed from the data for
the subsequent analysis steps and it is saved in a ‘PRT.mat’ file. For advanced users the fields of
this structure can be edited directly and saved, therefore bypassing the need to use the GUI or
matlabbatch to create the PRT. However, this structure is the core of PRoNTo and should be
carefully created because it affects everything else.

2.2.3 Review

The ‘Data and Design’ module also allows the user to review the information that has been
entered (through the GUI, batch or manually). The main aim of the ‘Review’ function is to check
if the data and design has been correctly specified. It can also be used to inspect if the design
is appropriate for subsequent analysis. For example, the review window shows the number of
subjects in each group, and for modalities with experimental design, it can be used to show and
alter the number of used and unused scans (see below).

2.2.4 HRF correction

For datasets such as fMRI, there is a very important issue that needs to be carefully addressed
when specifying the data and design. As is well known, the hemodynamic response function

2.2. METHODS 17

(HRF) is a delayed and dispersed version of the underlying neuronal response to an experimental
event (Figure 2.1). This means that, depending on the TR, the effect of the HRF can be felt
over multiple scans, and therefore the acquired scans are not independent and might contain
information from both past and present events. This can confound subsequent analyses and
needs to be accounted for. For instance, in SPM, the stimulus time-series are convolved with a
canonical HRF. Although convenient in the GLM framework, the convolution approach is not
appropriate in the pattern recognition context. Therefore, the solution used in PRoNTo is to
discard all overlapping scans. This is done as follows: PRoNTo allows the user to control a delay
(time it takes for the hemodynamic response to peak after the stimulus) and overlap (width of
the response) parameter that determine the shape of the HRF. As can be seen in Figure 2.1, the
delay means that the scans corresponding to a given condition are actually shifted in time, and
the overlap means that the number of independent scans, for which the signal corresponds only
to a given condition, is smaller than the total number of acquired scans for each condition. Given
the delay, PRoNTo finds which scans correspond to each condition and discards the last scans in
the time-series for which the response has not yet peaked. It then uses the overlap to determine
which consecutive scans contain information from only one condition (i.e. the response does not
overlap with the response from the previous condition) and discards the ones for which there is
overlap (as shown in Figure 2.1, bottom right). The discarded scans are not actually deleted but
are not used in further analyses.

When using the GUI, the default value for the HRF parameters is 0 seconds and can only be
changed in the ‘Review’ window (as shown below). Therefore, for fMRI, the user should review
the data and design and change these parameters to a more appropriate value (e.g. 6 seconds
each). In the matlabbatch, the default value for these parameters is also 0 seconds but can be
changed directly within the batch (no need to open Review window). Again, for fMRI, these
values should be changed (e.g. to 6 seconds).

Importantly, if one wants to avoid discarding scans and having to correct for the shape of
the HRF, as explained in the above paragraph, one should use as input the beta (coefficients)
images obtained by first running a GLM analysis on the original data. This is normally the best
approach in case of rapid event-related design experiments, in which there can be a lot of overlap,
i.e. the number of discarded scans can be very high.

delay
—

— NN

verla

delay

0 overlap

Time (s) H H w_

0 5 10 15 20 25 30

Figure 2.1: HRF correction. On the left is the standard HRF response. On the right is the effect
of the delay and overlap on the number of independent scans (C1l, C2 and C3 correspond to
three different experimental conditions and the blue boxes correspond to various scans acquired
during each condition). In fMRI datasets, the nature of the HRF (i.e. being a delayed and
dispersed version of the neuronal response to an experimental event) might lead to less indepen-
dent scans/events than the ones originally acquired. In PRoNTo, this issue is accounted for by
discarding overlapping scans.

The steps to specify the information relative to the data and design using both the GUI and
the matlabbatch system are described in the following sections.

18 CHAPTER 2. DATA & DESIGN

2.3 Graphical User interface

The graphical user interface to specify the data and design is presented in Figure 2.2. This GUI
can be launched by typing ‘prt’ in the Matlab window and then clicking the first button on the
left, in the main steps panel.

N6 PRoNTo :: Data and design
Bitectory where io wite ihe rsuils (Browse
Groups ‘Subjects/ Scans Modalities Flles
]]]
Add Remove Add Remove Add Fiemove Nodily
(] seans
‘ Load | | Feview ‘
Masks nane El
| Save ‘ | aut |

Figure 2.2: Data and design graphical user interface. This interface allows the user to enter all the
information relative to the data, including the experimental design and masks. After introducing
all the fields, PRoNTo creates the PRT structure, which is saved in the specified directory, as
‘PRT.mat’ file.

2.3.1 PRT directory

The first thing the user should specify is the directory in which to save the PRT structure. This
can be done by browsing existing directories (previously created by the user) from the top of the
data and design interface (Figure 2.2). It is recommended to have different directories for different
datasets (not modalities) because PRoNTo overwrites an existing PRT in the selected directory.
The later modules in PRoNTo will then add more fields to this structure with further information,
such as the models, features and kernels used in subsequent analyses. The file created is called
‘PRT.mat’.

2.3.2 Groups

The group panel allows one to add or remove a group of subjects. The minimum number of
groups is one, but there is no maximum number. When ‘Add’ is clicked, the user should provide
a name to the group. Any alphanumeric string is sufficient and there should be no spaces in the
string (this applies to all names throughout the toolbox). The name of the group can be later
modified by right clicking on the name. When ‘Remove’ is clicked, all the information relative to
this group (including all subjects and corresponding data) is deleted. PRoNTo does not restore
the deleted information and it can only be re-entered again by clicking ‘Add’.

The following panel after ‘Groups’ is ‘Subjects/Scans’. Here, as mentioned above, there are
two ways of entering the data: by ‘subjects’ or by ‘scans’. The former is chosen by clicking ‘Add’
under the ‘Subjects/Scans’ panel and filling in the fields for each added subject at a time. The
latter is done by clicking the tick box ‘Scans’ under the ‘Subjects/Scans’ panel. The subjects
panel is then de-activated and the user can enter the modalities and files straight away. The fields
to be filled under these two options are described below.

2.3. GRAPHICAL USER INTERFACE 19

2.3.3 Subjects

Select by scans The ‘select by scans’ option allows the users to skip the subject step. To
identify that this option has been selected, PRoNTo writes ‘scans’ in the subjects panel (Figure
2.3). The user can then add modalities and for each modality a new window will appear (bottom
of Figure 2.3). It is important to remember that when the ‘scans’ box is clicked all the information
in the subjects panel is automatically deleted! Unselecting the ‘scans’ box also deletes all the
information!

Select by subjects The ‘Subjects/Scans’ panel allows the user to add/remove subjects. This
panel works exactly like the groups panel, but the subject name is automatically generated. This
name can be later modified by right clicking on it. For each subject one can then specify the
modalities in the next panel.

PRoNTo :: Data and design

/Users/mariapaoosa/Documents Browse
Groups Subjects/ Scans Modalities Flles
Heainty (Scans]

PRoNTo :: Specify modality

Name Entar new

ar

Design

Flles

Add ” Femave Add
Covarlates

Regression targets

Masks nang =

— | OK | | Cancel
A M 7 Enter modality name

| oK | | Cancel |

Figure 2.3: Data and design graphical user interface. If one chooses to specify everything using
the ‘Scans’ option (tick box below the ‘Subjects/Scans’ panel), one can introduce the data for
all subjects at once for each modality, but one cannot specify any design. This is the optimised
approach when one has a lot of subjects with only one image/scan per subject, such can be the
case of MRI and PET datasets.

2.3.4 Modalities

The modalities panel works like the group and subjects panel, but allows one to add and remove
modalities. When a modality is added, a name needs to be provided (unless the modality has
already been defined for a previous subject or through the masks menu, see below). It is impor-
tant to note that a different modality can be a different type of data, such as fMRI and PET,
or a different session of the same type of data, e.g. different runs/sessions of the same fMRI
experiment. This way the different sessions can be integrated later into the same model and
analysis.

The steps to enter the modality information are slightly different if one ticks the ‘scans’ box
or not.

Select by scans Here the data is assumed to have been acquired without an experimental
design, and therefore the ‘No design’ option is automatically selected and cannot be changed

20 CHAPTER 2. DATA & DESIGN

(bottom window in Figure 2.3). However, in select by scans, the user can also introduce ‘Covari-
ates’, i.e. a variable that covaries with the data (subjects) but of no interest to the subsequent
analyses. This option is not yet functional in version 1.0 of PRoNTo! The last empty field can be
used to enter ‘Regression targets’ (Figure 2.3). This option allows the users to introduce a real
number per subject to be used later for regression if that is the case. As mentioned above, this
is the only way of entering the data and regression values when doing Regression models!

Select by subjects When entering the data by subjects, the modality window allows one to
specify the experimental design (Figure 2.3). Here there are three option. The last option is simply
‘No design’, which means that for this modality there are no experimental conditions. The first
option is to load an SPM.mat with a previously specified design. This option can be chosen if the
user has created an SPM structure containing all the experimental fields using the SPM software.
In this case, the user does not need to specify anything else, only the files (scans/images) for
this subject /modality. The design information is extracted directly from the SPM structure and
saved in PRT.mat. Finally, the ‘Specify design’ option allows one to introduce all the conditions
(durations and onsets), TR and other parameters corresponding to the experimental paradigm
used for this subject and modality.

anon PRoNTo :: Specify modality
Wodallty
Name " Load SPMmat _ C
Specify design
Design S No design el
Flles | el |

OK ‘ ‘ Cancel

Figure 2.4: Data and design graphical user interface. The design menu in the modality window
(when one uses the select by subject option) allows one to load a previously specified design
from an SPM.mat file, create a new design or simply select no design, which usually applies to
modalities where there is no experimental task, such as MRI or PET.

Design To create a new design one selects the option ‘Specify design’ as explained in the
previous paragraph (Figure 2.4). This will then open another window (after choosing how many
conditions you have) (Figure 2.5). In this window one can then write the names, onsets, and
durations of each condition. The units in which this information is read is specified below. There
are two options ‘Scans’ or ‘Seconds’. If the unit scans is selected, it it good to bear in mind
that PRoNTo follows the convention, adopted in SPM, that the first scan is scan 0. In the
durations field, one can introduce as many values as the number of onsets or just simply one
value, which assumes the events all have the same duration. In this window there is also the
option of introducing the Interscan Interval (TR), which is always read in seconds. Finally, there
is also an option (which is again not yet functional in version 1.0 of PRoNTo!) to introduce
covariates, which, in this case, correspond to any variable that varies along with the experimental
events but of no interest for further analyses.

2.3. GRAPHICAL USER INTERFACE 21

One issue to have in mind when specifying the design is the following: if there are more scans
than experimental events, these extra scans will not be used in later analyses. They are not
deleted and the corresponding indexes can be found in the PRT structure:

PRT .group(g).subject(s).modality (m).design.conds(c).discardedscans.

&N o PRoNTo :: Specify conditions
Conditions Spacily %
MName Onsets Duration
1 |Fleasent 1,11, 29, 42, 54, 67, B6, 105, 108, 113 2
2 |Unpleasent B, 15, 25, 34, 45, 49, 72, 81, 80, 10 2
3 |Meutral 3,37, 39, 47, 58, 61, 76, 73, 96, 114 2
Units of onsets/durations Scans % | aK |
Interscan Interval (TR in 8) 3 | Cancal |
Covarlates

Figure 2.5: Data and design graphical user interface. The ‘specify conditions’ window is available
from the modality interface when the user chooses to enter the data by subjects and clicks ‘specify
design’. This window is used to enter the conditions (names, onsets and durations) as well as the
units of design, TR and covariates.

Modify design The user can later modify a design by loading a PRT.mat in the Data and
Design window. Please note that if feature sets or models have been previously computed, they
will be discarded if changes are performed to the dataset. If the user wants to keep those, he/she
should change the directory before saving.

After loading a previously saved PRT, any change can be performed: subjects, groups or files
can be added or removed. If the design needs to be modified, a right-click on the name of the
concerned modality proposes to re-open the modality definition window. To review or modify
the onsets/durations/blocks, the user can access their definition via the specify design option.
Similar right-clicks allow renaming groups or subjects.

To modify the HRF parameters (delay or overlap), there is no need to load the PRT in Data
and Design. Loading it within the Data Review allows the user to keep all previously computed
feature sets and models. However, if the HRF parameters are changed, feature sets have to
be computed anew since they do not correspond to the modified design. Changing the desired
parameter and hitting return updates the PRT directly. Please remember to keep an eye on the
Matlab window, since important information are displayed on the workspace!

Files Finally, independent of the way the user entered the information (by subjects or scans)
the ‘Files’ option allows one to choose which image files to use (Figure 2.6). This will open
another window that shows all image files available in each directory. These can be selected one
by one or all at once, by using the mouse’s right button on the right panel of the window.

All that is needed for each group, subject and modality has been specified and can now be
viewed on the main window (Figure 2.7) under each panel. The last panel shows which files have
been entered for each modality and can be modified directly (click Modify). When Modify is

22 CHAPTER 2. DATA & DESIGN

ann Select files for the modality

Dir JLISRTRIMARAINAOMOSANLINCUMANTRFHON | AMRSTHIONIN_ARMOMSLN LH!

Up M /mariajoaor Doct 1ts/PRoNTo/test/Probid_demo/Sub_03/

Prev Msersimariajoaorosa/Documents/PRoNTofest/Probid_demo/Sub_03/ ﬂ
.|
. swrsub03_er_sx002.img,1 m

swrsub03_er_sx003.img,1
swrsub03_er_sx004.img,1
swrsub03_er_sx005.img,1
swrsub03_er_sx006.img,1
swrsub03_er_sx007.img,1
swrsub03_er_sx008.img,1
swrsub03_er_sx009.img,1
swrsub03_er_sx010.img,1
swrsub03_er_sx011.img,1
swrsub03_er_sx012.img,1
swrsub03_er_sx013.img,1
swrsub03_er_sx014.img,1
swrsub03_er_sx015.img,1
swrsub03_er_sx016.img,1
swrsub03_er_sx017.img,1
swrsub03_er_sx018.img 1

[7 | [Ed] Peq | Dane | [FE |

Select files for the modality

M mariajoaorosa/Documents/PRoMNTotestProbid_demo/Sub_03/swrsub03_er_sx001.img,1
Msers/mariajoacrosa/Documents/PRoNToftestProbid_demo/Sub_03/swrsub03_er_sx002.img,1
Msersimariajoaocrosa/Documents/PRoMNToftestProbid_demo/Sub_03/swrsub03_er_sx003.img,1
MUsers/imariajoaorosa/Documents/PRoNTofestProbid_demo/Sub_03/swrsub03_er_sx004.img,1
sersimariajoaocrosa/Documents/PRoMNToftestProbid_demo/Sub_03/swrsub03_er_sx005.img,1 }:

<ot

(=1

Msersimariajoaocrosa/Documents/PRoMNToftestProbid_demo/Sub_03/swrsub03_er_sx006.img,1
Msers/mariajoacrosa/Documents/PRoNTofestProbid_demo/Sub_03/swrsub03_er_sx007.img,1

Figure 2.6: This window is called when one clicks ‘Files’ and is used to select the scans/images
for each subject/modality.

clicked and no files are then selected all the previous files are deleted! Figure 2.7 shows how the
data and design interface should look like once all the fields have been specified (using select by
subject). The design and files for each modality can also be modified by right clicking on the
modality name in the modality panel. This option can be useful to visualise the design (onsets
and durations) that has been previously entered and change it if necessary. For instance, one can
check the design of the first subject and if changes are needed these can then be replicated for all
other subjects as explained above.

800 PRoNTo :: Data and design

v probid_bateh [Browse)

Groups Sublects/ Scans Modalitles Flles

Healthy _ MR [Usersimaria) T

Fatiants 2 MR /Usersimariajoaorosa/Dacuments/P
53 PET /Usarsimarajoaofosa/Dacuments/P

54 fUsars/mariajpaorosa/Documents/P

85 fUsars/mariapaorosa/Documents/P

fUsers/mariapaorosa/Documents/P

Jsersimariajoacrosa/Documents/P
/Jsers/mariajoaorosa/Documents/P
fUsers‘mariajoaorosa/Dacuments/P
fUsare/mariajoaarosa/Dacuments/P
/Usars/mariajoanfosa/Dacuments/P
/Usars/mariajoanfosa/Dacuments/P
fUsars/mariajoaarosa/Dacuments/P
Jsersimariajoaarosa/Dacuments/P
/Jsers/mariajoaorosa/Documents/P
fUsars/mariajoaarosa/Dacuments/P
fUsers‘mariajoaorosa/Dacuments/P
Ly
/Usars/mariajoanrosa/Dacuments/P| 4
/Usars/mariajoaarosa/Dacuments/P

/dsers/mariajoacrosa/Dacuments/P| ¥

4 >

Add ” Remove Add H Remaove Add H Remove | Wadify

l Load J l Raview J

Masks | MR M - — : . =

Figure 2.7: Data and design graphical user interface. After filling in all the fields using the select
by subject option (the select by scans case is very similar) the data and design interface should
look like this example figure.

2.4. MATLABBATCH INTERFACE 23

2.3.5 Masks

This popdown menu on the bottom of the main data and design window is where the user enters
a binary image mask for each modality. This mask can be previously created by the user (it has
to be in MNI space) or simply chosen from a list of default masks available in the masks directory
of PRoNTo. Every modality has to have a mask, which can be the same for all modalities. This
is a first-level mask and is used simply to optimise the prepare feature set step by discarding
all uninteresting features, such as voxels outside the brain. Later in the analysis one can choose
another mask (second-level mask) that is more relevant to the scientific question and that can, for
example, restrict the analysis to certain areas of the brain. To specify the mask one needs only
to select the modality and then enter an image file. If the modalities have not yet been created,
then one can create the modalities here, which will then appear in the modality panel.

2.3.6 Review

The ‘Review’ button allows one to review the data and design for each modality (Figure 2.8).
On the top right is the information relative to the number of groups and modalities that have
been entered. The plot on the left displays the number of subjects per group. This is particularly
important to check if the design is too unbalanced in terms of subjects. Then on the bottom right
panel is the design information for each modality (if the selected modalities have an experimental
design). Here, the user can view the number of conditions and can also edit the parameters that
control the HRF delay and overlap (as explained above). The user can change the default value of
0 seconds and the effect is immediately seen on the number of scans plotted on the left (number
of selected scans and number of discarded scans for each condition). The higher the value of
the HRF peak and overlap, the higher the number of discarded scans. One can also read on the
main Matlab window information regarding which group/subjects have had some scans discarded.
The information below the HRF parameters corresponds to the interval between successive scans
before and after the HRF delay/overlap correction. These values also change according to the
changes entered in the boxes above. Please note, as mentioned in the section ‘Modify design’,
that information regarding the PRT being updated after changing the HRF parameters is written
on the main Matlab window. Again if you have previously computed feature sets and models,
you have to recompute them because they do not correspond to the data anymore (changing the
HRF delay and overlap parameters changes the data). The information regarding which scans
have been removed or not from the analysis can be found in the PRT structure:

PRT.group(g) .subject(s) .modality(m) .design.conds(c) .hrfdiscardedscans.

2.3.7 Load, Save and Quit

The ‘Save’ button allows the user to create the PRT.mat file with the PRT structure containing
all the information that has been specified here (Figure 2.7). Incomplete information cannot be
saved. At least one group should have all the required fields so that PRT.mat can be created.
‘Load’ allows the user to load the data and design information from a previously saved PRT.mat.
The user can then edit the fields and update PRT by clicking again the ‘Save’ button. It’s very
important to click ‘Save’ because all the other steps in the analysis rely on the PRT structure.
Without this structure one cannot proceed. However, when the PRT.mat contains fields that have
been added by the ‘Prepare feature set’ or other modules, if the Save button is clicked, these
fields will be deleted. The option ‘Quit’ allows the user to leave the interface without saving the
information. This is also the case when the user closes the window without first using the Save
button.

2.4 matlabbatch interface

The ‘Data and Design’ module in the matlabbatch is called either by first typing ‘prt’ and clicking
the ‘Batch’ button or by typing ‘prt_batch’. The user can then find on top of the batch a PRoNTo
menu and under this menu the first module corresponds to the data and design module.

The options presented in the ‘Data and Design’ GUI, mentioned above, are all available in
the matlabbatch interface (Figure 2.9). However, there are a few things in the batch that differ

24 CHAPTER 2. DATA & DESIGN

fann PRoMTo :: Review data and design
File Edit View Insert Tools Desktop Window Help

Review data structure

G Grouns
T
8 Number of groups: 1
Z
g 4
= Mumiber of modaliies: 1
5l |
E
2 Desgn? Yes
i}
Healtby
Deslan
"
3 -
S 15F 4 Select modalty: MRl EI
b
5
2 10 1 Number of conditione: a
3
B
2 gl 4
E HRF delay comection (): 6
2
HRF overlap comrection (g): 6
o T Interval between successhie scans (THs):
5 I Flcosent
E15F [—Junpleasent f betare comection for HAF ovenap
5
2 " [[TEE 2.0169 h a
a1]
% after corection for HRF overiap
2 5L 4
& 2.2037 - 0
£
20

Figure 2.8: Data and design graphical user interface - ‘Review’” window. This window allows the
user to check the data and design, including the number of subjects per group. It also allows the
user to change the HRF delay and overlap parameters that control the number of discarded scans
(appropriate only for modalities such as fMRI). When there is no experimental design only the
top plot and information is shown.

2.4. MATLABBATCH INTERFACE 25

from the GUI. One issue to note here is that, when using the batch one needs to be very careful
with the names of the modalities specified for each subject (or using select by scans) and specified
for each mask. The number of modalities should be exactly the same for each group and subject
and the names should be consistent between groups/subjects and correspond to the names of the
modalities under the masks field. In the GUI the names are made automatically consistent. The
names of the conditions should also be the same across subjects and will be later used to define
classes in the ‘Specify model’ batch module.

Another issue is the HRF delay and overlap correction values. In the batch, the user can
directly alter these values (instead of having to use the ‘Review’ window) but the default is 0
seconds and should be changed (e.g. to 6 seconds) for modalities that depend on the HRF, such
as fMRI.

As mentioned in the Introduction, the batch job can be saved as a .mat, and loaded again
whenever needed, or as a .m that can be edited using the Matlab editor. This is a powerful tool
that can make the specification of the data and design a lot easier and quicker, for example by
editing and scripting existing batch files (for further information see the matlabbatch chapter
below).

(o NaNe) Batch Editor
File Edit View SPM Basicl0 PRoNTo
» DEedE b
Module List Current Module: Data & Design
Data & Design <X Help on: Data & Design
Directory <X
Groups
. Group
.. Name <X
.. Select by
... Subjects
Subject
..... Modality
...... Name <X
...... Interscan interval <X
...... ns <X
...... Data & Design
....... Load SPM.mat <X
Masks <-X
HRF overlap []
HRF delay 6
Review MNo
Current tlem: HRF overlap
I

Edit Value
HRF overlap

[HRFoverlgp]
If using MMRI data please specify the width of the hemodynamic response function (HRF). This will be used 10
calculate the overlap between events. Leave as 0 for other modalities (other than fMRI).

This item has a default value, set via a call to function

@(val)prt_get defaults('datad.hriw'val{})

Evaluated statements are entered.

An 1-by-1 array must be entered.

Figure 2.9: Data and design module in matlabbatch. The matlabbatch contains two extra
options relative to the Data and Design interface. These options allow one to specify the delay
and overlap of the HRF response (in the GUI it can only be changed in the ‘Review’ window),
and which are then used to determine the number of discard scans.

26

CHAPTER 2. DATA & DESIGN

Chapter 3

Prepare feature set

Contents
3.1 Introduction 27
3.2 Methods and resources 27
3.3 Graphical User interfaces oo 29
3.4 matlabbatch interface. 31

3.1 Introduction

One of the main inputs of a machine learning algorithm consists in a Ngampies X Nyeatures data
matrix, containing the values of selected features for each sample. This matrix can either be
input directly into the machine or be used to compute a similarity matrix, or kernel, of the size
Nsampies X Nsampies, which is then input into the classification/regression algorithm [see “kernel
trick” [3, 1]].

The ”Prepare Feature Set” step computes both the feature and similarity matrices from one
or more modalities, as defined in the previously built dataset (see chapter 2). It allows detrending
the features in the case of time series (such as fMRI) and scaling each image by a constant factor
(input by the user) in the case of quantitative modalities (such as PET). Masks can be specified
to perform the classification/regression on specific voxels only (e.g. Regions of Interest).

Please note that only modalities containing the same number of features (i.e. selected
voxels) can be included in the same FS. This will be typically the case when more than one
run was acquired for each subject, the different runs being entered as different 'modalities’ in the
dataset building (e.g. modality 1 is fMRI_runl’, modality 2 is fMRI_run2’,...). In all other cases,
a feature set has to be computed for each modality.

3.2 Methods and resources

After the selection of the dataset and of which modality to include in the F'S, the toolbox accesses
each image, i.e. it gets the value of the voxels which are comprised in the first level mask selected
for that modality (mask specified at the data and design step, see chapter ”"Data and Design”).
This access is performed by "blocks’ of features, not to overload the RAM memory. In the case of
time-series, the user can specify detrending methods and parameters to apply to the time course of
each feature. Methods comprise a polynomial detrending (parameter: order of the polynomial) or
a Discrete Cosine Transform high-pass filter (SPM, ref, parameter: frequency cutoff in seconds).
An example of a linear detrending (polynomial detrending of order 1) was represented in Fig.
reffig:lindetrend.

For each modality, the (detrended) features are then written in a file array (SPM, ref, with a
".dat’ extension), on the hard drive (in the same directory as the dataset). Please note that in
the case of large datasets, this operation may require many Gb of free space on the hard drive
and long computational times. Therefore, if the first condition can’t be fulfilled, we recommend

27

28 CHAPTER 3. PREPARE FEATURE SET

ED T T T T T
50
0F
raw data
a0k -
— linear
20F .
detrended
10F -
0
.10 1 1 1 1 1
0 50 100 150 200 250

Figure 3.1: Example of detrending: the original signal over time of one feature (in blue) was
approximated by a polynomial of order 1 (red line), which was then substracted from the original
signal to give the detrended signal (in green).

the use of external drives for the whole analysis. Regarding the computational expenses, we
tried to minimize their effect by computing the features only once per modality: when preparing
other feature sets using the same modality and detrending parameters, the same file array will
be accessed.

Be careful that using the same modality but different detrending methods and/or parameters
will force the re-computation of the file array for the considered modality. In the same way,
changing the dataset (PRT.mat) from directory might lead to the re-computation of the feature
sets if the file arrays were not moved accordingly.

From the feature set(s), the kernel (similarity matrix) can then be computed. Different options
can be specified:

e All scans/ All conds: In all scans the similarity will be computed between all scans within
the time series of all subjects and in the all conds the similarity is computed only between
the scans corresponding to the specified conditions of interest (see ”Data and Design”). By
default, the toolbox will use all scans to compute the kernel. With large datasets however,
computational expenses can be reduced by selecting the last option. We would therefore
recommend this last option for cases similar to multi-subject fMRI studies with designed
stimulation.

e Additional mask for selected modality: this option allows the specification of a ’second-level’
mask, which would for example define Regions of Interest (ROIs) on which the classifica-
tion/regression can be performed. In this case, the voxels used to compute the kernel (and
only the kernel) would be the ones contained in both the first and second levels masks.
Therefore, using one first-level mask and two second-level masks would create two kernels
but one file array.

e Normalisation (has to be called scaling): allows the specification of constant values to scale
each scan. The user has to enter a .mat containing a variable called ’scaling’ and of the same
size as the number of scans in that modality. In case of quantitative modalities such as PET,
this step is required since it insures the convergence of the machine learning algorithm.

These three options are performed at the kernel level only. This means that any change in one
of these options would lead to the computation of a new kernel but not to the (re)computation
of the file arrays. The use of different second-level masks or scaling parameters can therefore be
easily envisaged.

3.3. GRAPHICAL USER INTERFACES 29

The PRT.mat structure saves all information linked to the file arrays in a fas field (standing
for “File Array Structure”), which size corresponds to the number of selected modality in all
feature sets. The selected options and link to the kernel are stored in a fs field (standing for
“Feature Set”), which size corresponds to the number of feature sets defined by the user.

3.3 Graphical User interfaces

After clicking on the “Prepare Feature Set” button in the main interface (see Fig. 3.2), a second
window will appear, allowing the user to select a dataset (Fig. 3.3.A), to name the FS (Fig.
3.3.B) and to define the number of modalities which should be included in the FS (Fig. 3.3.C),
see section 3.1 for a comment on this last point).

B PRoNTo :: M=
Pattern Recognition for Neuromaging
data
Toolbox

~ Mainsteps [Review options

Data & Design Review data

Prepare feature set Review kernel & Cv

[Transform the data set to a feature set fkernel and Feature matrix} |

Specify model Display resul

i

Run modsl

Batch

Campute weights

i

Figure 3.2: Main interface: button to launch the 'Prepare Feature Set’ step.

To define the number of modalities to include, the user should click in the appropriate box
(Fig. 3.3.C), type the number and then ’return’ (arrow for return?). This will launch a third
window, allowing the specification of the different options and parameters for each modality (Fig.
3.4). When the dataset contains only one modality, this window is launched automatically.

In this third window, the user has to choose which modality to include based on its name
(Fig. 3.4.A) and which scans to use to build the kernel (all or only those linked to the design,
Fig. 3.4.B). All other options are facultative. They include:

e the specification of a second-level mask (Fig. 3.4.C): type the full name (with path) of
the mask or browse to select the mask image. When left empty or untouched, voxels are
selected from the first-level mask specified in the data and design step.

e the detrending parameters (Fig. 3.4.D): by default, the parameter is set to 'No detrending’.
However, we recommend to perform a detrending in the case of time series data such as
fMRI (and only in that case). When selecting polynomial, the ’order’ parameter will appear,
with a default value of 1. Changing this value will increase the order of the polynomial
used to fit the data. If 'Discrete Cosine Transform’ is selected, the editable parameter
corresponds to the cutoff frequency (in seconds) of the high-pass filter. Please note that,
when including more than one run (‘'modality’) into a feature set, nothing will prevent the
user from using different detrending methods/parameters. We however highly recommend
to use a consistent detrending in the same FS.

e the scaling (Fig. 3.4.E): ‘no scaling’ is the default option. However, when dealing with
quantitative modalities such as PET, the user should provide one value per scan, stored in
a vector in a .mat file under the variable name ’scaling’.

30 CHAPTER 3. PREPARE FEATURE SET

Bl PRoNTo :: Prepare feature set E]@
A Select PRT.mat -]
B Namae of the featura set

Mokt

C Mumber of modalites to concatenate

D Selected modaltiss

E Build kernel / data matrix

Figure 3.3: Interface of the 'Prepare Feature Set’ step: A. Dataset selection: type the full name
(with path) or browse to select the dataset to prepare. B. Type the FS name, which will be
used to save the kernel as a .mat on the hard drive. C. Number of modalities to select. D. List
containing the names of the modalities included in the FS (no user interaction possible). E. Click
to build the feature set and kernel.

u PRoNTo :: Specify modality to include E]@
A Modsity |hir vl
B Conditions |AII SCans [v]
C Addlitional mask for * ity (ROMs) C]
Parameter:
Detrend Palynomial [v]
D
Order 1
E Scaling |N0 scaling [v]

Figure 3.4: Specification of options and parameters for each modality: A. Select the modality
name from a pull-down menu. B. All scans/All conds. C. Second-level mask selection. D. Detrend
and its parameter. E. Scaling of the scans or not.

3.4. MATLABBATCH INTERFACE 31

When working with Graphical User Interfaces (GUIs), some messages might appear in MAT-
LABworkspace. These can display information about the operations currently performed or ex-
plain why the toolbox does not do as the user expected (e.g. when a file could not be loaded or
if information was input in a wrong format). Therefore we strongly encourage the user to have a
look at MATLABprompt when using GUISs.

3.4 matlabbatch interface

The matlabbatch system allows the input/selection of all parameters and options aforementioned.
Just note that the batch is based on the names of the modalities and/or conditions. Therefore,
for the batch to work properly, names should be consistent across all steps, starting from data
and design to the model specification and running. The hierarchy for the case of a feature set
containing one fMRI modality is displayed in (Fig. 3.5).

B Batch Editor [9|=]<]
Fle Edt Vew SPM a0 PRONTo ~
DsE| P
Module List Current Module: Feature set/Kernel
Feature set/Ker®! Help on: Featurs set/ Kermel)
Load PRT mat =X
MName fWRI_kernel
Modalities
Modality
Name MRI
Seans / Conditions
All scans
Voxelsto include
All voxels
Detrend %
Polynomial detrend
Order 1
Scale input scans
No scaling o
Current item: Detrend
None el
"Polynomial detrend
Discrete cosine transform
Detrend il
Type of temporal detrending to apply
One of the following options must be selected
*None
* Polynomial detrend
ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ - >

Figure 3.5: Matlabbatch GUI.

Note: Defining all important steps in one batch and running that batch will overwrite the
PRT.mat previously created and thus delete the links between the PRT.mat and the computed
kernel(s) and feature set(s). The file arrays would then be recomputed each time the batch is
launched. For large datasets, we therefore recommend splitting the batch in two parts: a data
and design and prepare feature set part and a second part comprising the model specification, run
model and compute weights modules. This would indeed allow changing, e.g. model parameters,
without recomputing the feature sets and kernels.

32

CHAPTER 3. PREPARE FEATURE SET

Chapter 4

Model Specification

Contents

4.1 Introductiono 33
4.2 Beginning a model specificationo 33
4.3 Featureset 34
4.4 Model type / pattern recognition algorithm 34

4.4.1 Classification L s 35

4.4.2 Regression 35
4.5 Cross-validation L 36
4.6 Batch interface L 38

4.1 Introduction

The specification of a model is the core step of the pattern recognition pipeline and entails setting
up the combination of the different components making up the analysis. For example, model
specification is where you select which data features to use as input (i.e. a feature set), the type
of prediction to perform (e.g. classification or regression), which machine learning algorithm to
employ (e.g. support vector machines, Gaussian processes, ...), which cross-validation strategy to
employ (e.g. leave one subject out, leave one run out, ...) and which operations or manipulations
to apply to the data before the algorithm is trained. The framework provided by PRoNTo is
highly flexible and supports most types of pattern recognition analysis typically performed in
neuroimaging. This chapter provides an overview of each of the components making up a model
in PRoNTo. The presentation will focus on the user interface although it is important to note that
the batch system provides several advanced options not available in the user interface (described
below).

4.2 Beginning a model specification

To begin a model specification with the PRoNTo user interface, select “Specify model” from the
main PRoNTo window. This will launch the model specification window (Figure 4.1)

Next, select the PRT.mat containing your experimental parameters. Note that at least one
feature set must be defined in this structure before a model can be created. See chapter 3 for
details on constructing feature sets.

Enter a unique name to identify the model, which is used internally in PRoNTo, by the batch
system and for display purposes. It is a good idea to select a meaningful but short name (without
spaces). Note: the PRT.mat data structure retains a permanent record of all models created
but if a model with the specified name already exists in the PRT.mat data structure, it will be
automatically overwritten.

33

34 CHAPTER 4. MODEL SPECIFICATION

u PRoMTo :: Specify model E]
CAPRONTO'\datasets\functional\PRT.mat
Madel hame
Featur:
Festure set probid_dataset .v.
Lse kernels @ ves
Model
Model type Classification ™
hdachine Binary =upport vector machine ™
Cross-Yalidation Scheme Leave One Subject Out 'v'
Data operations Mone 'v'
‘ Specify model ‘ Specify and run model

Figure 4.1: Model specification graphical user interface

4.3 Feature set

The drop-down list entited ‘Feature set’ will be populated once a PRT.mat containing one or more
feature sets is selected. Select the appropriate feature set from the drop-down list. Note that a
single feature set may contain more than one data modality (see chapter 3). This might be useful
if more than one run is available for each subject, in which case each run could be coded as an
independent modality and a single-subject classifier might be specified using leave-one-run-out
cross-validation.

In the current release of PRoNTo, only kernel classifiers are supported via the user interface.
The capability to support non-kernel classifiers will be added in a future release. Thus, the “Use
kernel” radio button should always be set to true.

4.4 Model type / pattern recognition algorithm

In this part of the model specification input form, select the pattern recognition algorithm to em-
ploy (referred to in PRoNTo as a “machine”). In the current release, three classification algorithms
are supported (binary support vector machines, Gaussian processes (binary and multiclass) and
random forests) and three multivariate regression methods (Gaussian process regression, kernel
ridge regression ! and relevance vector regression).

The PRoNTo user interface provides a mechanism for flexible definition of which components
of the experimental design should be used for each classification or regression model. Note that
this will not necessarily be the whole experiment; for example, in a complex fMRI experiment
there may be several groups, each containing multiple subjects, each in turn having multiple ex-
perimental conditions (e.g. corresponding to different subprocesses of a cognitive task). In such
cases, it is usually desirable to ask several different questions of the data, such as discriminating
between groups for a given experimental condition (“between group comparison”), discriminating
between experimental conditions for a fixed group (“between-task comparison”) or training in-
dependent pattern recognition models for different subsets of subjects. All of these can be easily

1Kernel ridge regression is equivalent to a mazimum a posteriori approach to Gaussian process regression with
fixed prior variance and no explicit noise term

4.4. MODEL TYPE / PATTERN RECOGNITION ALGORITHM 35

u PRoNTo :: Specify classes E]
Mumber of claszes 2
Clags |Class 1 i Class name Clazs 1
Subjects in group Conditions in modality
31 ~ BELL i
2 ['l 03 u
S
Groups in data set
HC N
Select all Select all
Selected subject(s) Selected condition =)
53 | PLE (]
= 4 bl bl
S5
S6
=7
[} v

Figure 4.2: Subject / condition selection panel for classification models

defined via the user interface by clicking the “Define classes” button (for classification) or “Select
subjects/scans” (for regression).

4.4.1 Classification

The class selection panel is displayed in figure 4.2. First, define the number of classes, noting
that that some classification algorithms (e.g. support vector machines) are limited to binary
classification, while other classification algorithms (e.g. Gaussian processes) support more than
two classes. Enter a name for each class - again, it is a good idea to make these names informative
but short. Notice that immediately after the number of classes has been specified, the group-,
subject- and condition selection panels are greyed out. To enable them, simply select one of the
classes from the drop-down menu.

For each class, select the subjects and conditions (if any) that collectively define that class.
It is possible to select multiple experimental conditions in the same class, but this complicates
model interpretability and potentially also model performance (since by definition conditions are
not identically distributed). If a condition or subject is erroneously selected, click on it in the
“selected subject(s)” or “selected condition(s)” panel and it will be removed from the list.

4.4.2 Regression

Regression is a generic term for all methods attempting to fit a model to observed data in order
to quantify the relationship between two groups of variables. Traditionally in neuroimaging
massively univariate strategies (e.g. GLM) have been largely used, where data for each voxel
are independently fit with the same model. Statistics test are used to make inferences on the
presence of an effect at each voxel (e.g. {-test). Multivariate regression, on the other hand,
takes into account several input variables (voxels) simultaneously, thus modeling the property of
interest considering existing relations among the voxels.

Although most studies exploring predictive analyses in neuroimaging have been related to
classification, regression analysis has aroused interest in neuroscience community for its ability
to decode continuous characteristics from neuroimaging data. This approach has potential to be
used when the examples (patterns) can be associated to a range of real values. The objective is

36 CHAPTER 4. MODEL SPECIFICATION

B PRoNTo :: Specify subjects/scans to regress g
Subjects in group
Groups in data set
HC |
]
Select al
Selected subject(s)
- 53]
* =4 n |
o 55
2]
57
[l
Done

Figure 4.3: Subject / condition selection panel for regression models

to predict a continuous value instead of predicting a class to which the example belongs. These
values usually refer to demographic, clinical or behavioral data (as age, blood pressure or scores
resulting from a test, for example). For validation, predicted values can be correlated to the
actual ones. Also, MSE (Mean Square Error) can be calculated, referring to the mean value of
the squared deviations of the predictions from the true values over the cross-validation.

The specification of which subjects and scans to include in regression models is similar to that
for classification, see Figure 4.3 and for the purposes of model specification in PRoNTo, regression
can be thought of as a classification problem with a single class. In the current release, regression is
only supported if there is a single scan per subject (e.g. structural images or parameter estimate
images from a GLM analysis). In a future release it will be possible to perform regression
where an independent regression target is supplied for each trial, block or condition. To perform
a regression, the regression targets are specified during the design stage. It is important to
emphasize that in the current implementation, regression is only supported using the ”select by
scans” option (see chapter 2).

4.5 Cross-validation

In the final part of the specify model input form, select the type of cross-validation to employ.
Cross-validation is a crucial part of the design and is used to assess the generalizability of the
model and to ensure the model has not overfitted the data. Typically this is done by partitioning
the data into one or more partitions: a ”training set”, used to train the model (e.g. fit parameters)
and a "test set” used to assess performance on unseen data. By repeatedly repartitioning the data
in this way, it is possible to derive an approximately unbiased estimate of the true generalisation
error of the model.

The most common forms in neuroimaging applications are leave-one-subject out (LOSO; ex-
clude one subject for testing, train with the remaining), leave-one-run-out (LORO; leave one fMRI
run out for testing, train with the remainder) and leave-one-block-out (LOBO; leave out a single
block or event and train with the remainder). LOSO is suitable for multi-subject designs, while
LORO and LOBO are suitable for single subject designs, where the former is better suited to de-
signs having multiple experimental runs and the latter is appropriate if there is only a single run.

4.5. CROSS-VALIDATION 37

B PRoNTo :: Review Cross-Validation M=

Model |UMPxPLE % e

Feature set Cross.Validation

10
} E
8
7
B
5
4
3
2
1

Group Subject Modality Condition Block

Unused

Train

Test

Figure 4.4: Review cross-validation matrix

The current release of PRoNTo supports each of these, and also supports leave-one-subject-per-
group-out (LOSGO), which is appropriate if the subjects in each group are paired or for repeated
measures experimental designs. The functionality to provide arbitrary cross-validation resam-
pling approaches will be added in a future release. Information concerning the cross-validation
structure is stored internally in matrix format, and can be visualised by clicking ”Review Kernel
and CV” from the main ProNTo window (see 4.4 for an example). In the left panel, this figure
indicates which group, subject, modality and condition each scan in the feature set belongs to.
On the right, each cross-validation fold (partition) is displayed as a separate column and each
scan is colour coded according to whether it is in the training or test set (or if it is unused).

It should be emphasised that the type of cross-validation selected should be appropriate for
the experimental design. For example, it is nonsensical to select a leave-one-subject-out cross-
validation approach for single subject designs. It is also important to ensure that the training and
test sets are completely independent to avoid the cross-validation statistics becoming biased. This
is particularly important for fMRI, where successive scans in time are highly autocorrelated. For
example, if a leave-one-block-out approach is employed and the blocks are too close together then
the independence of the training and test set will be violated, and the cross-validation statistics
will be biased (techically this is governed by the autocorrelation length of the fMRI timeseries and
the temporal blurring induced by the haemodynamic response function). This can be avoided if
care is taken to ensure that overlapping scans are discarded from the design (see chapter 2), but
it is a very important issue, and the user should still take care to ensure that cross-validation
folds are sufficiently far apart in time (especially for LOBO cross-validation).

During this part of the model specification, it is also possible to select one or more operations
to apply to the data. Each of these operations is defined below:

e Sample averaging (within blocks): constructs samples by computing the average of all
volumes within each block or event for each subject and condition.

e Sample averaging (within subjects): constructs samples by computing the average of
all scans within all blocks for each subject and condition

e Mean centre features using training data: subtract the voxel-wise mean from each
data vector

e Divide data vectors by their norm: scales each data vector to lie on the unit hyper-
sphere by dividing it by its Euclidean norm

e Perform a GLM: currently not supported

A crucial point to note is that all operations are embedded within the cross-validation structure
such that they are applied independently to training and test sets. This prevents a very common
mistake in pattern recognition from occurring, whereby parameters are computed using the whole
data set prior to cross-validation. Observing a complete split between training and test sets during

38 CHAPTER 4. MODEL SPECIFICATION

all phases of analysis ensures that accuracy measures are an appropriate reflection of the true
generalisation ability of the machine and are not biased because of improper applications of
preprocessing operations to the entire dataset.

Other points to note include: (i) the order of operations is potentially important. For example,
subtracting the mean then dividing each data vector by its norm is not the same as performing
the operations the other way around. (ii) operations (1) and (2) have no effect if no design is
specified or for events with a length of one TR.

At a minimum, we recommend that features should be mean centered over scans during cross-
validation.

4.6 Batch interface

The batch module provides all the functionality provided in the user interface and allows complex
analyses to be scripted in advance. As noted, the batch module also provides functionality not
available in the user interface. The most important difference is that the batch module allows cus-
tomised MATLAB functions to be used as prediction machines. This functionality allows PRoNTo
to be easily extended to allow many types of classification and regression algorithms not provided
under the current framework. This can be achieved by selecting “Custom machine” under the
“Model Type” heading. This allows a function name to be specified (i.e. any *.m function in the
MATLAB search path). The behaviour of this custom machine can then be controlled by a free-
format argument string. See the developer documentation and the examples in the machines/
subdirectory of the PRoNTo distribution for more information. Another important difference
between the batch and user interfaces is that mean centering data vectors across scans is enabled
by default in the batch.

Chapter 5

Model and Weights Estimation

Contents
5.1 Introductiono 39
5.2 Methods e e 39
5.3 Graphical user interface Lo oo 40
5.4 matlabbatch interfaceo L Lo 40

5.1 Introduction

The previous module allowed the user to specify one or more models. These include the machine
to be used, the cross-validation scheme and the classification/regression problem. After model
specification one needs to learn the models, i.e. use the training and test datasets to estimate the
parameters of the classifiers/regressors, and test how good the model is at making predictions.
This is done in the module of PRoNTo called ‘Run model(s)’.

In addition, for linear models, PRoNTo provides the option of recovering the model weights
in the original feature (voxel) space, and transforming the weights vector into an image, or map.
These maps contain at each voxel the corresponding weight of the linear model (together defining
the optimal hyperplane), and which related to how much this particular voxel contributed to the
classification /regression task in question. The weights can later be displayed using the ‘Display
results” module (described below).

5.2 Methods

After running the model specification module described above, the PRT structure (stored in
PRT.mat) contains all the required inputs to run the model estimation. This information can be
found in ‘PRT.model(m).input’, where m is the index of the model. The inputs, which include the
cross-validation matrix, the target values or labels, and the machine (e.g. binary SVM, Random
Forests, etc.), are fed to the estimation routines, which will then add to the PRT an output field
(PRT.model(m).output) containing the estimated parameters, statistics, and other information
from the learning process.

The output of a linear model includes the coefficients from the primal/dual optimisation
problem. These coefficients are then multiplied by the training examples to obtain the model
weights (optimal hyperplane). The vector of model weights has the same dimensions of the
original voxel space, and can therefore be converted to a 3D image. This computation is done for
each fold. The resulting 3D images for all folds are then assembled into a single 4D NIFTT file
with dimensions [3D x (number of folds + 1)], where 1 corresponds to an extra 3D image with
the averaged weights over all folds. The NIFTI file is saved in the same directory as PRT.mat.

39

40 CHAPTER 5. MODEL AND WEIGHTS ESTIMATION

5.3 Graphical user interface

Using the GUI, PRoNTo allows the user to estimate one or more models at one go. Clicking the
‘Run model’” button on PRoNTo’s main window will launch a small window shown in Figure 5.1.
The first thing that needs to be done using this window is to specify which PRT we would like
to work with. PRoNTo will then read the available models from this structure and display the
list of models on the left panel. These models can be selected (the selected models will show on
the right panel) by clicking each model individually or by clicking the ‘Select all’ button in the
middle of the panels. Finally, to estimate the model(s), one needs only to click the bottom button
‘Run model(s)’.

MO0 PRoNTo :: Run model
Select PRT.mat
Madels In PRT Madels to run
] |

Run modeal(s)

Figure 5.1: Model estimation GUI.

If the user wants to create images of the weights, using the GUI, the user first needs to click
the ‘Compute weights’ button on the main PRoNTo window. This will launch the window shown
in Fig 5.2. To estimate the weights and create the weight maps the user needs again to select a
PRT.mat file. Then PRoNTo will show the list of available models below, and the user can choose
one model for which to estimate the weights. The last option refers to the name of the image file,
which is saved in the same directory as PRT.mat, and that can have a name given by the user.
Alternatively, if left empty PRoNTo will name the file according to the machine corresponding
to the selected model.

5.4 matlabbatch interface

The corresponding matlabbatch module to estimate the models can be found on PRoNTo’s batch
menu as ‘Run model’. The options are the same as in the GUI: one option to choose the PRT.mat
and another to choose the model. The difference here is that the model names will not appear
automatically and the user needs to write down the name (string) of the model to run. This needs
to be exactly the name that was given to the model in the previous step. Another difference is the
fact that only one model can be specified for each batch module. To run more than one model,
more than one ‘Run model’ modules can be added to the jobs list and run sequentially.

The matlabbatch module to compute the weights has exactly the same options has the GUI.
The only difference being that instead of listing the available models in a given PRT, it will ask

5.4. MATLABBATCH INTERFACE 41

Select PRT.mat -

Models computed In PRT | “

Image name {optional)

Compute walghts

4
e —

Figure 5.2: Weights computation GUI.

for the name (string) of the model to be used. Again the name of the model should be exactly
the name given in ‘Specify model’.

42

CHAPTER 5. MODEL AND WEIGHTS ESTIMATION

Chapter 6

Results display

Contents
6.1 Introduction Lo 43
6.2 Launching results display oo oL 44
6.3 The main results display window 44
6.4 Analysing a machine’s performance graphically 45
6.4.1 Predictions plot oo 45
6.4.2 Receiver Operating Characteristic (ROC) plot 45
6.4.3 Histogram plot 46
6.5 Statistical analysis of a machine’s performance 47
6.5.1 Confusion matrix plot 47
6.5.2 The statistics table L oL 47
6.5.3 Permutation testing L L oo 48
6.6 Visualising a weight mapo oL 48

6.1 Introduction

Once a machine (e.g. a classifier or a regression function) has been specified, its parameters have
been estimated over training data, and its performance has been evaluated over a test set in
cross-validation, it is necessary to examine the outcome of the whole procedure in details. The
results windows helps make various useful statistical statements about the predictive power of
a machine, which (if any) subjects or conditions are modelled best, and which machine has the
lowest error rate on a given dataset.

Another important aspect is to see what the machine has learned - some brain areas are
probably more informative about class membership than others. For example, in a visual task,
we would expect discriminative information in the occipital lobe. This is called information
mapping, and it is of particular import to be critical at this stage - if the discriminative weight of
a machine is concentrated in the eyes, for example, it is important to correct the analysis mask
that was used to exclude them. The question to ask is “which voxels drive the modelling, and
do they make sense with respect to the experimental paradigm and neurophysiology” 7 In the
case of linear kernels, the classifier/regression weight vector is a linear combination or weighted
average of the training examples, and can be plotted as an image representing a weight map.
The weight map is therefore a spatial representation of the decision function, i.e. every voxel
contributes with a certain weight to the decision function. Pattern recognition models (classifiers
or regression functions) are multivariate, i.e. they take into account correlations in the data. Since
the discrimination or prediction is based on the whole brain pattern, rather than on individual
regions or voxels, all voxels contribute to the classification or regression and no conclusions should
be drawn about a particular subset of voxels in isolation.

Finally, examining model output and parameters is helpful in diagnosing the potentially bad
performance of a particular mode - for example, if the machine cannot perform above chance, it

43

44 CHAPTER 6. RESULTS DISPLAY

could be due to an inappropriate experimental paradigm, noisy data, insufficient amount of data,
wrong choice of features, wrong choice of machine. It is important to recognise that any of these
factors could cause the modelling to fail. The results window can help pinpointing the source of
error.

6.2 Launching results display

Make sure all previous steps have been performed (Data and Design, Chapter 2; Prepare feature
set, Chapter 3; Specify Model and Run Model, Chapter 4). Optionally, you may want to generate
a weight map for your machine (Compute Weights, Chapter 5), but this is not mandatory.

In the Review Options panel, press Display Results. At the “Select PRT.mat” window,
navigate to where your PRT.mat file is stored (using the left column), and select it in the right
column. The window should then look something like Figure 6.1.

800 Select PRT.mat
Dir IUsers/Richiarditemp/_myPRT/
Up fJsers/Richiardiremp/_myPRT/

Prev [MJsers/Richiarditemp/_myPRT/
]

EIE

[] o] e

Selected 111 files.

IUsers/Richiarditemp/_myPRT/PAT.mal

Figure 6.1: Selecting a PRT.mat for results display.

Click on Done, and the main results window opens (see an example initial state in Figure 6.2).
In the Model pane in the top-right corner, you can check that you have loaded the correct PRT.mat
by checking the list of model names appearing in the Model selector. For example, in Figure 6.2,
we have one single model called mySVM_AudRest, with several cross-validation folds.

6.3 The main results display window
The window is divided into four panes; going clockwise from top left to bottom left, they are:

Plot : this pane displays the plots for the various analyses that can be performed on test results.
With the exception of the confusion matrix plot, these cannot be interacted with.

Model : this pane allows the user to select the model to analyse, whether to analyse a particular
fold or all folds at once, and which plot to produce. The stats sub-pane allows the user to
generate a variety of statistics on the test, including accuracy statistics for classifiers, and
p-values on these parameters via permutation testing.

Weight map : if a weight map has been computed (see Chapter 5) and loaded, this displays
three projections of the map and allows to navigate it. If Fold: All folds / Average is
selected, then this displays an average weight map across folds rather than the weight map
of a single fold.

6.4. ANALYSING A MACHINE’S PERFORMANCE GRAPHICALLY 45

fanon prt_ui_results
—PRoNTo: Results
Mode! I T
foa [AliokisiAverage
; 9
PO —
ocgan_ 9
l STATS TABLE J
LS repetitions
Load weight map. Load anatomical Img
— Welaht — Anatomical |
Grossharr Postion
Orgin
mm
w
Intensty:
Capyrgnt 2011 PRoNTO [save | [M | | aut)

Figure 6.2: Initial state of the results display main window.

Anatomical img : if an anatomical image has been loaded, this will display three projections,
and the cross-hair will be synchronised with the weight map.

To populate the Plot pane, first click on a model in the Model selector, then on ’all folds’ (or
a particular fold) in the Fold selector, and finally on a plot in the P1lot selector. The next section
details the plots available.

6.4 Analysing a machine’s performance graphically

Looking at a machine output’s graphically can often yield insights into the performance of the
machine, and where modelling assumptions may prove false.

6.4.1 Predictions plot

A predictions plot displays, for a particular fold, the output value of the machine’s decision
function for each test sample (e.g., for a linear SVM, this could be w’'x; + b, for a probabilistic
classifier this could be a posterior probability P(2 = w|x;)). A well-performing classifier will
yield very different function values for samples of different classes. By observing which fold have
more or less overlapping function values, it is possible to understand which block / subject /
condition might have a test distribution of features that departs from the training set.

On the plot, each class is represented by a different marker, and indicated in the legend.
Figure 6.3 shows an example predictions plot. Here fold 1 is particularly well-behaved.

6.4.2 Receiver Operating Characteristic (ROC) plot

In two-class classification, there is always a trade-off between class 1 and class 2 errors. Indeed, a
classifier predicting class 1 regardless of input would have excellent accuracy on class 1, but bad
accuracy on class2. This is also known as the sensitivity / specificity trade-off. The ROC curve
is a graphical depiction of this trade-off, showing how one error rate varies as a function of the
other. An ideal classifier would have an ROC passing through the top-left corner. The area under
curve (AUC) is a summary measure of classifier performance, where higher is better (1 represents
perfect performance, 0.5 represents random performance). As with all summary measures, the

46 CHAPTER 6. RESULTS DISPLAY

Figure 6.3: Example predictions plot for a two-class problem modelled by an SVM.

AUC is but one way of comparing performance of machines, and cannot be used alone to declare
a machine statistically significantly superior to another on a given dataset.
Figure 6.4 shows an example of such a plot.

Figure 6.4: Example ROC curve for a two-class problem modelled by an SVM.

6.4.3 Histogram plot

The histogram plot is a smoothed density version of the predictions plot, showing how function
values are distributed. A good classifier would have minute overlap between the densities. The
error rate of the classifier is proportional to the area of the overlap. The ROC curve can be
thought of as the result of sweeping a decision threshold over the range of functional values, and
recording the joint sensitivity/specificity values for each decision threshold setting. A typical
linear SVM would have a decision threshold at O.

Figure 6.5 shows an example of such a plot.

Figure 6.5: Example function values histogram curve for a two-class problem modelled by an
SVM.

6.5. STATISTICAL ANALYSIS OF A MACHINE’S PERFORMANCE 47

6.5 Statistical analysis of a machine’s performance

One of the main questions to ask of a model is how precise its predictions are. In regression,
goodness-of-fit is often assesed via mean squared error. In classification, a common practice is to
compute prediction accuracy, both for each class and for all test data. Once an accuracy value
has been obtained, it is also possible to obtain a p-value for the accuracy, reflecting how certain
we are that the result is not due to chance.

6.5.1 Confusion matrix plot

The confusion matrix shows counts of predicted class labels @, = f(x,) (in rows) versus true
class labels w,, (in columns). An ideal confusion matrix is diagonal: all predicted class labels
correspond to the truth. Off-diagonal elements represent errors. It is important to check that
none of the classes is “sacrificed” to gain accuracy in other classes - in other words, if all classes
are equally important to classify, no class should have more off-diagonal than on-diagonal entries.
Many summary statistics, including class accuracy, total accuracy, sensitivity, and specificity, can
be computed from the confusion matrix.
Figure 6.5 shows an example of a confusion matrix.

Plot

Confusion ot ol

Predited Tue

Figure 6.6: Example confusion matrix for all folds of a two-class problem modelled by an SVM.

6.5.2 The statistics table

The statistics table (see Figure 6.7 for an example in a classification setting) gives a summary of
the model’s performance. The accuracy p is the total number of correctly classified test samples
divided by the total number of test samples N, irrespective of class. The accuracy is exactly
equivalent to

p=1- g Slorlens 1) (6.1

where o1 (wn, f(x,)) is a 0-1 loss function that counts each classification error as costing 1
and each classification success as costing 0:

_ 0 w,= f(xn)
lo1(wn, f(xn)) = { 1 wn # f(x0) (6.2)

Balanced accuracy takes the number of samples in each class into account, and gives equal
weight to the accuracies obtained on test samples of each class. In other words, the class-specific
accuracy is computed by restricting the sum of equation 6.1 to be taken over C' disjoint subsets
of the whole testing data, where each subset contains only test samples from one class. This
produces a set of class-specific accuracies {p1,...,pc}, from which the balanced accuracy can be
computed as

1
bal __
p - 6 ch- (63)

48 CHAPTER 6. RESULTS DISPLAY

Balanced accuracy is the measure of choice when there is class imbalance (one class, called
the majority class, has much more data than others).

The table also gives the class accuracies {p1,...,pc}, useful to check whether the model
favours some classes over others. If class 1 represents control subjects, and class 2 represents
patients, then class 1 accuracy is equivalent to specificity, and class 2 accuracy is equivalent to
sensitivity.

|sNO prt_ui_stats

— Model stats
— Accuracy

Accuracy (acc): 73.3%
Balanced acc: 73.2%

Class acc (%): 75.0 71.4

Other

Class pv (¥): 75.0 71.4

Figure 6.7: Example statistics tables for all folds of a two-class problem modelled by an SVM.

6.5.3 Permutation testing

Much of statistical theory and machine learning theory rests on the assumption that the data
is IID (independently and identically distributed). However, in functional neuroimaging this
assumption is often not met, due to e.g. within-run correlations and haemodynamic effects.
Therefore, classical estimates of confidence intervals (such as the binomial confidence interval)
may not always be appropriate. Permutation testing is a non-parametric procedure that allows
to obtain meaningful confidence intervals and p-values in this case. Because it requires retraining
the model a number of times, which can be costly in computation time, this is not done by
default. After filling in the repetitions field with a number of repetitions R, pressing the
Permutation test button will run for the specified number of times, and produce a p-value for
accuracy statistics (see Figure 6.7). The smallest increment in p-value is proportional to 1/R
(e.g. 20 repetitions gives you increments of 0.05).

6.6 Visualising a weight map

By clicking on the [...] button next to the Load weight map field, a dialogue opens that allows
you to select the weight map .img file that was computed previously (see Chapter 5 for the
procedure). Similarly, a co-registered anatomical image can be loaded in the Anatomical img
pane of the window. See Figure 6.8 for an example.

The weight map is then displayed with a cross-hair and a colorbar. The colorbar indicates
the relative importance of the voxel in the decision function of the machine. This value is also
indicated in the intensity field of the Anatomical img pane. Note that all voxels in the mask
contribute to the decision function, since the analysis is multivariate. Contrary to common
practice in Statistical Parametric Mapping, which is a mass-univariate approach, it does not
make sense to isolate part of the pattern and report only on the peaks of the distribution of the
decision function’s weight map.

6.6. VISUALISING A WEIGHT MAP

800,

prt_ui_results

[~ PRoNTo: Results

i

7
5
s
4
3
2
1

Hodel ’ﬁ‘

Pt T —

Hsiogram

STATS TABLE

49

Figure 6.8: Example weight map over all folds for a two-class problem modelled by an SVM.
In this rest versus auditory condition example, the voxels with the highest relative weight are
located around auditory areas (notably Heschl’s gyrus), bilaterally.

50

CHAPTER 6. RESULTS DISPLAY

Part 11

Batching system

ol

Chapter 7

Data & Design

Specify the data and design for each group (minimum one group).

7.1 Directory

Select a directory where the PRT.mat file containing the specified design and data matrix will be
written.

7.2 Groups

Add data and design for one group. Click 'new’ or 'repeat’ to add another group.

7.2.1 Group
Specify data and design for the group.

Name

Name of the group. Example: 'Controls’.

Select by

Depending on the type of data at hand, you may have many images (scans) per subject, such as
a fMRI time series, or you may have many subjects with only one or a small number of images
(scans) per subject , such as PET images. If you have many scans per subject select the option
‘subjects’. If you have one scan for many subjects select the option ’scans’.

Subjects Add subjects/scans.

Subject Add new modality for this subject.

Modality Add new modality.

NAME Name of modality. Example: 'BOLD’. The names should be consistent accross sub-
jects/groups and the same names specified in the masks.

INTERSCAN INTERVAL Specify interscan interval (TR). The units should be seconds.

ScaNs Select scans (images) for this modality. They must all have the same image dimensions,
orientation, voxel size etc.

DATA & DESIGN Specify data and design.

Load SPM.mat Load design from SPM.mat (if you have previously specified the experimental
design with SPM).

53

54 CHAPTER 7. DATA & DESIGN

Specify design Specify design: scans (data), onsets and durations.

Units for design The onsets of events or blocks can be specified in either scans or seconds.

Conditions Specify conditions. You are allowed to combine both event- and epoch-related
responses in the same model and/or regressor. Any number of condition (event or epoch) types
can be specified. Epoch and event-related responses are modeled in exactly the same way by
specifying their onsets [in terms of onset times] and their durations. Events are specified with
a duration of 0. If you enter a single number for the durations it will be assumed that all
trials conform to this duration.For factorial designs, one can later associate these experimental
conditions with the appropriate levels of experimental factors.

Condition Specify condition: name, onsets and duration.

Name Name of condition (alphanumeric strings only).

Onsets Specify a vector of onset times for this condition type.

Durations Specify the event durations. Epoch and event-related responses are modeled in
exactly the same way but by specifying their different durations. Events are specified with a
duration of 0. If you enter a single number for the durations it will be assumed that all trials
conform to this duration. If you have multiple different durations, then the number must match
the number of onset times.

Multiple conditions Select the *.mat file containing details of your multiple experimental
conditions.

If you have multiple conditions then entering the details a condition at a time is very inefficient.
This option can be used to load all the required information in one go. You will first need to
create a *.mat file containing the relevant information.

This *.mat file must include the following cell arrays (each 1 x n): names, onsets and dura-
tions. eg. names=cell(1,5), onsets=cell(1,5), durations=cell(1,5), then names2="SSent-DSpeak’,
onsets2=[3 5 19 222], durations2=[0 0 0 0], contain the required details of the second condition.
These cell arrays may be made available by your stimulus delivery program, eg. COGENT. The
duration vectors can contain a single entry if the durations are identical for all events.

Time and Parametric effects can also be included. For time modulation include a cell array
(1 x n) called tmod. It should have a have a single number in each cell. Unused cells may contain
either a 0 or be left empty. The number specifies the order of time modulation from 0 = No Time
Modulation to 6 = 6th Order Time Modulation. eg. tmod3 = 1, modulates the 3rd condition by
a linear time effect.

For parametric modulation include a structure array, which is up to 1 x n in size, called pmod.
n must be less than or equal to the number of cells in the names/onsets/durations cell arrays.
The structure array pmod must have the fields: name, param and poly. Each of these fields is in
turn a cell array to allow the inclusion of one or more parametric effects per column of the design.
The field name must be a cell array containing strings. The field param is a cell array containing
a vector of parameters. Remember each parameter must be the same length as its corresponding
onsets vector. The field poly is a cell array (for consistency) with each cell containing a single
number specifying the order of the polynomial expansion from 1 to 6.

Note that each condition is assigned its corresponding entry in the structure array (condition
1 parametric modulators are in pmod(1), condition 2 parametric modulators are in pmod(2), etc.
Within a condition multiple parametric modulators are accessed via each fields cell arrays. So for
condition 1, parametric modulator 1 would be defined in pmod(1).namel, pmod(1).paraml, and
pmod(1).polyl. A second parametric modulator for condition 1 would be defined as pmod(1).name2,
pmod(1).param2 and pmod(1).poly2. If there was also a parametric modulator for condition
2, then remember the first modulator for that condition is in cell array 1: pmod(2).namel,
pmod(2).param1, and pmod(2).polyl. If some, but not all conditions are parametrically modu-
lated, then the non-modulated indices in the pmod structure can be left blank. For example, if
conditions 1 and 3 but not condition 2 are modulated, then specify pmod(1) and pmod(3). Sim-
ilarly, if conditions 1 and 2 are modulated but there are 3 conditions overall, it is only necessary
for pmod to be a 1 x 2 structure array.

EXAMPLE:

Make an empty pmod structure:

pmod = struct('name’,” ’param’,,’poly’,);

Specify one parametric regressor for the first condition:

pmod(1).namel = ’regressorl’;

7.3. MASKS 99

pmod(1).paraml = [1 2 4 5 6];

pmod(1).polyl = 1;

Specify 2 parametric regressors for the second condition:
pmod(2).namel = 'regressor2-1’;

pmod(2).paraml = [1 3 5 7];
pmod(2).polyl = 1;
pmod(2).name2 = 'regressor2-2’;
pmod(2).param2 = [2 4 6 8 10];

pmod(2).poly2 = 1;

The parametric modulator should be mean corrected if appropriate. Unused structure entries
should have all fields left empty.

Covariates Select a .mat file containing your covariates (i.e. any other data/information you
would like to include in your design). This file should contain a variable 'R’ with a matrix of
covariates.

No design Do not specify design. This option can be used for modalities (e.g. structural
scans) that do not have an experimental design.

Scans Depending on the type of data at hand, you may have many images (scans) per subject,
such as a fMRI time series, or you may have many subjects with only one or a small number of
images (scans) per subject, such as PET images. Select this option if you have many subjects
per modality to spatially normalise, but there is one or a small number of scans for each subject.
This is a faster option with less information to specify than the ’select by subjects’ option. Both
options create the same 'PRT.mat’ but ’select by scans’ is optimised for modalities with no design.

Modality Specify modality, such as name and data.

Name Name of modality. Example: 'BOLD’. The names should be consistent accross sub-
jects/groups and the same names specified in the masks.

Files Select scans (images) for this modality. They must all have the same image dimensions,
orientation, voxel size etc.

Regression targets (per scans) Enter one regression target per scan. or enter the name
of a variable. This variable should be a vector [Nscans x 1], where Nscans is the number of
scans/images.

Covariates Select a .mat file containing your covariates (i.e. any other data/information you
would like to include in your design). This file should contain a variable 'R’ with a matrix of
covariates.

7.3 Masks

Select first-level (pre-processing) mask for each modality. The name of the modalities should be
the same as the ones entered for subjects/scans.

7.3.1 Modality

Specify name of modality and file for each mask. The name should be consistent with the names
chosen for the modalities (subjects/scans).

Name

Name of modality. Example: '"BOLD’. The names should be consistent accross subjects/groups
and the same names specified in the masks.

File

Select one first-level mask (image) for each modality. This mask is used to optimise the prepare
data step. In ’specify model’ there is an option to enter a second-level mask, which might be used
to select only a few areas of the brain for subsequent analyses.

o6 CHAPTER 7. DATA & DESIGN

7.4 HRF overlap

If using fMRI data please specify the width of the hemodynamic response function (HRF). This
will be used to calculate the overlap between events. Leave as 0 for other modalities (other than
fMRI).

7.5 HRF delay

If using IMRI data please specify the delay of the hemodynamic response function (HRF). This
will be used to calculate the overlap between events. Leave as 0 for other modalities (other than

MRI).

7.6 Review

Choose "Yes’ if you would like to review your data and design in a separate window.

Chapter 8

Feature set / Kernel

Compute feature set according to the design specified

8.1 Load PRT.mat

Select data/design structure file (PRT.mat).

8.2 Name

Target name for kernel matrix. This should containonly alphanumerical characters or underscores

()

8.3 Modalities

Add modalities

8.3.1 Modality

Specify modality, such as name and data.

Name

Name of modality. Example: 'BOLD’. Must match design specification

Scans / Conditions

Which task conditions do you want to include in the kernel matrix? Select conditions: select
specific conditions from the timeseries. All conditions: include all conditions extracted from the
timeseries. All scans: include all scans for each subject. This may be used for modalities with
only one scan per subject (e.g. PET), if you want to include all scans from an fMRI timeseries
(assumes you have not already detrended the timeseries and extracted task components)

All scans No design specified. This option can be used for modalities (e.g. structural scans)
that do not have an experimental design or for an fMRI designwhere you want to include all scans
in the timeseries

All Conditions Include all conditions in this kernel matrix

o7

o8 CHAPTER 8. FEATURE SET / KERNEL

Voxels to include

Specify which voxels from the current modality you would like to include
All voxels Use all voxels in the design mask for this modality
Specify mask file Select a mask for the selected modality.

Detrend

Type of temporal detrending to apply
None Do not detrend the data

Polynomial detrend Perform a voxel-wise polynomial detrend on the data (1 is linear de-
trend)

Order Enter the order for polynomial detrend (1 is linear detrend)
Discrete cosine transform Use a discrete cosine basis set to detrend the data.

Cutoff of high-pass filter (second) The default high-pass filter cutoff is 128 seconds
(same as SPM)

Scale input scans

Do you want to scale the input scans to have a fixed mean (i.e. grand mean scaling)?
No scaling Do not scale the input scans

Specify from *.mat Specify a mat file containing the scaling parameters for each modality.

Chapter 9

Specify model

Construct model according to design specified

9.1 Load PRT.mat

Select data/design structure file (PRT.mat).

9.2 Model name

Name for model

9.3 Use kernels

Are the data for this model in the form of kernels/basis functions? If 'No’ is selected, it is assumed
the data are in the form of feature matrices

9.4 Feature sets

Enter the name of a feature set to include in this model. This can be kernel or a feature matrix.

9.5 Model Type

Select which kind of predictive model is to be used.

9.5.1 Classification

Specify classes and machine for classification.

Classes

Specify which elements belong to this class. Click 'new’ or 'repeat’ to add another class.
Class Specify which groups, modalities, subjects and conditions should be included in this class
Name Name for this class, e.g. ’controls’

99

60 CHAPTER 9. SPECIFY MODEL

Groups Add one group to this class. Click 'new’ or 'repeat’ to add another group.

Group Specify data and design for the group.

GROUP NAME Name of the group to include. Must exist in PRT.mat

SUBJECTS Subject numbers to be included in this class. Note that individual numbers (e.g.
1), or a range of numbers (e.g. 3:5) can be entered

CoNDITIONS / ScANS Which task conditions do you want to include? Select conditions: select
specific conditions from the timeseries. All conditions: include all conditions extracted from the
timeseries. All scans: include all scans for each subject. This may be used for modalities with
only one scan per subject (e.g. PET), if you want to include all scans from an fMRI timeseries
(assumes you have not already detrended the timeseries and extracted task components)

Specify Conditions Specify the name of conditions to be included

Condition Specify condition:.

Name Name of condition to include.

All Conditions Include all conditions in this model

All scans No design specified. This option can be used for modalities (e.g. structural scans)
that do not have an experimental design or for an fMRI designwhere you want to include all scans
in the timeseries

Machine

Choose a prediction machine for this model
SVM Classification Binary support vector machine.

Arguments Arguments for prt_machine_svm_bin. You should use -t 4 if you selected 'use
kernels’ option, and -t 0 otherwise. See libSVM documentation for details.

Gaussian Process Classification Gaussian Process Classification
Arguments Arguments for prt_machine_gpml

Multiclass GPC Multiclass GPC
Arguments Arguments for prt_machine_gpclap

Random Forest Random Forest. Breiman, Leo (2001).” Random Forests”.
Machine Learning 45:5-32. This is a wrapper around
Peter Geurt’s implementation in his Regression Tree
package.

Ntrees Number of trees in the forest.
Custom machine Choose another prediction machine
Function Choose a function that will perform prediction.

Arguments Arguments for prediction machine.

9.5.2 Regression

Add group data and machine for regression.

Groups

Add one group to this regression model. Click 'new’ or 'repeat’ to add another group.

9.6. CROSS-VALIDATION TYPE 61

Group Specify data and design for the group.
Group name Name of the group to include. Must exist in PRT.mat

Subjects Subject numbers to be included in this class. Note that individual numbers (e.g.
1), or a range of numbers (e.g. 3:5) can be entered

Modality name Name of modality. We only allow one modality for regression model per
group at this moment
Example: 'BOLD’. Must match design specification

Machine

Choose a prediction machine for this model
Kernel Ridge Regression Kernel Ridge Regression.
Regularization Regularization for prt_machine_krr.
Relevance Vector Regression Relevance Vector Regression. Tipping, Michael E.; Smola,
Alex (2001).

”Sparse Bayesian Learning and the Relevance Vector Machine”. Journal of Machine Learning
Research 1: 2117244.

Gaussian Process Regression Gaussian Process Regression
Arguments Arguments for prt_machine_gpr

Custom machine Choose another prediction machine
Function Choose a function that will perform prediction.

Arguments Arguments for prediction machine.

9.6 Cross-validation type

Choose the type of cross-validation to be used

9.6.1 Leave one subject out

Leave a single subject out each cross-validation iteration

9.6.2 Leave one subject per group out

Leave out a single subject from each group at a time. Appropriate for repeated measures or
paired samples designs.

9.6.3 Leave one block out
Leave out a single block or event from each subject each iteration. Appropriate for single subject
designs.

9.6.4 Leave one run/session out

Leave out a single run (modality) from each subject each iteration. Appropriate for single subject
designs with multiple runs/sessions.

62 CHAPTER 9. SPECIFY MODEL

9.6.5 Custom

Load a cross-validation matrix. Note that an interface will be provided for this functionality in
a later release

9.7 Include all scans

This option can be used to pass all the scans for each subject to the learning machine, regardless
of whether they are directly involved in the classification or regression problem. For example, this
can be used to estimate a GLM from the whole timeseries for each subject prior to prediction.
This would allow the resulting regression coefficient images to be used as samples.

9.8 Data operations
Specify operations to apply

9.8.1 Mean centre features

Select an operation to apply.

9.8.2 Other Operations

Include other operations?

No operations

No design specified. This option can be used for modalities (e.g. structural scans) that do not
have an experimental design or for an fMRI designwhere you want to include all scans in the
timeseries

Select Operations

Add zero or more operations to be applied to the data before the prediction machine is called.
These are executed within the cross-validation loop (i.e. they respect training/test independence)
and will be executed in the order specified.

Operation Select an operation to apply.

Chapter 10

Run model

Trains and tests the predictive machine using the cross-validation structure specified by the model.

10.1 Load PRT.mat

Select PRT.mat (file containing data/design structure).

10.2 Model name

Name of a model. Must match your entry in the
"Specify model” batch module.

63

64

CHAPTER 10. RUN MODEL

Part 111

Data processing examples

65

Chapter 11

Block design fMRI dataset

Contents
11.1 GUI analysis e 67
11.1.1 Data & Design oo o 68
11.1.2 Prepare feature set oL 70
11.1.3 Specifymodelo 72
11.1.4 Display model (optional step) 72
11.1.5 Compute weights (optional step) 74
11.1.6 Display results L L 74
11.2 Batch analysis 78
11.2.1 Data & Design 78
11.2.2 Featureset / Kernel L. 80
11.2.3 Specifymodel 82
11.2.4 Runmodel o 82
11.2.5 Compute weights (optional step) 83

This fMRI dataset originates from a study on face and object representation in human ventral
temporal cortex [6]. The pre-processed (realigned and normalised) data from participant 1 can be
downloaded from PRoNTo’s website: http://www.mlnl.cs.ucl.ac.uk/pronto/ (in Data sets). The
whole (not pre-processed) dataset is available from http://data.pymvpa.org/datasets/haxby2001/.
The subject was shown a set of greyscale images of 8 categories (faces, houses, cats, chairs, bot-
tles, scissors, shoes and scrambled pictures), with 12 runs/blocks. Each image was displayed for
500 ms and was followed by a 1500 ms rest interval. This experiment consisted on a block-design
of 9 scans of task followed by 6 scans of inter-stimulus interval. Images were acquired with a TR
of 2.5 s. The full-brain fMRI data was made up by 1452 volumes with 40 x 64 x 64 voxels, each
of which with dimensions of 3.5 x 3.75 x 3.75 mm.

For simplicity, in this tutorial we will use PRoNTo to predict if the subject is viewing an image
of a Face or a House based on the fMRI scans. We will classify the whole brain (and fusiform
gyrus) images using Support Vector Machines, and a leave one block out cross-validation scheme
(with and without temporal compression).

11.1 GUI analysis

We will first analyse the data using PRoNTo’s GUI. We will then repeat the analysis using the
matlabbatch system (see below).

To start, create a new directory in which to save the results of the analysis, then start up
MATLAB and type ‘prt’ or ‘pronto’ in the MATLAB prompt. This will open the main interface
of PRoNTo (Figure 11.1).

67

68 CHAPTER 11. BLOCK DESIGN FMRI DATASET

I PRoNTo = = | B |

Pattern Recognition for Neuroimaging
data Toolbox

—Mainsteps—————— Review options-

Data & Design ‘ Review data ‘

Prepare feature set Review kernel & CV ‘

Specify model Display results

Run model
Batch
Compute weights 5
Credits

i

Figure 11.1: Main interface of PRoNTo.

11.1.1 Data & Design

e Click on the first button on the left, in the Main steps panel;

e On the top of the Data and design window (see Figure 11.2), browse the directory in which
to save the PRT structure (saved as ‘PRT.mat’);

B PRoNTo : Data and design O | B ||
Directory where to write the results Browse
Groups Subjects/ Scans Modalities Files
Add Remave Add ‘ Remave ‘ Add | Remaove ‘ Modify
[[] Scans
) Load ‘ Quit ‘
Masks none | Save
Review ‘

Figure 11.2: Data and design graphical user interface.

e On the column ‘Groups’, click on ‘Add’ and provide a name to the group (we only have one
group/subject), with no spaces, (e.g. ‘G1’);

e Add a subject in the ‘Subject/Scans’ option and leave the ‘Scans’ tick box below the panel
unchecked (see Chapter 2 of the manual for more information on this option);

e In the ‘Modalities’ panel, click on ‘Add’ and provide a name to the modality (e.g. ‘tMRT’).
In the ‘Design’ field, choose the option ‘Load SPM.mat’. This file is available with the
Haxby dataset on PRoNTo’s website (inside the folder Haxby_dataset/Design/) (Figure
11.3);

11.1. GUI ANALYSIS 69

B PRoNTo = Specify modality = | B |,
Modality
Name R v:
Design Load SPM.mat -

|

Files Specify design
No design

0K ‘ Cancel ‘

Figure 11.3: Data and design graphical user interface. The design menu in the modality window
allows one to load a specified design from an ‘SPM.mat’ file.

e In case there is no ‘SPM.mat’ file available to use, create a new design by selecting the
option ‘Specify design’. Choose how many conditions you have, which in this case are 8
conditions (corresponding to the 8 categories of images). This will open another window
that allows the user to write the names, onsets and durations (if the duration is the same
for all events only one value is required) of each condition (Figure 11.4). The unit in which
the onsets/durations are read in this case is ‘scans’ and the interscan interval (TR) is 2.5
seconds; The design information (names, onsets and durations) can be found inside the
‘Haxby_design.pdf’ file in the Haxby dataset folder.

B PRoNTo = Specify conditions SRICEL X
Conditions From .matfile -
Mame Onsets Duration

1 |Faces 21127 334 426533 84... %

2 |Houses 63213 348 384 490 61... 9§

3 |Cats 35142243 41257663.. §

4 [Shoes 49 156 320 369 562 65... 9

5 |Botties 92 189 305 455 51969... §

6 [Chairs 106 170 291 398 5476... 9

7 |Scissors G184 277485 505711 ... %

8 |scrampx 78227 263 441 so0 62 [N
Units of onsets/durations Scans T oK
Interscan interval (TR in s|

(T) 25 Cancel
Covariates

Figure 11.4: Data and design graphical user interface. The ‘Specify conditions’ window is available
when the ‘specify design’ option is selected in the modality window. This window is used to enter
the conditions (names, onsets and durations), the units of design, TR and covariates.

e Finally, load all the image files available in the fMRI directory (Haxby_dataset/fMRI/)
(Figure 11.5);

e On the bottom of the ‘Data and design’ window (on the left), select the ‘whole_brain’ mask
for the modality specified. The mask is available in the masks folder of the Haxby dataset

70 CHAPTER 11.

BLOCK DESIGN FMRI DATASET

- Select files for the modality E‘M
Dir C:\Users\Tiago\Deskioplinternship\Haxby _data'fMRI\
Up C-\WUsers\Tiago\Desktoplinternship\iHaxby_data'fMRI\ 3|
Prev | C:\Users\Tiago\Desktoplinternship\Haxby_dataifMRI\ ~

_?I EI M Done | Fitt

Drive |- S wrvol0000.nii 1

wrvol0005.nii,1
wrval(006 nii 1

Select All

Select files for the modality

Figure 11.5: This window is called when one clicks ‘Files’ (in the modality window) and is used

to select the scans/images for the selected subject.

(Figure 11.6);

e Press the ‘Review’ button to check the data and the design inserted in this modality (see
Figure 11.7) (for more information on what one can do with the Review option please see

Chapter 2);

e Click on the ‘Save’ button to create the PRT.mat file with the structure containing the
information that has been previously specified. Leave the Data and design interface by

clicking ‘Quit’.

B Select mask for fMRI =B e
Dir C-\Users\Tiago\Deskioplinternship\Haxby_data\masks\
Up C\Users\Tiago\Deskioplinternship\Haxby_data‘masks\ -4
Prev C:Users\Tiago\Desktoplinternship\Haxby_dataimasks\ ~
Drive ¢ v |brainstem.img,1 i

* [fusiform_gyrus.img,1
brain.img, 1

7| Ed| Red Done Fit | *

Selected 1/1 already.

C\Users\Tiago\DesktopiinternshiptHaxby_data\masks\whole_brain.img,1 -

Figure 11.6: This window is called when one clicks ‘Masks’ on the bottom of the main data and
design window. Select the ‘whole_brain’ mask available in the masks folder for the Haxby dataset.

11.1.2 Prepare feature set

e Click ‘Prepare feature set’ on the main GUI,

11.1. GUI ANALYSIS 71

B PRoNTG = Review data and design = | E |

Save B

Review data structure

2 T P!

Number of groups 1

4 | Number of modalities: 1
05 1
Design? s
0

G1

Number of subjects

Desit
gt

Select modality: MR =

Number of conditions: 8

HRF delay correction (s): 0

HRF overlap correction (s): 0

Interval between successive scans (TRsk:

Number of discarded scans ~ Number of selected scans

100 I Faces
I Houses before correction for HRF overlap
[cats 16674 +- [
50 [Ishoes
[IBottles after comection for HRF overlap
[chairs 16574 + 0
0 " " " " " 4| I scissors
I scrampix

Figure 11.7: Data and design graphical user interface: ‘Review’” window. This window allows the
user to check the data and design.

e Select the ‘PRT.mat’ file previously created in the Data and design step. A new window
will appear (‘Specify modality to include’), allowing the specification of different options
and parameters for each modality (Figure 11.8). In the modality field, select the modality
previously specified in step 1; on the Conditions select ‘All scans’ (for more information
please consult the corresponding chapter of this manual); leave the Additional mask field
as it is for now; select the polynomial detrend with order 1 and the 'No scaling’ option;

u PRoNTo = Specify modality to include |ilﬂléj

Modality MRl =

Conditions All scans -

Additional mask for selected modality (ROIs)

Parameters
Detrend Polynomial x|
Order 1
Scaling Mo scaling -

Done

Figure 11.8: Interface of the ‘Prepare feature set’ step. The ‘Specify modality to include’ win-
dow, which is called when the PRT.mat file is selected, allows the specification of the modality,
conditions, second-level mask selection and detrend and scaling parameters.

e This is an optional step: in the ‘Additional mask for selected modality’ field, the user can
specify a ‘second-level’ mask, which can be used to select regions of interest (ROIs) on which
the classification can be performed. For instance, we can enter the ‘fusiform_gyrus’ mask
available with this dataset (results obtained with this mask are shown at the end of this
tutorial);

e Provide a name to the feature set (e.g. ‘HaxbyFeatures’);

72

CHAPTER 11. BLOCK DESIGN FMRI DATASET

Click on ‘Build kernel/data matrix’ to build the feature set and kernel (Figure 11.9).

u PRoNTo = Prepare feature set =8 =

C:\Users\Tiago\Desktop\Latex\PRoNTo_HaxbyData TESTH

Haxby

")] = i

Please wait while preparing feature set

Build kernel / data matrix

Figure 11.9: Interface of the ‘Prepare feature set’ step after clicking on ‘Build kernel / Data
matrix’ button.

11.1.3 Specify model

Click ‘Specify model’ on the main PRoNTo window.
Select the ‘PRT.mat’ file and provide a name to the model (e.g. ‘svmFacesHouses’);

Select one of the Feature Sets previously defined (in this case there is only one: ‘HaxbyFea-
tures’);

Leave the option ‘Use kernels’ as it is (i.e. ‘Yes’);

Select the ‘Classification’ model type. Define the number of classes (in this case it is 2) and
enter a name for each class. For ‘Class 1’ select subject ‘S1’ and the condition ‘Faces’ and,
similarly, for ‘Class 2’ select subject ‘S1’ and the condition ‘Houses’ (see Figure 11.10);

Select the pattern recognition algorithm (i.e. Machine): ‘Binary support vector machine’;

In the final part of the specify model input form, select the ‘Leave One Block Out’ cross-
validation scheme and select the ‘Sample averaging (within block)’, which corresponds to
a temporal compression of the data within each block, and ‘Mean centre features using
training data’ operations;

Click on ‘Specify and run model’ (the model will be immediately estimated and therefore
there is no need to use the ‘Run model’ module in this case;

If you do not wish to average the scans within each block (i.e. to do temporal compression),
go back to the ‘Specify model’ window, give another name to the model and select the
same options mentioned above, except in the data operations part. Here, choose only the
‘Mean centre features using training data’ option. Finish by clicking on the ‘Specify and
run model” button.

11.1.4 Display model (optional step)

To review the model specification, click on ‘Review kernel & CV’ on the main PRoNTo
window;

On the next window select the model (e.g. svinFacesHouses) from the list at the top and
then click on ‘Review model” (Figure 11.11); then select one class from the list of Classes
on the top left to see which groups, subjects and conditions this class comprises (Figure
11.12);

11.1.

GUI ANALYSIS

B PRoNTG :: Specify model

r
. PRoNTo i: Specify classes

C:\Users\Tiago\Deski

Number of classes

G st

Feature set

Use kemels

Model type

Machine

Cross-Validation Scheme

Data operations

Subjects in group ‘Conditions in modality

Gloss name

Groups in data set

Cats
Shoes -
Bottles r
Chairs

i

Scissors

Selected subjeci(s) Selected condition(s)

-
Select all Select all

H

|

Sample averagin:
Mean centre featl
Divide data vectol

.

i

r-:
L

Specify model ‘ Specify and run model

Figure 11.10: ‘Model specification’ and ‘Specify classes’ graphical user interface.

B PRoNTo : Review Model Specific... 1| (). [ESH

Model |svaacesHouses

)

Review model

Review CV

Show kernel

Figure 11.11: Review CV & kernel window.

73

74 CHAPTER 11. BLOCK DESIGN FMRI DATASET

B PRoNTo = Specify dlasses = | B |

Number of classes. 2

Class | Class 1 v Class name Faces

Subjects in group Conditions in modality

Cats
Shoes
Groups in data set Bottles

] . Chairs
Scissors

Select all Select all

Selected subject(s) Selected condition(s)

Done

Figure 11.12: Review model specification window.

e To review the data and cross-validation matrix click on ‘Review CV’ (Figure 11.13). For
more information on what these matrices mean, please consult the previous chapters of the

manual;
Feature set Cross-Validation
0.8
0.6
0.4
——————— Test
———
0.2 Eaa—— Train
Unused
0 1

Group Subject ModalityCondition Block Scans 1 2 3 4 5 6 7 8 9 10 11 12
Figure 11.13: Data and cross-validation matrix from ‘Review CV’ option.

e To review the kernel, click on ‘Show kernel’ (Figure 11.14).

11.1.5 Compute weights (optional step)

e Click ‘Compute weights’ on the main GUI.
e Select the ‘PRT.mat’ file;
e Select the model from the list to compute the weights (e.g. the svmFacesHouses model);

e Click on the ‘Compute weights’ button (Figure 11.15).

11.1.6 Display results

e Press the ‘Display results’ button in the Review Options panel of the main PRoNTo window
and select the ‘PRT.mat’ file. This will open the main results window;

11.1. GUI ANALYSIS (6]

A0

i
200 400 600 800 1000 1200 1400

Figure 11.14: Kernel matrix used for classification.

. PRoNTo :: Compute weights &Iﬂu

C:\UsersiTiago\Desktop\Latex\PRoNTo_HaxbyData TEST‘ |

Models computed in PRT symFacesHous es ,]

Image name (optional) ‘

Compute weights

Figure 11.15: Weights computation graphical user interface. This window is used to select the
PRT.mat file and the model to compute.

76

CHAPTER 11. BLOCK DESIGN FMRI DATASET

e In the model panel, select the model that you want to view (e.g. ‘svmFacesHouses’), ‘All
folds / Average’ and the ‘Predictions’ plot to display the plot on the left side of this panel.
If the selected model is that using the ‘Sample averaging (within block)’ data operation
(i.e. temporal compression), the result will be similar to the plot shown in Figure 11.18. If
the selected model is that using the ‘Mean centre features’ operation only (i.e. no temporal
compression), the result will be similar to Figure 11.19;

e Click on ‘STATS TABLE’ to obtain a summary for each model’s performance (Figure 11.16
and 11.17);

u prt_ui_stats = | B |-,
Save N
— Model stats
Accuracy

Accuracy (acc) 95.8%

Balanced acc. 958 %

Class acc (%) 91.7100.0

Other

Class pv (%), 1000 923

Figure 11.16: Statistics table for the temporal compression analysis.

u prt_ui_stats = | B |-,
Save k]
— Model stats
Accuracy

Accuracy (acc 94.0%

Balanced acc: 94.0 %

Class acc (%) 9265954

Other

Class pv (%) 952 928

Figure 11.17: Statistics table for the no temporal compression analysis.

e By clicking on the ‘...” button next to the ‘Load weight map’ and to the ‘Load anatomical
img’ fields, a dialogue opens that allows the user to select the weight map computed in
the last ‘Compute weights’ option (Figure 11.15) and an anatomical image for reference (a
template image can be found in the SPM8’s canonical folder). The final results window will
look similar to that shown in Figure 11.18 for the temporal compression model. Similarly,
for the no temporal compression model, the results window will look like Figure 11.19;

11.1. GUI ANALYSIS

B PRoNTo = Results E@M

Save

—PRoNTo: Results

_ Plot e
Model |symFacesHouses -
12 o | ® Class 1
i o] | O Cesz svmFacesHouses2 8
e o] X
Foid
3 % -
4 o] ql) ® 1 il
T 7 o] *
2 e o | % Piot g
5 o % ROC il
: o | % o
& o *
z © «l STATS TABLE |
1 o | %
K 45 A 05 0 0.5 1 15 E) Permutation tenl repetitions.
function value

C:ILBerslTiayuIDaskmplLamx\PR| = ‘C:IUSersleangDesk‘mpwnemsm

- Weightsmap— Anatomical img
B

Reset imagesl

Crossnar Posmen

Origin
o
¥ momoms

Intensity: 8.10832e07

Copyright 2011 PRoNTo Help | Quit

Figure 11.18: Final state of the results display main window (temporal compression model).

B PRoNTo = Results =] B e

Save

—PRoNTo: Results

— Plot — Model
Model |gymFacesHouses o~
12 ocooo oD O | B ?) Cas=1 svmFacesHouses|
1 omn o@ | j..*c‘”” =
1 fen e ol ooy
] oo am X WK X X Foid .
3 COD DD RN 1 o
o 7 [elcreizellel K
] o Reroe] | R OEON i -
g @ oo D o WO ROC -
4 ek x crat
2 GERED O QO X
e CHEgn G 2 ><wl!b< STATS TABLE |
1 [6 SR+ I 8] ><| EL
=z a5) e) e 1 I) Permutation ten‘I repetitions
function value !
‘C:lmersl]’iaynlﬂesmpuam’\l’ﬂ| = | |c:|Usersl]’iagolDesmplmtemsm Resetimages |
— Weightsmap————— | Anatomical img

CrossnEr Postion

Origin I
™ 00-18017.5
| momoens

Copyright 2011 PReNTo Help Quit

Figure 11.19: Final state of the results display main window (no temporal compression model).

78 CHAPTER 11. BLOCK DESIGN FMRI DATASET

e Other plots such as ROC curves and the confusion matrices can be displayed by choosing
from the plots’ list. To change fold or model one needs only to select from the respective
lists on the right (under Model);

e Finally, to check the significance of the results, run a Permutation test by clicking on the
Permutation test button with 100 repetitions (Figure 11.20); Results will be displayed on
the MATLAB prompt.

m

s

optimization finished, #iter = 385
ma = 0.000000

obj = -0.000003, rho = 0.03407%9
n5V = 77, nBSV = 0

Total nsV = 77

JELE

optimization finished, #iter = 481
na = 0.000000

obj = -0.000003, rho = 0.159236
n5V = 88, nBSV = 0

Total nsSV = 88

JELE

optimization finished, #iter = 410
ma = 0.000000
obj = -0.000003, rho = -0.080187

n5V = 85, nBSV = 0
Total nSV = 85
=

optimization finished, #iter = 283
ma = 0.000000
obj = -0.000002, rho = -0.140464

n5V = 68, nBSV = 0

Total n3V = &8

Updating PRT.mat....... P>
Permutation test done.

Permutations results:
Balanced accuracy p-value: 0.0100
Clas=s accuracy p-value:
0.0100 0.0100 =
J5£>>|

1

Figure 11.20: Sample of the MATLAB window after the permutation test (100 repetitions).

e If the user added the ‘second-level’ mask on the ‘Prepare feature set’ step, the final results
window will look similar to that shown in Figure 11.21.

11.2 Batch analysis

This tutorial will now show how to analyse the same data but using the matlabbatch system.

Once again, to analyse the data, create a new directory in which to save the results of the
analysis.

On the main interface of PRoNTo click on the ’Batch’ button to open the ‘matlabbatch’.
Alternatively, type ‘prt_batch’ in the MATLAB prompt.

On the top of the batch, there is a PRoNTo menu with the 5 options shown in the main steps
panel (Figure 11.22).

11.2.1 Data & Design
e Click on ‘Data & Design in the PRoNTo menu;

e Select a directory where the PRT.mat file will be written (Figure 11.23);
e Add one group and provide a name without spaces to that group (e.g. ‘G1’);

e On the ‘Select by’ field, select the ‘Subjects’ option (for more information on the Scans
option please consult Chapter 2);

11.2. BATCH ANALYSIS

B PRoNTo = Results

o

Save

—PRoNTo: Results

— Plot — Model
| < Cos 1 Model |facesVShouses o
12
" g | O Clas=2 Il
10 o w
Fold
3
B o © | * x 1 i
T 7 o] | X
28 o « Plot g
5 a | x ROC 0
: @ | = -
3 o s«
: © | x STATS TABLE |
1 o] | ®
2 45 4 05 [} 05 1 1.5 2 Permutation testl repetitions.
function value

CillsersiTiago\Desktoplinternshi .. |caisersiTiagoiDeskioplinzernshi

Reset imagesl

— A

ghts map

‘Copyright 2011 PRoNTo

img

‘Crosshalr Posiion
Origin

™ po-190175

Y* O zrosoms

Intensity: 0

79

Figure 11.21: Final state of the results display window with the second-level mask ‘fusiform_gyrus’.

B Batch Editar =
File Edit View SPM BesiclO [PRoNTa | -
DM P Data & Design
Module List Ho Cur Feature set / Kernel

Run model

<] M specify mode

Compute weights

Edit Defaults

Matlabbaich User Interface

" Menu and Toolbar

Figure 11.22: Menu PRoNTo in the

main matlabbatch window.

80

CHAPTER 11.

BLOCK DESIGN FMRI DATASET

B Batch Editor o B [
File Edit View SPM BasiclO PRoNTo
DEHE P
Module List ‘Current Module: Data & Design
Data & Design< ~| Help on: Data & Design o
Direciol <X
Groups <X
Masks <X
HRF overlap 0
HRF delay 0
Review No

Current ltem: Directory

o .] » Select Files
Directol o

Select a directory where the PRT.mat file containing the specified
'design and data matrix will be written.

Figure 11.23: Data and design module in matlabbatch.

Add one subject and define the modality for this subject. Write a name for the modality
(e.g. ‘fMRI’), enter the interscan interval of 2.5 seconds and select the image files available
in the fMRI directory of the Haxby dataset;

In the ‘Data & Design’ field, choose the option ‘Load SPM.mat’. This file is available for
download with the same dataset;

In case there is no ‘SPM.mat’ file already available to use, create a new design by selecting
the option ‘Specify design’. Choose how many conditions you have, which in this case
are 8 conditions (corresponding to the 8 categories of images). The unit in which the
onsets/durations are read is ‘Scans’. Write the names, onsets and durations of each condition
(Figure 11.24);

Add one mask, write the same modality name (e.g. ‘fMRI’) and select the ‘whole_brain’
mask available in the masks directory (the name of the modality here has to be exactly the
same as in ‘Modalities’, otherwise PRoNTo will not work);

Leave the ‘HRF overlap’ and the ‘HRF delay’ parameters as default.

11.2.2 Feature set / Kernel

Click on the Feature set / Kernel’ option on PRoNTo’s matlabbatch menu;

With the ‘Load PRT.mat’ field selected, click on the ‘Dependency’ button to associate the
PRT.mat file created in the previous Data & Design step (Figure 11.25);

Provide a name to the feature set (e.g. ‘HaxbyFeatures’);

Add one modality and select the modality name with the ‘Depency’ button'. Select ‘All
scans’ and ‘All voxels’ to include (this means we are not entering with an additional second-
level mask). Choose the polynomial detrend with order 1 and ‘No scaling’ in the ‘Scale input
scans’ field (Figure 11.26);

This is an optional step. In the ‘Voxels to include’ options, the user can specify a ‘second-
level’ mask, which would define regions of interest (ROIs) on which the classification can
be performed. In this case, select the ‘fusiform_gyrus’ mask.

1Or type it in manually, e.g. MRI’ but the name needs to be ezactly the same as the one specified in the
‘Data & Design’ module.

11.2. BATCH ANALYSIS

"B setch Editor =B
File Edit View SPM Basicd0 PRoNTo >
DEW| b
Module List Current Module: Data & Design
= |.......Specify design -

. Units for design Scans
.. Conditions

... Condition

... Name Faces

... .Onsets 12x1 double

... . Durations 9

... Condition

... Name Houses

... Onsets 12x1 double

... . Durations 9

... Condition

Name. C.at
Current item: Conditions

New: Condition

Replicate: Condition (1)
Replicate: Condition (2)
Replicate: Condition (3)

(]

>

Conditions o

Specify conditions. You are allowed to combine both event- and
epoch-related responses in the same model and/or regressor. Any
number of condition (event or epoch)types can be specified. Epoch

and event-related responses are modeled in exactly the same way by

81

Figure 11.24: Data and design module. The ‘Specify design’ option is used to enter the conditions
(names, onsets and durations), the units of design, TR and covariates.

B Load PRT.mat = | O

Data & Design: PRT mat filefig

4 nr .3

Select all

[oK][canca |

Figure 11.25: Feature set / Kernel module in matlabbatch. This window is called to establish a
dependency connection with the previous ‘Data and design’ module.

82 CHAPTER 11. BLOCK DESIGN FMRI DATASET

[Batch Editor = | B ||
File Edit View SPM BasidO PRoNTo N
D™ -
Module List ‘Current Module: Feature set/ Kernel
Data & Design ~| [Name HaxbyFeafures -
Feature set/ Ket Modalities
Specify model - Modality B
Run model --Name MRI
.. Scans / Conditions
... Allscans
__Voxels to include L
__Allvoxels 7
.. Detrend
_ .. Polynomial detrend
... Order 1
. Scale input scans L4

Do not scale the input scans
This item has a constant value which can not be modified using the
GUL

Figure 11.26: Feature set / Kernel module. Selected parameters in the modality option.

11.2.3 Specify model

e Similarly to the first step of the previous ‘Feature set / Kernel’ module, click on the ‘De-
pendency’ button to associate the PRT.mat file output by the previous module;

e Provide a name to the model (e.g. ‘svmFacesHouses’);
e Keep the ‘Yes’ option in the ‘Use kernels’ field;
e Select the the feature set name with the ‘Depency’ button?;

e Select the ‘Classification’ model type. Create 2 new classes. For Class (1) write ‘Faces’ on
the name field and add the group created in the ‘Data & Design’ module (select the group
name from the ‘Data & Design’ module with the ‘Depency’ button?®). On the ‘Subjects’
field, type ‘1’ (only subject one is selected) (see Figure 11.27) and on the ‘Conditions /
Scans’ field select the ‘Specify Conditions’ option and provide the name of this condition,
here ‘Faces’. Note that this name need to be exactly as specified in the ‘Data & Design’
module: if you simply loaded an SPM.mat file for the design, you must know the names of
the conditions;

e Similarly, for Class (2) write ‘Houses’ on the name and conditions field, and the group and
subject information as in the previous step;

e Select the ‘SVM Classification’ option on the ‘Machine’ field;
e In the ‘Cross-validation type’ section, choose the ‘Select One Block Out’ option;
e Keep the ‘No’ option in the ‘Include all scans’ field;

e Select the ‘Mean centre features’ data operation.

11.2.4 Run model

e Click on the ‘Dependency’ button to associate the PRT.mat file created in the previous
‘Specify model’ module;

e Select the the model name from the ’Specify model’ module with the ‘Depency’ button®.

2or write it ezactly as previously defined in the ‘Feature set / Kernel’ module, here ‘HaxbyFeatures’.

Sor write it exactly as previously defined in the ‘Data & Design’ module, here ‘G1°.
4or write it ezactly as previously defined in the ‘Specify model’ module, here ‘svmFacesHouses’ (Figure 11.28).

11.2. BATCH ANALYSIS

83
B Batch Editor [E=EE=A >
File Edit View SPM Basicdd PRoNTo ~
Ded| bk
Module List ‘Current Module: Specify model
Data & Design “| |...Class .
Feature set/ KerName Faces
Specify modelGroups
Runmodel | |..... Group B
...... Group name G1 |
...... Subjects 1 |3
...... Conditions / Scans
....... Specify Conditions
.. .. Condition
......... Name Faces
Name Houses
Groun: i
Current Hem: Name
Faces o
Name G
Name of condition to include.
A String is entered.
The string must have at least 1 characters.

Figure 11.27: Specify model module in matlabbatch.

B Batch Editor

File Edit View SPM

Basicl0 PRoNTo

Dl | b

Module List

Current Module: Run mode!

Data & Design ~
Feature set/ Kel
Specify model
Run model

< i b

Help on: Run model -

Load PRT.mat

Model name

_.Specify model: PRT.mat file
svmFacesHouses

‘Current tem: Model na

me

svmFacesHouses

Model name o

Name of a model. Must match your entry in the

'Specify model' batch module.

A String is entered

The string must have at least 1 characters.

Edit Value

Figure 11.28: Run model module in matlabbatch.

11.2.5 Compute weights (optional step)

e Click on the ‘Dependency’ button to associate the PRT.mat file created in the previous

‘Run model’ module;

e Select the the model name from the 'Specify model’ module with the ‘Depency’ button.

Finally, save the batch (e.g. as batch_run_all.m) and click on the ‘Run Batch’ option, on the
‘File menu’. The batch file created can then be opened and edited for further analyses.

The results will be the same as those obtained using the Graphical User Interface (see ‘Display
results’ section of this tutorial).

84

CHAPTER 11.

BLOCK DESIGN FMRI DATASET

Chapter 12

Regression dataset

Contents
12.1 GUT analysis o e 85
12.1.1 Data & Design 85
12.1.2 Prepare feature set Lo oL 86
12.1.3 Specify model L 87
12.1.4 Display resultso o 89
12.2 Batchanalysis L 91
12.2.1 Data & Design 91
12.2.2 Feature set/Kernel L. 92
12.2.3 Specify model (KRR) oL 92
1224 Runmodel (KRR). o 93
12.2.5 Specify and Run model (RVR and GPR) 93

This chapter will describe the steps necessary to perform a regression using PRoNTo. These
are similar to the ones in the previous chapter, thus, the reader is advised to complete the tutorial
in chapter 11 before moving on, since the explanation of each step will be less descriptive.

The data set used in this tutorial can be found in http://www.mlnl.cs.ucl.ac.uk/pronto/
prtdata.html (data set 3).

12.1 GUI analysis

As in chapter 11, the analysis of the data will start with the PRoNTo’s GUI. Please create a
folder in your computer to store the results and run ‘prt’ or ‘pronto’ in the MATLAB command
window. This will open PRoNTo’s main window (figure 12.1).

12.1.1 Data & Design
e In PRoNTo’s main window, click on the first button on the left (figure 12.1);

e A new window will appear. Like in the previous chapter, you have to define the path where
the PRT.mat file will be saved and add a new group called ‘Aged’;

e Unlike the previous chapter, all the images in the dataset correspond to different subjects,
therefore, click on the tick box that says ‘Scans’. This will lock the ‘Subjects/Scans’ field,
allowing you to skip to the third field;

e In the third field click on ‘Add’. A new window will appear. On the first drop-down list of
this window select the option ‘Enter New’ to enter a new modality called ‘tMRI’;

e Click on the ‘select. ..’ button to select the files to be used. You can select all the files by
using the right mouse button and clicking on the option ‘Select All’ (figure 12.2). When all
the images are selected, click on the ‘Done’ button;

85

http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html
http://www.mlnl.cs.ucl.ac.uk/pronto/prtdata.html

86

) PRONTO ::

CHAPTER 12.

- O X

Neuroimaging

Pattern Recognition for

data Toolbox

—Main steps

Data & Design ‘

- —Review options

Review data ‘

Prepare feature set ‘

Review kernel & CV ‘

Specify model

Display results

REGRESSION DATASET

Run model
Compute weights

Batch
Credits

Figure 12.1: Main interface of PRoNTo.

s Select files for the modality + -0 X
Dir Jhome/joac/PhD/Data/lXdata/aged/Guys/

Up /home/joac/PhD/Data/Xldata/aged/Guys/ -
Prev /home/fjoao/PhD/Data/IxXldata/aged/Guys/ -

| " 2 _Cinge 1 "-':'Q*T]..I_Iii,]. -
Select All . [WERRTTRNTEE

sa_rclilss |
L ;.l re ¥ 8A- e (7 AR-T1 nii 1|
| [4 i 3
7| Ed] Rec | _Fin | ‘*

[1
Unselected all files.

Figure 12.2: User interface that allows the user to select the files for the modality.

o After loading the images, write (or paste) the list of target values into the ‘Regression
targets’ field. The final window should look like figure 12.3. Press ‘OK’;

e The Data & Design window should look similar to figure 12.4. The last step is to select
the appropriate mask. Click on the drop-down list that says ‘Mask’ and select the ‘fMRI’
option to load the mask for this modality. The mask used in this example can be found in
the path where you have installed PRoNTo (e.g. PRoNTo/masks/SPM_mask noeyes.img);

e Click on the button that says ‘Save’. If no errors are shown in the MATLAB command
window, quit the window.
12.1.2 Prepare feature set
e In PRoNTo’s main window, click on the button that says ‘Prepare feature set’;

e A new window will appear. In this window click on the ‘...’ button and load the PRT.mat
file saved from the last step;

12.1. GUI ANALYSIS 87

PRoMNTo :: Specify modality

Modality
Name
Design Mo design v|
Files select..,
Covariates |
Regression F18822?241615 £6.3299110198494
Ok ‘ Cancel ‘

Figure 12.3: ‘Specify modality’ user interface.

PRoNTo :: Data and design + O X

| Jhome/fjoac/PhD/Tasks/Tutorial /X _aged

Croups Subjects/ Scans Modalities

Jhome/joac/PhD/Data/ I
Jhome/joac/PhD/Data/|
Jhome/joan/PhD/Data/l
/home/joac/PhD/Data/|
/home/joac/PhD/Data/|
/home/joac/PhD/Data/|
Jhome/joac/PhD/Data/|
Jhome/joan/PhD/Data/l
/home/joac/PhD/Data/|
/home/joac/PhD/Data/l
/home/joac/PhD/Data/|
Jhome/joac/PhD/Data/|
Jhome/joan/PhD/Data/l
/home/joac/PhD/Data/|

[¥]
Add Remaove Add | Remaove Add Remaove | Madify

W Scans

[4]

4
q
4

Load ‘ Quit ‘

Masks MR Save

Review ‘

Figure 12.4: Data & Design graphical user interface.
e A new window will appear (figure 12.5). There is no need to change anything for this
example. Just click on the ‘Done’ button;

e Back in the previous window, change the name of the feature set to ‘Scalar_Momentum’
and click on ‘Build Kernel / data matrix’ (figure 12.6).

12.1.3 Specify model

e In PRoNTo’s main window, click on the button that says ‘Specify model’;

e A new window will appear. In this window click on the ‘...’ button and load the PRT.mat
file saved from the last step;

88 CHAPTER 12. REGRESSION DATASET

PRoNTo :: Specify modality to include 4 - 0O X

Modality MR v|

Conditions A|[scans ~|

Additional mask for selected modality (ROIs)

Parameters
Detrend [Rls} v|
Scaling Mo scaling v|

Cone

Figure 12.5: Interface of the ‘Prepare feature set’ step. The ‘Specify modality to include’ win-
dow, which is called when the PRT.mat file is selected, allows the specification of the modality,
conditions, second-level mask selection and detrend and scaling parameters.

PRoNTo :: Prepare feature set

‘home /joao,/PhD/Tasks, /Tuterial /IXI_aged/PRT.ma .

| Scalar_Momentum |

Modalities

Number of modalities to concatenate 1

Selected modalities

Build kernel /| data matrix ‘

Figure 12.6: ‘Prepare feature set’ user interface.

e Change the model name to ‘KRR’;

e Select the Scalar_Momentum in the ‘Feature set’ drop-down list;
e Select ‘Yes’ in the ‘Use kernels’ option;

e Select ‘Regression’ in the ‘Model’ drop-down list;

e Click on the ‘Select subjects/scans’ button. This will open a new window, click on ‘Select
all’ to use all the scans for the regression (figure 12.7);

e Select the ‘Kernel Ridge Regression’ option in the drop-down list;
e Select the ‘Mean centre features using training data’ data operation;

e Select the ‘Leave One Subject Out’ option in the ‘Cross-Validation’ drop-down list;

12.1. GUI ANALYSIS

) |PRoNTo :: Specify subjects/scans toregre + _ O X

Aged

Croups in data

Subjects in group

-

-

Select all |

Selected subject(s)

Sled
S165
5166
$1e7
5168
5163
5170

-

Done

Figure 12.7: ‘Specify scans for regression’ user interface.

89

e The final window should look like figure 12.8. Click on the ‘Specify and run model’ button;

PRoNTo :: Specify model

| /home/joao/PhD/Tasks/Tutorial/IXI_aged/PRT.mat

Feature set

Use kernels

KRR

——————Feature set

Scalar_Momentum

(® Yes

Model

Model

Machine

Select subjects/scans

Kernel Ridge Regression

Cross-Validation Scheme

Data operations

amp\e averaging (wit
Divide data vectors b

——— Cross-Validarion

Leave One Subject Out

Selected data operations

IMean centre features (B

4]

[*] 4]

Specify model ‘ Specify and run model

Figure 12.8: ‘Specify model’ user interface.

e Repeat the process two times using the other two machines. To do this, just follow the same
steps in this section, but select the other options in the ‘Machine’ drop-down list (‘Relevance
Vector Regression’ and ‘Gaussian Process Regression’) and give different names to the each

model.

12.1.4 Display results

e In PRoNTo’s main window, click on the ‘Display results’ button;

90

e A new window will appear, asking you to select the PRT.mat file. Select the file saved from

CHAPTER 12.

the last step. This will open a window similar to figure 12.9;

PRoNTo :: Results + - g X

Save Figure File Edit View Insert Tools Desktop Window Help

REGRESSION DATASET

NEde|bARRAUDEL- G 08|aD

— PRoNTo: Results

— Pl

— Model

£
g
B . -

75| o

targets

kg

ES mw

Model
RVR
CPR.
Fold
1
Predictions (bar) E

| STATS TABLE |

Permutation test repetitions

Flot

Stat

n

g M I I

EE E7 B8 =] o 71 72 73 74
predictions

_|Save permutations’ parameters

Load weights map Load anatomical img = ‘ Resat images ‘

 Weights map A ical img

Crosshair Pasition

Crigin
——————
w o

Intensity:

mm

Help. | Quit |

Copyright 2011 PRoNTo

Figure 12.9: ‘Results’ user interface.

e In the ‘Results’ window, one can select the different regression models in the ‘Model’ list on
the upper right region. This will show the results obtained using each one of the regression
models;

e To see the correlation and the Mean Square Error (MSE) given by each model, click on the
‘STATS TABLE’ button. This will open a window similar to figure 12.10, where the values
are shown, these should be similar to the ones acquired in the paper by Schrouff et al. [15].

prt_ui_stats

Save L]

— Model stats
Accuracy

Correlation:

MSE: 24.99

Other

Figure 12.10: Window showing the values of correlation and MSE for one of the models.

12.2.

BATCH ANALYSIS 91

12.2 Batch analysis

In this section, the previous experiment will be repeated using the ‘matlabbatch’ system. The
reader is advised to complete the tutorial in section 11.2 before continuing, since the explanation
of each step will be less descriptive.

12.2.1 Data & Design

Open PRoNTo and click on the ‘Batch’ button or type ‘prt_batch’ on the MATLAB com-
mand window. This will open a window similar to the one in figure 11.22;

On the top menu, select the option ‘PRoNTo’ and add a ‘Data & Design’ module;

In the ‘Directory’ section, select the folder where you which to save the PRT.mat file;
Create a new Group called ‘Aged’;

In the ‘Select by’ section, choose the option ‘Scans’;

Create a new modality called ‘fMRI’. Select the image files in the ‘Files’ section and define
the regression targets in the ‘Regression targets (per scans)’ section;

In the ‘Masks’ section, create a new modality called ‘fMRI’;

In the ‘File’ section, select the appropriate mask. The mask used in this example can be
found in the path where you have installed PRoNTo (e.g. PRoNTo/masks/SPM_mask_noeyes.img);

Set ‘HRF overlap’ and ‘HRF delay’ to 0;

Set ‘Review’ to ‘No’. The final ‘Data & Design’ module should look like the one in figure
12.11.

File Edit View SPM Basicl0 FRoNTo -
DMk
Module List Current Module: Data & Design
Data & Design = Help on: Data & Design ’:
Feature set/Kernel DEP / 0ao/Fh sks
Specify model DEP
Run model DEP
Specify madel DEP
Run model DEP .. Select by
Specify model DEP ... Scans
Run model DEP ... Modality
.... IName MRl
. Files 170 files
.... Regression targets (per scans) 170x1 double
.. .. Covariates
Masks
. Modality
.. Name fMRI
.. File ...0a0/Software/Matlab Packages/PRoNTo/masks/SPM _mask_noeyes.img,1l [
HRF averlap 0

LIDC Aol

Current ltent Directory

/home/joao/PhD/Tasks/Tutorial/IXl_aged/batch/

= Select Files |

Select a directory where the PRT.mat file containing the specified design and data matrix will be written.

Figure 12.11: ‘Data & Design’ module in the matlabbatch.

92

CHAPTER 12. REGRESSION DATASET

12.2.2 Feature set/Kernel

Add a new ‘Feature set/Kernel’ module;

In the ‘Load PRT.mat’ section, click on the ‘Dependency’ button and select the only option
available at this point (‘Data & Design: PRT.mat file’);

In the ‘Feature/kernel name’ section, write ‘Scalar_Momentum’;
Add a new modality called ‘fMRI’;

In the ‘Scans / Conditions’ section, select the option ‘All scans’;
In the ‘Voxels to include’ section, select the option ‘All voxels’;
In the ‘Detrend’ section, select the option ‘None’;

Finally, in the ‘Scale input scans’ section, select the option ‘No scaling’. The ‘Feature
set/Kernel’ module should look like the one in figure 12.12.

. Batch Editor T -G X
File Edit View SPM Basicl0 PRoNTo £
D@\

Module List Current Module: Feature set/Kernel

Data & Design }: Help on: Feature set/Kernel = |

Feature set/Kernel Load PRT.mat DEP Data & Design: PRT.mat file

Specify model DEP Feature/kernel name Scalar_Momentum

Run model DEP Modalities

Specify model DEP . Modality

Fun model DEP .. Madality name fMRI

Specify madel DEP . Scans / Conditions

Run model DEP ... All scans

. Voxels to include
.. Allvoxels
.. Detrend
... None
.. Scale input scans
.. No scaling

Current ltent Load PRT.mat

Reference from
Data & Design: PRT.mat file

= Select Files | Dependency. J
Load PRT.mat -

Select data/design structure file (FRT.mat).

Figure 12.12: ‘Feature set/Kernel’ module in the matlabbatch.

12.2.3 Specify model (KRR)

Add a new ‘Specify model’ module;

In the ‘Load PRT.mat’ section, click on the ‘Dependency’ button and select the option
‘Feature set/Kernel: PRT.mat file’;

In the ‘Model name’ section, set the name to ‘KRR’;
In the ‘Use kernels’ section, select the option ‘Yes’;

In the ‘Feature sets’ section, click on the ‘Dependency’ button and select the option ‘Feature
set/Kernel: Feature/kernel name’;

In the ‘Model Type’ section, select ‘Regression’;

12.2. BATCH ANALYSIS 93

e Create a new group and call it ‘Aged’;

e In the ‘Subjects’ section, type ‘1:170°’. This will instruct the program to use all the 170
scans (i.e. from scan 1 to scan 170);

e In the ‘Machine’ section, select ‘Kernel Ridge Regression’ with a ‘Regularization’ of 1;
e In the ‘Cross-validation type’ section, select ‘Leave one out’;

e In the ‘Include all scans’ section, select ‘No’;

e In the ‘Mean centre features’ section, select ‘Yes’;

e Finally, in the ‘Other operations’ section, select ‘No operations’. The ‘Specify model’ module
should look like the one in figure 12.13.

. Batch Editor + -3 X
File Edit View SPM Basicl0 FRoMTo o
D Wb
Module List Current Module: Specify model
Data & Design - Help on: Specify model =
Feature set/Kernel DEP Load PRT.mat DEP Feature set/Kernel: PRT.mat file
Specify model Model name KRR
Run model DEP Use kernels Yes
Specify model DEP Feature sets DEFP Feature set/Kernel: Feature/kernel name
Run model DEP Model Type
Specify model DEP . Regression
Run model DEP .. Groups
... Group
Group name Aged
... .Subjects 170x1 double

.. Machine

... Kernel Ridge Regression

... . Regularization 1
Cross—validation type

. Leave one subject out

Include all scans No |
Dot :

Current ltent Load PRT.mat

Reference from
Feature set/Kernel: PRT.mat file

El Select Files J Dependency J

Select data/design structure file (PRT.mat).

Figure 12.13: ‘Specify model’ module in the matlabbatch.

12.2.4 Run model (KRR)

e Add a new ‘Run model’ module;

e In the ‘Load PRT.mat’ section, click on ‘Dependency’ and select ‘Specify model: PRT.mat
file’;

e In ‘Model name’ section, click on ‘Dependency’ and select ‘Specify model: Model name’.
Alternatively, you can write ‘KRR’. The ‘Run model’ module should look like the one in
figure 12.14.

12.2.5 Specify and Run model (RVR and GPR)

The specification of the other models (Relevance Vector Regression and Gaussian Process Regres-
sion) follows the same procedure as the KRR. The only difference is that in the ‘Machine’ section
of the ‘Specify model’ module, one has to choose the appropriate machine to use (‘Relevance
Vector Regression’ or ‘Gaussian Process Regression’). The parameters used for each machine
should be the default ones.

94 CHAPTER 12. REGRESSION DATASET

Eilz Edit View S5PM Basicl0 PRoNTo Kl
==

Module List Current Module: Run model

Data & Design -9 Help on: Run model = |

Feature set/Kernel DEP Load PRT.mat DEP Specify model: PRT.mat file

Specify model DEP Maodel name KRR

Do permutation test?

Specify model DEP . Mo permutation test

Run model DEP

Specify model DEP

Run model DEP

Current Itent Load PRT.mat

Specify model: PRT.mat file

= Select Files d Dependency J
———

Load PRT.mat

Select PRT.mat (file containing data/design structure)

Figure 12.14: ‘Run model’ module in the matlabbatch.

Note that when the PRT.mat file is loaded in each module, the user should select the latest
option on the list.
When all the models are defined, the ‘Module List’ should contain 8 modules:

1. Data & Design;

2. Feature set/Kernel,
Specify model;
Run model;
Specify model;
Run model;

Specify model;

®© N g W

Run model;

Note that modules 3 and 4 correspond to the KRR model; 5 and 6 to the RVR model; 7 and
8 to the GPR model.

When all the modules are added, just press the ‘Run Batch’ button. The resulting PRT.mat
file will be saved in the specified directory and the results can be viewed using the process
described in section 12.1.4.

Part 1V

Advanced topics

95

Chapter 13

Developer’s guide

Contents
13.1 Introductiono 97
13.2 Code organisation L e 97
13.2.1 Userinterface 98
13.2.2 Machine learning oL L oL 98
13.2.3 Machines Lo 98

13.1 Introduction

As described in the Introduction, PRoNTo was developed using a modular structure. There are
five main modules (‘Data and Design’, ‘Prepare Feature set’, ‘Specify model’, ‘Run model’ and
‘Compute weights’) and three reviewing and displaying modules (‘Review data’, ‘Review kernel
and CV’ and ‘Display results’). This structure not only facilitates the use of the toolbox but
also new contributions from developers. These modules have very few dependencies between each
other, and for most of them to work, one needs only to provide the ‘PRT.mat’ obtained from
the previous module and a few more module specific inputs. This means that the developer can
contribute with code for any of the modules without having to adapt the whole toolbox to the
changes. Developers can also work only on the module of interest and do not need to be familiar
with the functions and sub functions that comprise the rest of the toolbox. In this chapter, we
provide a brief description of how the code is organised and how one can contribute with new code,
in particular new GUIs and Batch functions. At the end of this chapter, we provide instructions
on how to integrate a new machine into PRoNTo. In the current version of PRoNTo, this is the
most straightforward extension that can be added.

13.2 Code organisation

Although from the user’s point of view there are five main modules, from the developer’s side one
can see PRoNTo’s functions as belonging to three categories, depending on what they deal with
(Figure 13.1). The first set of functions and sub-functions is responsible for creating PRoNTo’s
GUIs and matlabbatch menu. The second set of functions comprise all the core routines that
implement the machine learning methods (including extraction and preparation of the features,
specification and estimation of a model, cross-validation, etc.). The last set of functions corre-
spond to the actual machine learning algorithms that PRoNTo uses for classification and regres-
sion. We call these functions the ‘machines’. The main difference between this last set of functions
and the rest, is that one does not need to be familiar with PRoNTo’s PRT.mat structure or the
rest of the code to be able to integrate a new machine. This can be done very easily, as shown
below.

97

98 CHAPTER 13. DEVELOPER’S GUIDE

Code organisation

User Interface Machine Machines
learning

Classification
Regression

GUIs Features
Batch Kernel
Model
Training
Weights

Wrapper

Figure 13.1: Organisation of PRoNTo’s functions. From the developer’s perspective the code is
organised in functions and sub functions that deal with the user interface experience (such as
GUI and batch functions), the core functions that implement the machine learning approaches
(including extracting and preparing the features, specification and estimation of a model, cross-
validation routines, etc.) and the actual machine learning algorithms (also known as machines).

13.2.1 User interface

The functions that deal with creating and running PRoNTo’s main GUIs have the prefix ‘prt_ui’.
All GUT functions (‘.m’ files) have a corresponding ‘.fig’ file. This file can be opened and edited
using MATLAB’s guide functionality. This way one can change the GUI and add extra options
to the available menus (for more information, please consult MATLAB’s documentation®).

PRoNTo’s matlabbatch functions have either the prefix ‘prt_cfg’, to create a new menu on
the batch interface and the prefix ‘prt_run’, to execute instructions using the variables from the
corresponding ‘prt_cfg’ function. PRoNTo’s batch functionalities work exactly like SPM. For more
information on how to contribute with new matlabbatch functions please consult the developer’s
guide on the SPM8 manual®.

13.2.2 Machine learning

The machine learning routines comprise the core of PRoNTo. These routines do most of the nec-
essary instructions to run all machine learning procedures currently implemented in the toolbox.
They don’t have a specific prefix but from the name of the .m file it is easy to find out what the
function does (e.g. prt_compute_weights.m deals with creating new weights images). Most of the
functions take as input the PRT.mat structure. Therefore, knowledge of this structure (see next
chapter) is required in order to contribute with new code. In the future, we intend to make the
process of introducing new feature selection algorithms and other model functionalities as easy
as implementing a new machine, as described below.

13.2.3 Machines

Integrating a new machine algorithm, i.e. classifier or regressor, into the PRoNTo framework is
straightforward. PRoNTo provides a function called ‘prt_machine.m’ that works as a wrapper
around the different machine learning algorithms (functions with prefix ‘prt_machine’). In brief,
this wrapper translates PRoNTo’s structure and internal variables into the required inputs for
each machine. This way, the machine function needs only to read a simple input format that does
not depend on knowledge of how PRoNTo works or of the PRT.mat fields (Figure 13.2).

More specifically, to contribute with a new machine the developer needs to provide a matlab
function, which reads the following input data structure, d, and optional arguments, args, (all

Thttp://www.mathworks.com/help/techdoc
2http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf

13.2. CODE ORGANISATION 99

Inputs :
Structure (d):) Output
- Data/Kernel N Structure(output):
- Lab_els . - Predictions
- Optional fields - Coefficients/Weights
Structure (m): - Optional fields
- Function name (machine)
- Arguments
Machines
(classification and regression models)
Inputs | Output
Structure (d): Structure (output):
-Data/Kernel - Predictions
-Labels - Coefficients/Weights
Args

Figure 13.2: Code organisation for integrating a new machine with PRoNTo. ‘prt_machine.m’
works has a wrapper that translates PRoNTo’s inputs into the machine format inputs and per-
forms extensive error checks on these variables. The machines (such as ‘prt_machine_svm_bin.m’)
perform the classifier /regression algorithms and have inputs and outputs that are not dependent
on PRoNTo’s internal structures.

fields are mandatory except where otherwise stated):

e d - data structure with input to the classifier /regressor:
.train - training data (cell array of matrices of row vectors, each [Ntr x D]). Each matrix
contains one representation of the data. This is useful for approaches such as multiple kernel
learning. Ntr is the number of training examples and D is the dimension of the feature set
(e.g. number of voxels).
.test - testing data (cell array of matrices row vectors, each [Nte x D]). Nte is the number
of testing examples and D the dimension of the feature set.
.tr_targets - training labels (for classification) or values (for regression) (column vector, [Ntr
x 1]).
.use_kernel - flag: is data in form of kernel matrices (true) of in form of features (false)?

e args (optional) - anything else that is specific to the algorithm (e.g. LIBSVM arguments).

In addition, the outputs of the function need to have the following format, so that they can
be read by the wrapper and translated back to the PRoNTo framework (all fields are mandatory
except where otherwise stated) (Figure 13.2):

e output - output structure with fields:
.predictions - predictions of classification or regression [Nte x D]. Nte is the number of test
examples and D the dimension of the feature set.
Junc_val (optional) - value of the decision function (if it applies).
.type (optional) - type of machine (string: ‘classifier’ or ‘regressor’).

The rest of the function can be designed entirely as the developer wishes. The last thing to
have in mind is the name of the function itself. It needs to have the prefix ‘prt_machine’ (e.g.
‘prt_machine_svm_bin’ is a function that implements support vector machine binary classification
by calling the LIBSVM library). Importantly, the cross-validation and performance measures are
performed outside in the main PRoNTo framework, and therefore the machine function should
provide only the necessary instructions to implement the classifier /regressor algorithm.

100 CHAPTER 13. DEVELOPER’S GUIDE

function output = prt machine svm bin(d,args)
% Run binary 8VM - wrapper for 1ib8VM
% FORMAT output = prt machine svm bin(d,args)

% Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,
each [Ntr = D]). each matrix contains one representation

of the data. This is useful for approaches such as
multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each
[Hke = D]}
.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])
.use_kernel - flag, is data in form of kernel matrices (true) of in
form of features (falsze)
args = 1ib8VM arguments
Cutput:
output - output of machine (struct).
*+ Mandatory fields:
.predictions - predictions of classification or regression [Nte x D]

* Optional fields:
.fune_wval - value of the decision funection
.type = which type of machine this is (here, "classifier’)

P I I I R R R g R R]

Copyright (C) 2011 Machine Learning & MNeuroimaging Laboratory

Figure 13.3: ‘prt_machine_.m’ function help. Example of a PRoNTo machine for 2-class SVM
classification.

Finally, the new machine is easily integrated with PRoNTo by including the name of the file in
the corresponding GUI and Batch functions (prt_ui_model.m and prt_cfg_model.m, respectively).

The same procedure applies to the weights functions. PRoNTo provides a wrapper function
called ‘prt_weights’. The procedure for integrating a new weights function is exactly the same as
for a new machine.

Both wrapper functions, ‘prt_machine’ and ‘prt_weights’, perform extensive tests to make
sure the machines and weights code complies to the specific inputs and outputs required by the
framework.

Chapter 14

PRT structure

This is how the main PRT structure is organised.

PRT
e group

e gr name

e subject

e subj_name()

e modality()

e hrfoverlap

mod_name

detrend

covar

rt_subj

scans

design
e conds
e stats
e TR
e unit
e covar

101

cond_name()
onsets()
durations()
rt_trial()

scans()

blocks()
discardedscans|()
hrfdiscardedscans()

overlap
goodscans
discscans
meanovl
stdovl
mgoodovl
sgoodovl
goodovl

102

hrfdelay

e masks

o fs

mod_name

fname

fs_name
k_file
id_col_names
fas

e im

e ifa
modality

e mod_name

e detrend

e param_dt

e mode

o idfeat_fas

e normalise
e type
e scaling

id_mat

mod_name
dat
detrend
param_dt
hdr
e fname
e dim
e mat
e pinfo
o dt
o n
e descrip
e private

idfeat_img

e model

model_name()

input()
e use_kernel
e type
e machine
e function

e args

CHAPTER 14. PRT STRUCTURE

e class
e class_name()
e group()
e grname
e subj
e num()
e modality()
o fs
o fs name

e samp_idx

e include_allscans

e targets

e targ allscans

e cv_mat

e operations

e cv_type

e output()

e fold
e targets()
e predictions()
o stats()

e func_val()

* type()

e alpha()

e b)

o totalSV()
e stats

e con_mat

e acc

e c_acc

e b_acc

e Cpv

e acc_lb

e acc_ub

con_mat
acc
c_acc
b_acc
c_pv
acc_lb
acc_ub

103

104 CHAPTER 14. PRT STRUCTURE

Chapter 15

List of PRoNTo functions

Contents
15.1 Pronto.mo e e e e e e e e e e 106
15.2 PrEam . . oo e e 106
15.3 prt_apply_operation.m oL 106
15.4 prt_check_design.m 107
15.5 prt_compute_weights.m oL 108
15.6 prt.ecvomodelm ... Lo oL 108
15.7 prt_cv_opt_param.m L Ll L L e e e e e e e 108
15.8 prt_data_conditions.m 109
15.9 prt.data_modalitymo 109
15.10 prt-data_review.m e e 110
15.11 prtdefaultsm oL 110
15.12 prtfsam e 111
15.13 prtfunc2Zhtmlmo 111
15.14 prtgetdefaultsm Lo 111
15.15 prt_getfilenamem L Lo 112
15.16 prtinitfsm Lo e 112
15.17 prtinittmodelm oL oL 113
15.18 prtldatex.mo Lo e 114
15.19 prtdoad.mo 114
15.20 prtdoad_blocksm L 114
15.21 prtomodel.m Lo e 114
15.22 prtnormalise_kernelm L L oo 115
15.23 prt_permutation.mo Lo 115
15.24 prt_preproc.mi Lo e e e e 116
15.25 prtremove_confounds.m Lo o Lo 116
15.26 protstatsam Lo oL L 116
15.27 prtstructlatex.m Lo Lo Lo 117
15.28 prt_text_input.m 117
15.29 prt_uicompute_weights.m L Lo 117
15.30 prtuicvomodelm oL Lo 118
15.31 prtuidesign.m . ..o L L Lo L e e 118
15.32 prt_ui_kernel_construction.m Lo 119
15.33 prt_uiimain.m . ..o L Lo 119
15.34 prt_uiomodel.m . . Lo Lo L oL 120
15.35 prt_uipreparedata.m Lo 120
15.36 prt_ui_prepare.datamod.m L Lo 120
15.37 prt_uiresults.m ... oL L Lo 121

106 CHAPTER 15. LIST OF PRONTO FUNCTIONS

15.38 prt_uiresults_helpmo L oo 121
15.39 prtuireviewCVom . . . L oL Lo e 122
15.40 prtuireviewmodel.mo Lo 122
15.41 prtuiselect_classmo Lo 123
15.42 prtuiselectregm Lo L oL L 123
1543 prt_uistatsm ... 0oL Lo 124
1544 pré_uisure.m e e e e e e e e e e e e 124
15.45 machines L oL 124
15.45.1 machines\prt . KRR.m L 124
15.45.2 machines\prt_machinem L. 124
15.45.3 machines\prt_machine RT bin.m 125
15.45.4 machines\prt_machine_gpclap.m 126
15.45.5 machines\prt_machine_gpmlm 126
15.45.6 machines\prt_machine_gpram L. 127
15.45.7 machines\prt_machine_krrm 128
15.45.8 machines\prt-machinervrm L 129
15.45.9 machines\prt_machine_svm_bin.m 129
15.45.10 machines\prt_rvr.m oo L 130
15.45.11 machines\prt_-weightsm L L. 131
15.45.12 machines\prt_weights_bin linkernelm 131
15.45.13 machines\prt_weights_svm binm 131
1546 utils. . . oL 132
15.46.1 utils\prt_centre kernelm oo L0 132
15.46.2 utils\prt_checkAlphaNumUnder.m 132
15.46.3 utils\prt_.normalise_kernelm 132

This is the list of PRoNTo functions, including the subdirectories: machines and utils.
15.1 pronto.m

Function launching PRoNTo (Pattern Recognition for Neuroimaging Toolbox),
see prt.m for more details

15.2 prt.m

Pattern Recognition for Neuroimaging Toolbox, PRoNTo.

This function initializes things for PRoNTo and provides some low level
functionalities

15.3 prt_apply_operation.m

function to apply a data operation to the training, test and
in.train: training data
in.tr_id: id matrix for training data

15.4. PRT_CHECK_DESIGN.M

in.use kernel: are the data in kernelised form
in.tr_targets: training targets (optional field)
in.pred_type: ’classification’ or ’regression’ (required for tr_targets)

A test set may also be specified, which require the following fields:
in.test: test data

in.testcov: test covariance (only if use_kernel = true)
in.te_targets: test targets
in.te_id: id matrix for test data

opid specifies the operation to apply, where:

= Temporal Compression

= Sample averaging (average samples for each subject/condition)
Mean centre features over subjects

= Divide data vectors by their norm

= Perform a GLM (fMRI only)

O W N
1]

N.B: - all operations are applied independently to training and test
partitions
- see Chu et. al (2011) for mathematical descriptions of operations
1 and 2 and Shawe-Taylor and Cristianini (2004) for a description
of operation 3.

References:

Chu, C et al. (2011) Utilizing temporal information in fMRI decoding:
classifier using kernel regression methods. Neuroimage. 58(2):560-71.
Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for Pattern
analysis. Cambridge University Press.

15.4 prt_check design.m

FORMAT [conds] = prt_check.design(cond,tr,units,hrfoverlap)

Check the design and discards scans which are either overlapping between
conditions or which do not respect a minimum time interval between
conditions (due to the width of the HRF function).

INPUT
- cond : structure containing the names, durations and onsets of the
conditions
- tr : interscan interval (TR)
- units : 1 for seconds, O for scans
- hrfoverlap : value to correct for BOLD overlap (in seconds)
- hrfdelay : value to correct for BOLD delay (in seconds)
OUTPUT
the same cond structure containing supplementary fields:
- scans : scans retained for further classification
- discardedscans: scans discarded because they overlapped between
conditions

hrfdiscardedscans: scans discarded because they didn’t respect the
minimum time interval between conditions
- blocks: represents the grouping of the stimuli (for
cross-validation)
- stats: struct containing the original time intervals, the

107

108 CHAPTER 15. LIST OF PRONTO FUNCTIONS

time interval with only the ’good’ scans, their
means and standard deviation

15.5 prt_compute weights.m

FORMAT prt_compute_weights(PRT,in)

This function calls prt_weights to compute weights
Inputs:
PRT - data/design/model structure (it needs to contain
at least one estimated model).
in - structure with specific information to create
weights
.model name - model name (string)
.img name - (optional) name of the file to be created
(string)
.pathdir - directory path where to save weights (same as the
one for PRT.mat) (string)
Output:
empty - does not return anything (it creates an .img file)

15.6 prt_cv_model.m

Function to run a cross-validation structure on a given model

PRT containing the specified model plus the following arguments:
in.fname: filename for PRT.mat (string)
in.model name: name for this model (string)

Outputs:

Writes the following fields in the PRT data structure:

PRT.model (m) .output.fold(i) .targets: targets for fold(i)
PRT.model (m) .output.fold(i) .predictions: predictions for fold(i)
PRT.model(m) .output.fold(i) .stats: statistics for fold(i)
PRT.model(m) .output.fold (i) .custom: optional fields

Notes: - The PRT.model(m).input fields are set by prt_init_model, not by
this function

15.7 prt_cv_opt_param.m

Function to pass optional parameters into the classifier. This is
primarily used for complex data prediction methods that need to know
something about the experimental design that is normally not accessible
to generic prediction functions (e.g. task onsets or TR). Examples of
this kind of classifier include multi-class classifier using kernel
regression (MCKR) and the machine that implements nested
cross-validation.

15.8. PRT_DATA_CONDITIONS.M

PRT: main data structure
ID: id matrix for the current cross-validation fold
CV: cross-validation structure (current fold only)

Outputs:

Provides the following fields for use by the classifier
param.id_fold: the id matrix for this fold
param.model_id: id for the model being computed
param.PRT: PRT data structure

15.8 prt_data_conditions.m

PRT_DATA_CONDITIONS M-file for prt_data_conditions.fig

PRT_DATA_CONDITIONS, by itself, creates a new PRT_DATA_CONDITIONS or
raises the existing singletonx.

H = PRT_DATA_CONDITIONS returns the handle to a new PRT_DATA_CONDITIONS
or the handle to the existing singletonx.

PRT_DATA_CONDITIONS(’CALLBACK’ ,hObject,eventData,handles,...) calls the
local function named CALLBACK in PRT_DATA_CONDITIONS.M with the given
input arguments.

PRT_DATA_CONDITIONS(’Property’,’Value’,...) creates a new
PRT_DATA_CONDITIONS or raises the existing singleton*. Starting from the
left, property value pairs are applied to the GUI before
prt_data_conditions_OpeningFcn gets called. An unrecognized property name
or invalid value makes property application stop. All inputs are passed
to prt_data_conditions_OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.9 prt_data_modality.m

PRT_DATA_MODALITY M-file for prt_datamodality.fig

PRT_DATA_MODALITY, by itself, creates a new PRT_DATA_MODALITY or raises
the existing singletonx.

H = PRT_DATA_MODALITY returns the handle to a new PRT_DATA_MODALITY or
the handle to the existing singletonx.

PRT_DATA_MODALITY(’CALLBACK’ ,hObject,eventData,handles,...) calls the local

109

function named CALLBACK in PRT_DATA_MODALITY.M with the given input arguments.

PRT_DATA_MODALITY(’Property’,’Value’,...) creates a new PRT_DATA MODALITY

110 CHAPTER 15. LIST OF PRONTO FUNCTIONS

or raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_datamodality_OpeningFcn gets called.
An unrecognized property name or invalid value makes property application
stop. All inputs are passed to prt_datamodality_OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.10 prt_data_review.m

PRT_DATA REVIEW M-file for prt_data review.fig

PRT_DATA_REVIEW, by itself, creates a new PRT_DATA_REVIEW or raises the
existing singleton*.

H = PRT_DATA_REVIEW returns the handle to a new PRT_DATA_REVIEW or the
handle to the existing singletonx.

PRT_DATA_REVIEW(’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_DATA REVIEW.M with the given input arguments.

PRT_DATA_REVIEW(’Property’,’Value’,...) creates a new PRT_DATA REVIEW or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_data review_OpeningFcn gets
called. An unrecognized property name or invalid value makes property
application stop. All inputs are passed to prt_data review_OpeningFcn
via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.11 prt_defaults.m

Sets the defaults which are used by the Pattern Recognition for
Neuroimaging Toolbox, aka. PRoNTo.

FORMAT prt_defaults

This file can be customised to any the site/person own setup.

Individual users can make copies which can be stored on their own
matlab path. Make sure your ’prt_defaults’ is the first one found in the
path. See matlab documentation for details on setting path.

Care must be taken when modifying this file!

The structure and content of this file are largely inspired by SPM:
http://www.fil.ion.ucl.ac.uk/spm

15.12. PRT_FS.M 111

15.12 prt_fs.m

Function to build file arrays containing the (linearly detrended) data
and compute a linear (dot product) kernel from them

Inputs
in.fname: filename for the PRT.mat (string)
in.fs_name: name of fs and relative path filename for the kernel matrix

in.mod(m) .mod name: name of modality to include in this kernel (string)

in.mod(m) .detrend: detrend (scalar: O = none, 1 = linear)

in.mod(m) .param._dt: parameters for the kernel detrend (e.g. DCT bases)
in.mod(m) .mode: ’all_cond’ or ’all_scans’ (string)

in.mod (m) .mask: mask file used to create the kernel

in.mod(m) .normalise: O = none, 1 = normalise kernel, 2 = scale modality
in.mod (m) .matnorm: filename for scaling matrix

Outputs:

Calls prt_init_fs to populate basic fields in PRT.fs(f)...
Writes PRT.mat
Writes the kernel matrix to the path indicated by in.fs_name

15.13 prt_funcZhtml.m

Script to generate the list of .m functions into html files
which can be browsed around with your favourite browser.

Note that this script relies on the M2HTML package which is *NOT*
distributed with PRoNTo!

For more information, please read the M2HTML tutorial and FAQ at:
$<$http://www.artefact.tk/software/matlab/m2html/$>$

15.14 prt_get_defaults.m

Get/set the defaults values associated with an identifier

FORMAT defaults = prt_get_defaults
Return the global "defaults" variable defined in prt_defaults.m.

FORMAT defval = prt_get_defaults(defstr)

Return the defaults value associated with identifier "defstr".
Currently, this is a ’.’ subscript reference into the global
"prt_def" variable defined in prt_defaults.m.

FORMAT prt_get_defaults(defstr, defval)

Sets the defaults value associated with identifier "defstr". The new
defaults value applies immediately to:

* new modules in batch jobs

* modules in batch jobs that have not been saved yet

This value will not be saved for future sessions of PRoNTo. To make

112

CHAPTER 15. LIST OF PRONTO FUNCTIONS

persistent changes, edit prt_defaults.m.

The structure and content of this file are largely inspired by SPM &
Matlabbatch.
http://www.fil.ion.ucl.ac.uk/spm

http://sourceforge.net/projects/matlabbatch/

15.15 prt_get_filename.m

out = prt_get_filename(ids)

15.16 prt_init_fs.m

function to initialise the kernel data structure

FORMAT: Two modes are possible:
fid = prt_init_fs(PRT, in)
[fid, PRT, tocomp] = prt_init fs(PRT, in)

USAGE 1:

function will return the id of a feature set or an error if it doesn’t
exist in PRT.mat
Input:

fid :

USAGE 2:

is the identifier for the feature set in PRT.mat

function will create the feature set in PRT.mat and overwrite it if it
already exists.
Input:

in.fs name: name for the feature set (string)
name of PRT.mat

in.

fid :

fname:

.mod (m)
.mod (m)
.mod (m)
.mod (m)
.mod (m)
.mod (m)
.mod (m)

.mod_name: name of the modality

.detrend: type of detrending

.mode: ’all_scans’ or ’all_cond’

.mask: mask used to create the feature set
.param_dt: parameters used for detrending (if any)
.normalise: scale the input scans or not

.matnorm: mat file used to scale the input scans

is the identifier for the model constructed in PRT.mat

15.17. PRT_INIT_MODEL.M

Populates the following fields in PRT.mat (copied from above):
PRT.fs(f).fs_name
PRT.fs(f).fas
PRT.fs(f) .k.-file

Also computes the following fields:
PRT.fs(f).id mat: Identifier matrix (useful later)
PRT.fs(f).id_col names: Columns in the id matrix

Note: this function does not write PRT.mat. That should be done by the
calling function

15.17 prt_init_model.m

function to initialise the model data structure
FORMAT: Two modes are possible:

mid = prt_init model(PRT, in)

[mid, PRT] = prt_init.model(PRT, in)

USAGE 1:

function will return the id of a model or an error if it doesn’t
exist in PRT.mat
Input:

mid : is the identifier for the model in PRT.mat

USAGE 2:

function will create the model in PRT.mat and overwrite it if it
already exists.

in.model name: name of the model to be created (string)
in.use_kernel: use kernel or basis functions for this model (boolean)

in.machine: prediction machine to use for this model (struct)
in.type: ’classification’ or ’regression’
Output

Populates the following fields in PRT.mat (copied from above):
PRT.model(m) . input.model _name

PRT.model (m) . input.type

PRT.model(m) . input.use kernel

PRT.model(m) . input.machine

Note: this function does not write PRT.mat. That should be done by the
calling function

113

114 CHAPTER 15. LIST OF PRONTO FUNCTIONS

15.18 prt_latex.m
Extract information from the toolbox m-files and output them as usable
.tex files which can be directly included in the manual.
There are 2 types of m2tex operations:
1. converting the job configuration tree, i.e. *_cfg * files defining the
batching interface into a series of .tex files.
NOTE: Only generate .tex files for each exec_branch of prt_batch.

2. converting the help header of the functions into .tex files.

These files are then included in a manually written prt_manual.tex file,
which also includes chapter/sections written manually.

File derived from that of the SPM8 distribution.
http://www.fil.ion.ucl.ac.uk/spm

15.19 prt_load.m

Function to load the PRT.mat and check its integrity regarding the
kernels and feature sets that it is supposed to contain. Updates the set
feature name if needed.

input : name of the PRT.mat, path included

output : PRT structure updated
15.20 prt_load_blocks.m

Load one or more blocks of data.
This script is a effectively a wrapper function that for the routines
that actually do the work (SPM nifti routines)

The syntax is either:

img = prt_load blocks(filenames, block_size, block range) just to specify
continuous blocks of data

or

img = prt_load blocks(filenames, voxel_ index) to access non continuous
blocks

15.21 prt_model.m

Function to configure and build the PRT.model data structure

PRT fields:
model.fs(f) .fs_name: feature set(s) this CV approach is defined for

15.22. PRT_NORMALISE_KERNEL.M 115

model.fs(f) .fs_features: feature selection mode (’all’ or ’mask’)

model.fs(f) .mask_file: mask for this feature set (fs_features=’mask’)
in.fname: filename for PRT.mat

in.model name: name for this cross-validation structure

in.type: ’classification’ or ’regression’

in.use_kernel: does this model use kernels or features?
in.operations: operations to apply before prediction

in.fs(f) .fs_name: feature set(s) this CV approach is defined for

in.class(c) .class_name

in.class(c) .group(g) .subj(s) .num

in.class(c) .group(g) .subj(s) .modality(m) .mod_name

EITHER: in.class(c).group(g).subj(s) .modality(m).conds(c).cond -name

OR: in.class(c) .group(g) .subj(s) .modality(m) .all_scans
OR: in.class(c) .group(g) .subj(s) .modality(m).all_cond
in.cv.type: type of cross-validation (’loso’,’losgo’,’custom’)

in.cv.mat_file: file specifying CV matrix (if type=’custom’);

This function performs the following functions:
1. populates basic fields in PRT.model(m).input
2. computes PRT.model(m).input.targets based on in.class(c)...
3. computes PRT.model(m).input.samp_idx based on targets
4. computes PRT.model(m).input.cv_mat based on the labels and CV spec

15.22 prt_normalise_kernel.m

This function normalises the kernel matrix such that each entry is
divided by the product of the std deviations, i.e.
Kmnew(x,y) = K(x,y) / sqrt(var(x)*var(y))

15.23 prt_permutation.m
Function to compute permutation test

PRT: PRT structured including model
n_permu: number of permutations
modelid: model ID

Outputs:

for classification

permutation.c_acc: Permuted accuracy per class
permutation.b_acc: Permuted balanced accuracy
permutation.pvalue_b_acc: p-value for c_acc
permutation.pvalue_c_acc: p-value for b_acc

116 CHAPTER 15. LIST OF PRONTO FUNCTIONS

for regression

permutation.corr: Permuted correlation
permutation.mse: Permuted mean square error
permutation.corr: p-value for corr
permutation.mse: p-value for mse

15.24 prt_preproc.m

Function to preprocess the images, by loading each one of them (or the
ones corresponding to the selected scans when a design was specified),
applying the masks on them and, if asked, detrend along each voxel along
the time series.

INPUT:
fname filename and path to PRT.mat

QUTPUT:
results are saved on disk.

15.25 prt_remove_confounds.m

[Kr, R] = prt_remove_confounds(K,C)

Function to remove confounds from kernel.
15.26 prt_stats.m
Function to compute predictions machine performance statistcs statistics

model.predictions: predictions derived from the predictive model
model.type: what type of prediction machine (e.g. ’classifier’,’regression’)

tte: true targets (test set)
ttr: true targets (training set - needed to get the number of classes)
flag: ’fold’ for statistics in each fold

’model’ for statistics in each model

Outputs:

Classification:

stats.conmat: Confusion matrix (nClasses x nClasses matrix, pred x true)
stats.acc: Accuracy (scalar)

stats.b_acc: Balanced accuracy (nClasses x 1 vector)

stats.c_acc: Accuracy by class (nClasses x 1 vector)

stats.c_pv: Predictive value for each class (nClasses x 1 vector)
Regression:

stats.mse: Mean square error between test and prediction

stats.corr: Correlation between test and prediction

15.27. PRT_STRUCT2LATEX.M 117

15.27 prt_struct2latex.m

Function that takes in a structure S and writes down the latex code
describing the whole structure and substructures recursively.

The routine specifically generates the ’adv_PRTstruct.tex’ file that is
included, in the prt_manual.

Bits of the code and copied/inspired by spm_latex.m from the SPM8
distribution: http://www.fil.ion.ucl.ac.uk/spm

15.28 prt_text_input.m

PRT_TEXT_INPUT M-file for prt_text_input.fig

PRT_TEXT_INPUT, by itself, creates a new PRT_TEXT_INPUT or raises the
existing singletonx.

H = PRT_TEXT_INPUT returns the handle to a new PRT_TEXT_INPUT or the
handle to the existing singletonx.

PRT_TEXT_INPUT(’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_TEXT_INPUT.M with the given input arguments.

PRT_TEXT_INPUT (’Property’,’Value’,...) creates a new PRT_TEXT_INPUT or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_text_input_OpeningFcn gets called.
An unrecognized property name or invalid value makes property application
stop. All inputs are passed to prt_text_input_OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.29 prt_ui_compute_weights.m

PRT_UI_COMPUTE_WEIGHTS M-file for prt_ui_compute_weights.fig

PRT_UI_COMPUTE_WEIGHTS, by itself, creates a new PRT_UI_COMPUTE_WEIGHTS
or raises the existing singletonx.

H = PRT_UI_COMPUTE_WEIGHTS returns the handle to a new PRT_UI_COMPUTE_WEIGHTS
or the handle to the existing singleton*.

PRT_UI_COMPUTE WEIGHTS (’CALLBACK’ ,hObject,eventData,handles,...) calls
the local function named CALLBACK in PRT_UI_COMPUTE_WEIGHTS.M with the
given input arguments.

PRT_UI_COMPUTE WEIGHTS(’Property’,’Value’,...) creates a new PRT_UI_COMPUTE_WEIGHTS

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt_ui_compute_weights_OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt_ui_compute_weights_OpeningFcn

118 CHAPTER 15. LIST OF PRONTO FUNCTIONS

via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.30 prt_ui_cv_model.m

PRT_UI_CV_MODEL M-file for prt_ui_cv.model.fig

PRT_UI_CV_MODEL, by itself, creates a new PRT_UI_CV_MODEL or raises the
existing singletonx*.

H = PRT_UI_CV_MODEL returns the handle to a new PRT_UI_CV_MODEL or the
handle to the existing singletonx.

PRT_UI_CV_MODEL (’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_CV_MODEL.M with the given input
arguments.

PRT_UI_CV_MODEL(’Property’,’Value’,...) creates a new PRT_UI_CV_MODEL or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_ui_cv.model_OpeningFcn gets
called. An unrecognized property name or invalid value makes property
application stop. All inputs are passed to prt_ui_cv_model_OpeningFcn
via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.31 prt_ui design.m

PRT_UI_DESIGN M-file for prt_ui_design.fig

PRT_UI_DESIGN, by itself, creates a new PRT_UI_DESIGN or raises the
existing singleton*.

H = PRT_UI_DESIGN returns the handle to a new PRT_UI_DESIGN or the handle
to the existing singletonx.

PRT_UI_DESIGN(’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_DESIGN.M with the given input arguments.

PRT_UI_DESIGN(’Property’,’Value’,...) creates a new PRT_UI_DESIGN or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_ui_design OpeningFcn gets called.
An unrecognized property name or invalid value makes property application
stop. All inputs are passed to prt_ui_design OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

15.32. PRT_ULLKERNEL_CONSTRUCTION.M 119

See also: GUIDE, GUIDATA, GUIHANDLES

15.32 prt_ui_kernel_construction.m

PRT_UI_KERNEL MATLAB code for prt_ui_kernel.fig

PRT_UI_KERNEL, by itself, creates a new PRT_UI_KERNEL or raises the
existing singletonx*.

H = PRT_UI_KERNEL returns the handle to a new PRT_UI KERNEL or the handle
to the existing singletonx.

PRT_UI KERNEL (’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_KERNEL.M with the given input arguments.

PRT_UI KERNEL (’Property’,’Value’,...) creates a new PRT_UI_KERNEL or raises
the existing singleton*. Starting from the left, property value pairs are
applied to the GUI before prt_ui_kernel OpeningFcn gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to prt_ui_kernel OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.33 prt_ui_main.m

PRT_UI_MAIN M-file for prt_ui main.fig

PRT_UI_MAIN, by itself, creates a new PRT_.UI_MAIN or raises the existing
singletonx*.

H = PRT_UI_MAIN returns the handle to a new PRT_UI_MAIN or the handle to
the existing singleton*.

PRT_UI MAIN(’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_MAIN.M with the given input arguments.

PRT_UI_MAIN(’Property’,’Value’,...) creates a new PRT_UI_MAIN or raises

the existing singleton*. Starting from the left, property value pairs are
applied to the GUI before prt_ui main OpeningFcn gets called. An
unrecognized property name or invalid value makes property application
stop. All inputs are passed to prt_ui_main OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

120 CHAPTER 15. LIST OF PRONTO FUNCTIONS

15.34 prt_ui_model.m

PRT_UI_KERNEL_CONSTRUCTION M-file for prt_ui_kernel_construction.fig

PRT_UI_KERNEL_CONSTRUCTION, by itself, creates a new
PRT_UI KERNEL_CONSTRUCTION or raises the existing singletonx.

H = PRT_UI_KERNEL_CONSTRUCTION returns the handle to a new
PRT_UI_KERNEL_CONSTRUCTION or the handle to the existing singletonx*.

PRT_UI_KERNEL_CONSTRUCTION(’CALLBACK’ ,hObject,eventData,handles,...)
calls the local function named CALLBACK in PRT_UI_KERNEL_CONSTRUCTION.M
with the given input arguments.

PRT_UI_KERNEL_CONSTRUCTION(’Property’,’Value’,...) creates a new

PRT_UI KERNEL_CONSTRUCTION or raises the existing singleton*. Starting
from the left, property value pairs are applied to the GUI before
prt_ui_kernel_construction OpeningFcn gets called. An unrecognized
property name or invalid value makes property application stop. All
inputs are passed to prt_ui_kernel_construction OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.35 prt_ui_prepare_data.m

PRT_UI KERNEL MATLAB code for prt_ui kernel.fig

PRT_UI _KERNEL, by itself, creates a new PRT_UI_KERNEL or raises the
existing singletonx.

H = PRT_UI_KERNEL returns the handle to a new PRT_UI_KERNEL or the handle
to the existing singleton*.

PRT_UI KERNEL (’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_KERNEL.M with the given input arguments.

PRT_UI_KERNEL(’Property’,’Value’,...) creates a new PRT_UI_KERNEL or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_ui_kernel OpeningFcn gets called.
An unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt_ui_kernel OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.36 prt_ui_prepare_datamod.m

PRT_UI_KERNEL_MODALITY M-file for prt_ui_kernel modality.fig

15.37. PRT_UI.RESULTS.M

PRT_UI KERNEL_MODALITY, by itself, creates a new PRT_UI_KERNEL_MODALITY
or raises the existing singleton*.

H = PRT_UI_KERNEL_MODALITY returns the handle to a new
PRT_UI_KERNEL_MODALITY or the handle to the existing singletonx.

PRT_UI _KERNEL_MODALITY (’CALLBACK’ ,hObject,eventData,handles,...) calls
the local function named CALLBACK in PRT_UI_KERNEL_MODALITY.M with the
given input arguments.

PRT_UI_KERNEL_MODALITY (’Property’,’Value’,...) creates a new

PRT_UI KERNEL_MODALITY or raises the existing singleton*. Starting from
the left, property value pairs are applied to the GUI before
prt_ui_kernel modality_OpeningFcn gets called. An unrecognized property
name or invalid value makes property application stop. All inputs are
passed to prt_ui_kernel modality OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.37 prt_ui_results.m

PRT_UI_RESULTS MATLAB code for prt_ui_results.fig

PRT_UI_RESULTS, by itself, creates a new PRT_UI_RESULTS or raises the
existing singletonx*.

H = PRT_UI_RESULTS returns the handle to a new PRT_UI_RESULTS or the
handle to the existing singletonx.

PRT_UI_RESULTS(’CALLBACK’ ,hObject,eventData,handles,...) calls the local

function named CALLBACK in PRT_UI_RESULTS.M with the given input arguments.

PRT_UI RESULTS(’Property’,’Value’,...) creates a new PRT_UI_RESULTS or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_ui_results_OpeningFcn gets called.
An unrecognized property name or invalid value makes property application
stop. All inputs are passed to prt_ui_results_OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.38 prt_ui_results_help.m

PRT_UI_RESULTS_HELP MATLAB code for prt_ui_results_help.fig

PRT_UI_RESULTS_HELP, by itself, creates a new PRT_UI_RESULTS_HELP or
raises the existing singletonx*.

121

122 CHAPTER 15. LIST OF PRONTO FUNCTIONS

H = PRT_UI_RESULTS_HELP returns the handle to a new PRT_UI_RESULTS_HELP
or the handle to the existing singletonx.

PRT_UI_RESULTS_HELP(’CALLBACK’ ,hObject,eventData,handles,...) calls the
local function named CALLBACK in PRT_UI_RESULTS_HELP.M with the given
input arguments.

PRT_UI_RESULTS_HELP(’Property’,’Value’,...) creates a new
PRT_UI_RESULTS_HELP or raises the existing singleton*. Starting from the
left, property value pairs are applied to the GUI before
prt_ui_results_help_OpeningFcn gets called. An unrecognized property
name or invalid value makes property application stop. All inputs are
passed to prt_ui_results_help_OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.39 prt_ui_reviewCV.m

PRT_UI_REVIEWCV M-file for prt_ui reviewCV.fig

PRT_UI_REVIEWCV, by itself, creates a new PRT_UI_REVIEWCV or raises the
existing singleton*.

H = PRT_UI_REVIEWCV returns the handle to a new PRT_UI_REVIEWCV or the
handle to the existing singletonx.

PRT_UI_REVIEWCV(’CALLBACK’ ,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_REVIEWCV.M with the given input
arguments.

PRT_UI_REVIEWCV(’Property’,’Value’,...) creates a new PRT_UI_REVIEWCV or
raises the existing singleton*. Starting from the left, property value
pairs are applied to the GUI before prt_ui_reviewCV_OpeningFcn gets
called. An unrecognized property name or invalid value makes property
application stop. All inputs are passed to prt_ui_reviewCV_OpeningFcn
via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.40 prt_ui_reviewmodel.m

PRT_UI_REVIEWMODEL M-file for prt_ui_reviewmodel.fig

PRT_UI_REVIEWMODEL, by itself, creates a new PRT_UI_REVIEWMODEL or raises
the existing singletonx.

H = PRT_UI_REVIEWMODEL returns the handle to a new PRT_UI_REVIEWMODEL or
the handle to the existing singletonx.

15.41. PRT_UILSELECT_CLASS.M 123

PRT_UI_REVIEWMODEL (’CALLBACK’ ,hObject,eventData,handles,...) calls the
local function named CALLBACK in PRT_UI_REVIEWMODEL.M with the given
input arguments.

PRT_UI_REVIEWMODEL(’Property’,’Value’,...) creates a new PRT_UI_REVIEWMODEL

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt_ui_reviewmodel OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt_ui_reviewmodel_OpeningFcn
via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.41 prt_ui_select_class.m

PRT_UI_SELECT_CLASS M-file for prt_ui_select_class.fig

PRT_UI_SELECT_CLASS, by itself, creates a new PRT_UI_SELECT_CLASS or
raises the existing singletonx*.

H = PRT_UI_SELECT_CLASS returns the handle to a new PRT_UI_SELECT_CLASS
or the handle to the existing singleton*.

PRT_UI_SELECT_CLASS(’CALLBACK’ ,hObject,eventData,handles,...) calls the
local function named CALLBACK in PRT_UI_SELECT_CLASS.M with the given
input arguments.

PRT_UI_SELECT_CLASS(’Property’,’Value’,...) creates a new PRT_UI_SELECT_CLASS

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt_ui_select_class_OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt_ui_select_class_OpeningFcn
via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.42 prt_ui_select_reg.m

PRT_UI_SELECT_REG M-file for prt_ui_select_reg.fig

PRT_UI_SELECT_REG, by itself, creates a new PRT_UI_SELECT REG or raises
the existing singletonx.

H = PRT_UI_SELECT_REG returns the handle to a new PRT_UI_SELECT_REG or
the handle to the existing singletonx.

PRT_UI_SELECT_REG(’CALLBACK’ ,hObject,eventData,handles,...) calls the

124 CHAPTER 15. LIST OF PRONTO FUNCTIONS

local function named CALLBACK in PRT_UI_SELECT_REG.M with the given input
arguments.

PRT_UI_SELECT_REG(’Property’,’Value’,...) creates a new PRT_UI_SELECT_REG

or raises the existing singleton*. Starting from the left, property

value pairs are applied to the GUI before prt_ui_select_reg OpeningFcn

gets called. An unrecognized property name or invalid value makes

property application stop. All inputs are passed to prt_ui_select_reg OpeningFcn
via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES
15.43 prt_ui_stats.m

PRT_UI_STATS MATLAB code for prt_ui_stats.fig

PRT_UI_STATS, by itself, creates a new PRT_UI_STATS or raises the
existing singleton*.

H = PRT_UI_STATS returns the handle to a new PRT_UI_STATS or the handle
to the existing singletonx.

PRT,UI,STATS(’CALLBACK’,hObject,eventData,handles,...) calls the local
function named CALLBACK in PRT_UI_STATS.M with the given input arguments.

PRT_UI_STATS(’Property’,’Value’,...) creates a new PRT_UI_STATS or raises
the existing singleton*. Starting from the left, property value pairs
are applied to the GUI before prt_ui_stats_OpeningFcn gets called. An
unrecognized property name or invalid value makes property application

stop. All inputs are passed to prt_ui_stats_OpeningFcn via varargin.

*See GUI Options on GUIDE’s Tools menu. Choose "GUI allows only one
instance to run (singleton)".

See also: GUIDE, GUIDATA, GUIHANDLES

15.44 prt_ui_sure.m

15.45 machines

15.45.1 machines\prt KRR.m
w = prt KRR(K,t,reg)
15.45.2 machines\prt_machine.m

Run machine function for classification or regression

15.45. MACHINES

FORMAT output = prt_machine(d,m)

Inputs:
d - structure with information about the data, with fields:

Mandatory fields:

.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation
of the data. This is useful for approaches such as
multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each

[Nte x DI1)
.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])
.use kernel - flag, is data in form of kernel matrices (true) or in
form of features (false)
Optional fields: the machine is respnsible for dealing with this
optional fields (e.g. d.testcov)
m - structure with information about the classification or
regression machine to use, with fields:
.function - function for classification or regression (string)
.args - function arguments (either a string, a matrix, or a
struct). This is specific to each machine, e.g. for
an L2-norm linear SVM this could be the C parameter
Output:
output - output of machine (struct).
Mandatory fields:
.predictions - predictions of classification or regression
[Nte x D]
Optional fields: the machine is responsible for returning
parameters of interest. For exemple for an SVM this could be the
number of support vector used in the hyperplane weights computation

15.45.3 machines\prt_machine RT _bin.m

Run binary Ensemble of Regression Tree - wrapper for Pierre Geurt’s
RT code
FORMAT output = prt_machine RT_bin(d,args)

Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation
of the data. This is useful for approaches such as
multiple kernel learning.
.test - testing data (cell array of matrices row vectors, each

[Nte x DI)
.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])
.use_kernel - flag, is data in form of kernel matrices (true) of in
form of features (false)

args - vector of RT arguments
args(1) - number of trees (default: 501)
OQutput:
output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]
* Optional fields:

.func_val - value of the decision function

125

126 CHAPTER 15. LIST OF PRONTO FUNCTIONS

.type - which type of machine this is (here, ’classifier’)
15.45.4 machines\prt_machine_gpclap.m

Run multiclass Gaussian process classification (Laplace approximation)
FORMAT output = prt_machine_gpclap(d,args)

Inputs:
d - structure with data information, with mandatory fields:

.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation
of the data. This is useful for approaches such as
multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each
[Nte x DI)

.testcov - testing covariance (cell array of matrices row vectors,

each [Nte x Ntel)

.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])

.use_kernel - flag, is data in form of kernel matrices (true) or in
form of features (false)

args - argument string, where
-h - optimise hyperparameters (otherwise don’t)
-c covfun - covariance function:
’covLINkcell’ - simple dot product
’covLINglm’ - construct a GLM
experimental args (use at your own risk):
-p - use priors for the hyperparameters. If specified, this

indicates that a maximum a posteriori (MAP) approach
will be used to set covariance function
hyperparameters. The priors are obtained

by calling prt_gp_priors(’covFuncName’)

N.B.: for the arguments specifying functions, pass in a string, not
a function handle. This script will generate a function handle

OQutput:

output - output of machine (struct).

* Mandatory fields:
.predictions - predictions of classification or regression [Nte x D]

* Optional fields:
.type - which type of machine this is (here, ’classifier’)
.func_val - predictive probabilties
.loghyper - log hyperparameters

.nlml - negative log marginal likelihood
.mu - test latent means

.82 - test latent variances

.alpha - GP weighting coefficients

15.45.5 machines\prt_machine_gpml.m

Run Gaussian process model - wrapper for gpml toolbox
FORMAT output = prt_machine_gpml(d,args)
Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,

15.45. MACHINES 127

each [Ntr x D]). each matrix contains one representation
of the data. This is useful for approaches such as
multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each
[Nte x DI)
.testcov - testing covariance (cell array of matrices row vectors,

each [Nte x Ntel)

.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])

.use_kernel - flag, is data in form of kernel matrices (true) or in
form of features (false)

args - argument string, where
-h - optimise hyperparameters (otherwise don’t)
-f iter - max # iterations for optimiser (ignored if -h not set)

-1 1likfun - likelihood function:
’1ikErf’ - erf/probit likelihood (binary only)

-c covfun - covariance function:
>covLINkcell’ - simple dot product
>covLINglm’ - construct a GLM

-m meanfun - mean function:
’meanConstcell’ - suitable for dot product
’meanConstglm’ - suitable for GLM

-1 inffun - inference function:

’prt_infEP’ - Expectation Propagation
experimental args (use at your own risk):

-p - use priors for the hyperparameters. If specified, this
indicates that a maximum a posteriori (MAP) approach
will be used to set covariance function
hyperparameters. The priors are obtained by calling
prt_gp_priors(’covFuncName’)

N.B.: for the arguments specifying functions, pass in a string, not
a function handle. This script will generate a function handle

Output:
output - output of machine (struct).
* Mandatory fields:
.predictions - predictions of classification or regression [Nte x D]
* Optional fields:

.type - which type of machine this is (here, ’classifier’)
.func_val - predictive probabilties

.mu - test latent means

.82 - test latent variances

.loghyper - log hyperparameters

.nlml - negative log marginal likelihood

.alpha - GP weighting coefficients

.sW - likelihood matrix (see Rasmussen & Williams, 2006)
.L - Cholesky factor

15.45.6 machines\prt_machine_gpr.m

Run Gaussian process regression - meta-wrapper for regression with gpml FORMAT output = pr
Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation

128 CHAPTER 15. LIST OF PRONTO FUNCTIONS

of the data. This is useful for approaches such as
multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each
[Nte x D1)
.testcov - testing covariance (cell array of matrices row vectors,

each [Nte x Ntel)

.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])

.use _kernel - flag, is data in form of kernel matrices (true) or in
form of features (false)

args - argument string, where
-h - optimise hyperparameters (otherwise don’t)
-f iter - max # iterations for optimiser (ignored if -h not set)

-1 likfun - likelihood function:
’1ikErf’ - erf/probit likelihood (binary only)

-c covfun - covariance function:
’covLINkcell’ - simple dot product
’covLINglm’ - construct a GLM

-m meanfun - mean function:
’meanConstcell’ - suitable for dot product
’meanConstglm’ - suitable for GLM

-i inffun - inference function:

’prt_infEP’ - Expectation Propagation
experimental args (use at your own risk):

-p - use priors for the hyperparameters. If specified, this
indicates that a maximum a posteriori (MAP) approach
will be used to set covariance function
hyperparameters. The priors are obtained by calling
prt_gp-priors(’covFuncName’)

N.B.: for the arguments specifying functions, pass in a string, not
a function handle. This script will generate a function handle

Output:
output - output of machine (struct).
* Mandatory fields:
.predictions - predictions of classification or regression [Nte x D]
* Optional fields:
.type - which type of machine this is (here, ’classifier’)
.func_val - predictive probabilties

.mu - test latent means

.82 - test latent variances

.loghyper - log hyperparameters

.nlml - negative log marginal likelihood

.alpha - GP weighting coefficients

.sW - likelihood matrix (see Rasmussen & Williams, 2006)
.L - Cholesky factor

15.45.7 machines\prt_machine _krr.m

Kernel ridge regression
FORMAT output = prt_machine_svm bin(d,args)
Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation

15.45. MACHINES

of the data. This is useful for approaches such as
multiple kernel learning.

.test - testing data (cell array of matrices row vectors, each
[Nte x D])

.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])

.use_kernel - flag, is data in form of kernel matrices (true) of in

form of features (false)

args - 1ibSVM arguments
Output:
output - output of machine (struct).

* Mandatory fields:
.predictions - predictions of classification or regression [Nte x D]

* Optional fields:
.func_val - value of the decision function
.type - which type of machine this is (here, ’classifier’)

15.45.8 machines\prt_machine rvr.m

Relevance vector regression (training and testing)
FORMAT output = prt_machine_svm bin(d,args)

Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation
of the data. This is useful for approaches such as
multiple kernel learning.
.test - testing data (cell array of matrices row vectors, each

[Nte x DI)
.tr_targets - training labels (for classification) or values (for
regression) (column vector, [Ntr x 1])
.use_kernel - flag, is data in form of kernel matrices (true) of in
form of features (false)

args - 1ibSVM arguments
Output:
output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]
* Optional fields:

.func_val - value of the decision function

.type - which type of machine this is (here, ’classifier’)

15.45.9 machines\prt_machine_svm_bin.m

Run binary SVM - wrapper for 1ibSVM
FORMAT output = prt_machine_svm bin(d,args)

Inputs:
d - structure with data information, with mandatory fields:
.train - training data (cell array of matrices of row vectors,
each [Ntr x D]). each matrix contains one representation
of the data. This is useful for approaches such as
multiple kernel learning.
.test - testing data (cell array of matrices row vectors, each

[Nte x DI)
.tr_targets - training labels (for classification) or values (for

129

130 CHAPTER 15. LIST OF PRONTO FUNCTIONS

regression) (column vector, [Ntr x 1])
.use_kernel - flag, is data in form of kernel matrices (true) of in
form of features (false)

args - 1ibSVM arguments
OQutput:
output - output of machine (struct).

* Mandatory fields:

.predictions - predictions of classification or regression [Nte x D]
* Optional fields:

.func_val - value of the decision function

.type - which type of machine this is (here, ’classifier’)

15.45.10 machines\prt_rvr.m

Optimisation for Relevance Vector Regression

[w,alpha,beta,11] = prt_rvr(Phi,t)

Phi - MxM matrix derived from kernel function of vector pairs
t - the values to be matched
W - weights

alpha - 1/variance for the prior part of the model
beta - 1/variance for the likelihood part of the model
11 - the negative log-likelihood.

[w,alpha,beta,nu,11]=spm_rvr(K,t,opt)

K - a cell-array of MxM dot-product matrices.
t - the values to be matched
opt - either ’Linear’ or ’Gaussian RBF’
’Linear’ is for linear regression models, where

the optimal kernel is generated by

[nu(1)*K1 + nu(1)*K2... ones(size(K1,1),1)]
’Gaussian RBF’ is for regression using Gaussian radial basis

functions. The kernel is generated from

P1 = nu(1)*K1 + nu(1)*K2 ... ;

P2 = repmat(diag(P1) ,1,size(P1,2)) +...
repmat (diag(P1)’,size(P1,1),1) - 2*P1;

Phi = exp([-0.5%P2 ones(size(P1,1),1)]);

W - weights
alpha - 1/variance for the prior part of the model
beta - 1/variance for the likelihood part of the model

nu - parameters that convert the dot-product matrices into
a kernel matrix (Phi).
11 - the negative log-likelihood.

The first way of calling the routine simply optimises the

weights. This involves estimating a restricted maximum
likelihood (REML) solution, which maximises P(alpha,beta$|$t,Phi).
Note that REML is also known as Type II Maximum Likelihood
(ML-II). The ML-II solution tends towards infinite weights for
some the regularisation terms (i.e. 1/alpha(i) approaches 0).

The appropriate columns are removed from the model when

this happens.

The second way of calling the routine also estimates additional
input scale parameters as described in Appendix C of Tipping (2001).
This method is much slower, as a full optimisation for the scale

15.45. MACHINES

parameters is done after each update of the alphas and beta.
see: http://research.microsoft.com/mlp/RVM/relevance.htm

Refs:

The Relevance Vector Machine.

In S. A. Solla, T. K. Leen, and K.-R. Mller (Eds.),
Advances in Neural Information Processing Systems 12,
pp. 652-658. Cambridge, Mass: MIT Press.

Michael E. Tipping

Sparse Bayesian Learning and the Relevance Vector Machine
Journal of Machine Learning Research 1 (2001) 211-244

15.45.11 machines\prt_weights.m

Run function to compute weights
FORMAT weights = prt_weights(d,m)

Inputs:
d - data structure
(fields of .d can vary depending on weights function)
m - machine structure
.function - function to compute weights (string)
.args - function arguments
Output:

weights - weights vector [Nfeatures x 1]

15.45.12 machines\prt_weights_bin_linkernel.m

Run function to compute weights for linear kernel binary classifiers
FORMAT weights = prt_weights_ bin_linkernel (d,args)

Inputs:
d - data structure
.datamat - data matrix [Nfeatures x Nexamples]
.coeffs - coefficients vector [Nexamples x 1]
args - function arguments (can be empty)
Output:
weights - vector with weights [Nfeatures x 1]

15.45.13 machines\prt_weights svm_bin.m

Run function to compute weights for binary SVM
FORMAT weights = prt_weights_svm_ bin (d,args)

Inputs:
d - data structure
.datamat - data matrix [Nfeatures x Nexamples]
.coeffs - coefficients vector [Nexamples x 1]
args - function arguments (can be left empty)
OQutput:

weights - vector with weights [Nfeatures x 1]

131

132 CHAPTER 15. LIST OF PRONTO FUNCTIONS

15.46 utils

15.46.1 utils\prt_centre kernel.m

This function centres the kernel matrix, respecting the independence of
training and test partitions. See Shawe-Taylor and Cristianini for
background on this approach.

Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods for Pattern
analysis. Cambridge University Press.

15.46.2 utils\prt_checkAlphaNumUnder.m

check whether a given string is alphanumerical or underscore
FORMAT out = prt_checkAlphaNumUnder (s)
Inputs:
s - a string of arbitrary length to check
Output:
out - logical 1 if the all chars in the string are alphanumerical
logical O otherwise

Based on isalpha num in the identification toolbox

15.46.3 utils\prt_normalise kernel.m

This function normalises the kernel matrix such that each entry is
divided by the product of the std deviations, i.e.
Kmnew(x,y) = K(x,y) / sqrt(var(x)*var(y))

Part V

Bibliography

133

Bibliography

1]

[4]

[5]
[6]

M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of the potential
function method in pattern recognition learning. Automation and Remote Control, 25:821—
837, 1964.

Christopher M. Bishop. Pattern Recognition and Machine learning. Springer, 2006.

Nello Cristianini and John Shawe-Taylor. An introduction to support Vector Machines: and
other kernel-based learning methods. Cambridge University Press, New York, NY, USA,
2000.

Pierre Geurts, Damien Ernst, and Louis Wehenkel. Extremely randomized trees. Machine
Learning, 63(1):3-42, 2006.

Volkmar Glauche. MATLAB batch system. http://sourceforge.net/projects/matlabbatch/.

J. V. Haxby, M. I. Gobbini, M. L. Furey, A. Ishai, J. L. Schouten, and P. Pietrini. Distributed
and overlapping representations of faces and objects in ventral temporal cortex. Science,
293(5539):2425-2430, 2001.

J. D. Haynes and G. Rees. Decoding mental states from brain activity in humans. Nat. Rev.
Neurosci., 7:523-534, 2006.

Thomas Hofmann, Bernhard Scholkopf, and Alexander J. Smola. Kernel methods in machine
learning. Annals of Statistics, 36(3):1171-1220, 2008.

A. Marquand, M. Howard, M. Brammer, C. Chu, S. Coen, and J. Mourao-Miranda. Quan-
titative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian
processes. Neuroimage, 49:2178-2189, 2010.

Members and collaborators of the Wellcome Trust Centre for Neuroimaging. Statistical Para-
metric Mapping, SPMS. http://www.fil.ion.ucl.ac.uk/spm, 2008. Wellcome Trust Centre for
Neuroimaging, University College London, UK.

Janaina Mourao-Miranda, Karl J Friston, and Michael Brammer. Dynamic discrimination
analysis: a spatial-temporal svin. Neuroimage, 36(1):88-99, 2007.

K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby. Beyond mind-reading: multi-voxel
pattern analysis of fMRI data. Trends Cogn. Sci. (Regul. Ed.), 10:424-430, 2006.

F. Pereira, T. Mitchell, and M. Botvinick. Machine learning classifiers and fMRI: a tutorial
overview. Neuroimage, 45:199-209, 2009.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. Adaptive Computation and Machine Learning. the MIT Press, 2006.

J. Schrouff, M. J. Rosa, J. M. Rodina, A. F. Marquand, C. Chu, J. Ashburner, C. Phillips,
J. Richiardi, and J. Mourao-Miranda. PRoNTo: Pattern Recognition for Neuroimaging
Toolbox. Neuroinformatics, 2013.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

135

136 BIBLIOGRAPHY

[17] Michael E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1:211-244, 2001.

	Introduction
	Background
	Methods
	Installing & launching the toolbox
	Installation
	Launching and batching
	Troubleshooting

	Main contributors
	Acknoweldgements

	I Graphical User Interface
	Data & design
	Introduction
	Methods
	Data and design input
	Data and design output
	Review
	HRF correction

	Graphical User interface
	PRT directory
	Groups
	Subjects
	Modalities
	Masks
	Review
	Load, Save and Quit

	matlabbatch interface

	Prepare feature set
	Introduction
	Methods and resources
	Graphical User interfaces
	matlabbatch interface

	Model Specification
	Introduction
	Beginning a model specification
	Feature set
	Model type / pattern recognition algorithm
	Classification
	Regression

	Cross-validation
	Batch interface

	Model and Weights Estimation
	Introduction
	Methods
	Graphical user interface
	matlabbatch interface

	Results display
	Introduction
	Launching results display
	The main results display window
	Analysing a machine's performance graphically
	Predictions plot
	Receiver Operating Characteristic (ROC) plot
	Histogram plot

	Statistical analysis of a machine's performance
	Confusion matrix plot
	The statistics table
	Permutation testing

	Visualising a weight map

	II Batching system
	Data & Design
	Directory
	Groups
	Group

	Masks
	Modality

	HRF overlap
	HRF delay
	Review

	Feature set / Kernel
	Load PRT.mat
	Name
	Modalities
	Modality

	Specify model
	Load PRT.mat
	Model name
	Use kernels
	Feature sets
	Model Type
	Classification
	Regression

	Cross-validation type
	Leave one subject out
	Leave one subject per group out
	Leave one block out
	Leave one run/session out
	Custom

	Include all scans
	Data operations
	Mean centre features
	Other Operations

	Run model
	Load PRT.mat
	Model name

	III Data processing examples
	Block design fMRI dataset
	GUI analysis
	Data & Design
	Prepare feature set
	Specify model
	Display model (optional step)
	Compute weights (optional step)
	Display results

	Batch analysis
	Data & Design
	Feature set / Kernel
	Specify model
	Run model
	Compute weights (optional step)

	Regression dataset
	GUI analysis
	Data & Design
	Prepare feature set
	Specify model
	Display results

	Batch analysis
	Data & Design
	Feature set/Kernel
	Specify model (KRR)
	Run model (KRR)
	Specify and Run model (RVR and GPR)

	IV Advanced topics
	Developer's guide
	Introduction
	Code organisation
	User interface
	Machine learning
	Machines

	PRT structure
	List of PRoNTo functions
	pronto.m
	prt.m
	prt_apply_operation.m
	prt_check_design.m
	prt_compute_weights.m
	prt_cv_model.m
	prt_cv_opt_param.m
	prt_data_conditions.m
	prt_data_modality.m
	prt_data_review.m
	prt_defaults.m
	prt_fs.m
	prt_func2html.m
	prt_get_defaults.m
	prt_get_filename.m
	prt_init_fs.m
	prt_init_model.m
	prt_latex.m
	prt_load.m
	prt_load_blocks.m
	prt_model.m
	prt_normalise_kernel.m
	prt_permutation.m
	prt_preproc.m
	prt_remove_confounds.m
	prt_stats.m
	prt_struct2latex.m
	prt_text_input.m
	prt_ui_compute_weights.m
	prt_ui_cv_model.m
	prt_ui_design.m
	prt_ui_kernel_construction.m
	prt_ui_main.m
	prt_ui_model.m
	prt_ui_prepare_data.m
	prt_ui_prepare_datamod.m
	prt_ui_results.m
	prt_ui_results_help.m
	prt_ui_reviewCV.m
	prt_ui_reviewmodel.m
	prt_ui_select_class.m
	prt_ui_select_reg.m
	prt_ui_stats.m
	prt_ui_sure.m
	machines
	machines\prt_KRR.m
	machines\prt_machine.m
	machines\prt_machine_RT_bin.m
	machines\prt_machine_gpclap.m
	machines\prt_machine_gpml.m
	machines\prt_machine_gpr.m
	machines\prt_machine_krr.m
	machines\prt_machine_rvr.m
	machines\prt_machine_svm_bin.m
	machines\prt_rvr.m
	machines\prt_weights.m
	machines\prt_weights_bin_linkernel.m
	machines\prt_weights_svm_bin.m

	utils
	utils\prt_centre_kernel.m
	utils\prt_checkAlphaNumUnder.m
	utils\prt_normalise_kernel.m

	V Bibliography

