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• Is my model good?
Measures of performance for classification 

Measures of performance for regression

Validation set and cross-validation 

Nested cross-validation

Assessing significance 

• What does my model look like?
Model interpretation
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Train model on t1, …, t4:

X = (c1,c2)t1-4
; y = task 1/2

Test on t1, …, t4:

X* = (c1,c2) t1-4

Classification: reminder
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Accuracy statistics can be shown in a confusion matrix:

Class 1 (P) accuracy, sensitivity  = TP/(TP+FN)

Class 2 (N) accuracy, specificity = TN/(FP+TN)

Total Accuracy  =  (TP+TN)/(TP+FP+FN+TN)

Balanced Accuracy (BA) = mean of classes accuracy

Class 1 predictive value: TP/(TP+FP) 

Class 2 predictive value: TN/(FN+TN) 

Perfect: FN = FP = 0. Be suspicious if this happens!
Random: TP = TN = FP = FN. Same as flipping a coin.
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Classification: accuracy

Total accuracy vs. balanced accuracy

• If classes don’t have the same number of examples

• Total accuracy may seem to be above chance whereas the minority 

classes are sacrificed and below chance

• A common strategy is to subsample the majority class, but data is lost

• Subsample many times (computationally intensive)

• Reporting class accuracies (p0,..., pC) is good practice

• Balanced accuracy is the average of class accuracies
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For a fixed classifier, increasing sensitivity can only come 
at the cost of decreasing specificity, and vice-versa.
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Classification: ROC
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The Receiver Operating Characteristic (ROC) curve is a good way 
of seeing the sensitivity/specificity tradeoff over the operating 
range of a classifier.

Classifier comparison via Area Under Curve (AUC) 

AUC = 1.0: perfect
AUC = 0.5: chance
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Classification: ROC
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Confusion matrix

Predictions

ROC curve
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Classification: PRoNTo



Click to edit Master title style

4/14/2018 J. Schrouff - Course 2018 9

Regression: reminder
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Regression: performance

• Correlation:

corr 𝑦, 𝑓 𝑥 =
σ𝑛(𝑦𝑛− μ𝑦)(𝑓(𝑥𝑛)− μ𝑓)

σ𝑛( 𝑦𝑛− μ𝑦)
2 σ𝑛(𝑓(𝑥𝑛)− μ𝑓)

2

• Coefficient of determination:

𝑅2 = corr(𝑦, 𝑓(𝑥)) 2

• Mean Squared Error:

MSE = 
1

𝑁
σ𝑛(𝑦𝑛 − 𝑓(𝑥𝑛))

2

• Normalized MSE:  

NMSE = MSE/(ymax-ymin)

Corr = -0.55
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Measures	of	performance	for	regression	

Correla*on	

Coefficient	of	determina*on	

Mean	Squared	Error	(MSE)	

Normalised	MSE	
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Different models Prediction Error
Test

Train

Train and test error
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Less complex More complex

Bias-variance trade-off
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Variance: variations in decision functions when the data 
set is modified (over-fitting)
Bias: error caused by model assumption (under-fitting)
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Full dataset

Training set

Drawbacks:
• Uses few observations and tends to overestimate the 

test error
• Test error estimates are highly variable

Validation: validation set

Validation set
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Validation: cross-validation

Fold 1

Fold 2

Fold 3

Fold 4
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• Number of folds:
• = number of samples: Leave-One-Out (but see (Varoquaux, 2017))
• = user based: typically, leave 10 to 20% of data out

• Data in each fold:
• Regression: are samples sorted?
• Classification: Leave-per-Class-Out, keeping frequency distributions in each fold
• Structured data: correlated blocks in test set

• Results will depend on chosen cross-validation, no cherry picking! 

• Good practice to report model performance in average and std

4/14/2018 J. Schrouff - Course 2018 16



Click to edit Master title style

4/14/2018 J. Schrouff - Course 2018 17

Standard approaches:
• LOSO
• LOBO
• LORO
• LOSCO
• k-fold CV

Validation: PRoNTo

Flexible CV schemes allowed
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Different models Prediction Error
Test

Train

Hyper-parameters
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• Problem: use CV to select best model and assess model performance (test error)

• Solution: Run CV inside CV for model or feature selection / Bayesian Models
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Full dataset

First fold

…

Second fold

TrainTest

Test Train

Nested CV:
Select model hyper-
parameters / feature 
selection

Nested cross-validation
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If hyper-parameter optimisation was performed using nested CV:

Model selection in PRoNTo
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Parametric tests
e.g. Binomial test

• Model decision in two-class problem 
modeled as Bernoulli trials

• Probability of k successes out of n trials 
follows binomial distribution

Not a good idea:
• Assumes IID samples
• Accuracy from cross-validated data does 

not follow the binomial distribution 
(Noirhomme et al. 2014)

Assessing significance

True Predicted

60%

=?

50%
=?
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p-value:
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Assessing significance

Permutation 1 Permutation 2 Permutation 3 Permutation M

Training set

Test set

100% 33% 66% 66%

… 𝑝 =
1

𝑀
෍

𝑚=1

𝑀

(𝑎𝑐𝑐𝑚
𝑝𝑒𝑟𝑚

≥ 𝑎𝑐𝑐1)

Minimum: 𝑝 =
1

𝑀
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• No hypotheses on data distribution
• H0: “targets are non-informative”
• Test statistic: balanced and class accuracy / MSE / R2

• Estimate the distribution of the test statistic under H0 by randomly 
permuting targets M-1 times, and running the full CV experiment
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Assessing significance
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In PRoNTo:
User-input = M-1 
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Assessing significance
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• Always separate data into training and testing sets

• Use cross-validation

• Be careful with correlated data (e.g. fMRI)

• Use nested cross-validation for model or feature selection

• Use permutation tests to assess significance of performance measure
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Take-home on performance
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• Is my model good?
Measures of performance for classification 

Measures of performance for regression

Validation set and cross-validation 

Nested cross-validation

Assessing significance 

• What does my model look like?
Model interpretation
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• Linear predictive models (classifier or regression) 
are parameterized by a weight vector w and a 
bias term b.

• w has the same dimensionality of the input data 
and can be plotted as an image.
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• In machine learning:
• Identifying a subset of relevant features

• Feature selection or regularization

• In neuroscience:
• Why is a feature relevant?

• Comparing highest weights with literature or GLM results
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New example (x*)

Weight  map (w)
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Predictive function

f (x*) =w ×x* +b

f(x*) is the predicted score for regression 
or the distance to the decision boundary 

for classification models.
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Interpretation: decision function

4/14/2018 J. Schrouff - Course 2018 30

New example (x*)

Weight  map (w)

2 1 2 -1

Predictive function

f (x*) =w ×x* +b

f(x*) truncated does not correspond to 
f(x*)! 

5 0 -6 0
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• What do weights represent?
Assume:
- Signal in voxel 1: 𝑠 𝑛 + 𝑑 𝑛
- Signal in voxel 2: 𝑑(𝑛)

Weights:
- Voxel 1: 𝑤 = 1
- Voxel 2: 𝑤 = −1

• Not only (neural) signal can lead to high weight amplitude in a voxel!

• Also, weight=0 does not necessarily mean no signal (depends on 
regularization)!
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c1 c2

(Haufe et al., 2014)
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• A priori
1. Masking
2. Searchlight mapping

• During model estimation
3. Feature selection
4. Sparse algorithms
5. Atlas based Multiple Kernel Learning (MKL)
6. Using weight stability in model selection

• A posteriori
7. Atlas based weight summarization
8. Permutation test
9. Transforming weights into activation patterns
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• A priori
1. Masking
2. Searchlight mapping (with extra code)

• During model estimation
3. Feature selection
4. Sparse algorithms (v3)
5. Atlas based Multiple Kernel Learning (MKL)
6. Using weight stability in model selection

• A posteriori
7. Atlas based weight summarization
8. Permutation test (building weight maps for permutation, no second-level in PRoNTo)
9. Transforming weights into activation patterns
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 Spatial representation of the predictive function.

 Shows the contribution of each feature/voxel to the 
prediction.

 Multivariate pattern -> All voxels with weights different 
from zero contribute to the final prediction (no arbitrary 
threshold should be applied).

 Mixture of signal of interest and noise, but also depends on 
input neural signal SNR and sparsity.

 Strategies available to help, each with their pros and cons.
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• James et al., Introduction to Statistical Learning, Springer, 2014.
• Duda et al., Pattern Recognition, Wiley, 2001.
• Hastie et al., The elements of statistical learning, Springer, 2009.
• Pereira et al., Machine learning classifiers and fMRI: A tutorial overview, NeuroImage 45, 2009.
• Kriegeskorte et al.,  Circular analysis in systems neuroscience: the dangers of double dipping, Nature 

Neuroscience 12, 2009.
• Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI, 

1995.
• Varoquaux, Cross-validation failure: Small sample sizes lead to large error bars, NeuroImage, 2017.

Recommended reading: performance
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Questions?
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