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• Is my model good?
Measures of performance for classification 

Measures of performance for regression

Validation set and cross-validation 

Nested cross-validation

Assessing significance 

• What does my model look like?
Model interpretation
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Train model on t1, …, t4:

X = (c1,c2)t1-4
; y = task 1/2

Test on t1, …, t4:

X* = (c1,c2) t1-4

Classification: reminder
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Accuracy statistics can be shown in a confusion matrix:

Class 1 (P) accuracy, sensitivity  = TP/(TP+FN)

Class 2 (N) accuracy, specificity = TN/(FP+TN)

Total Accuracy  =  (TP+TN)/(TP+FP+FN+TN)

Balanced Accuracy (BA) = mean of classes accuracy

Class 1 predictive value: TP/(TP+FP) 

Class 2 predictive value: TN/(FN+TN) 

Perfect: FN = FP = 0. Be suspicious if this happens!
Random: TP = TN = FP = FN. Same as flipping a coin.
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Classification: accuracy

Total accuracy vs. balanced accuracy

• If classes don’t have the same number of examples

• Total accuracy may seem to be above chance whereas the minority 

classes are sacrificed and below chance

• A common strategy is to subsample the majority class, but data is lost

• Subsample many times (computationally intensive)

• Reporting class accuracies (p0,..., pC) is good practice

• Balanced accuracy is the average of class accuracies
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For a fixed classifier, increasing sensitivity can only come 
at the cost of decreasing specificity, and vice-versa.
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Classification: ROC
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The Receiver Operating Characteristic (ROC) curve is a good way 
of seeing the sensitivity/specificity tradeoff over the operating 
range of a classifier.

Classifier comparison via Area Under Curve (AUC) 

AUC = 1.0: perfect
AUC = 0.5: chance
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Classification: ROC
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Confusion matrix

Predictions

ROC curve
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Classification: PRoNTo
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Regression: reminder
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Regression: performance

• Correlation:

corr 𝑦, 𝑓 𝑥 =
σ𝑛(𝑦𝑛− μ𝑦)(𝑓(𝑥𝑛)− μ𝑓)

σ𝑛( 𝑦𝑛− μ𝑦)
2 σ𝑛(𝑓(𝑥𝑛)− μ𝑓)

2

• Coefficient of determination:

𝑅2 = corr(𝑦, 𝑓(𝑥)) 2

• Mean Squared Error:

MSE = 
1

𝑁
σ𝑛(𝑦𝑛 − 𝑓(𝑥𝑛))

2

• Normalized MSE:  

NMSE = MSE/(ymax-ymin)

Corr = -0.55
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Measures	of	performance	for	regression	

Correla*on	

Coefficient	of	determina*on	

Mean	Squared	Error	(MSE)	

Normalised	MSE	
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Different models Prediction Error
Test

Train

Train and test error
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Less complex More complex

Bias-variance trade-off
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Variance: variations in decision functions when the data 
set is modified (over-fitting)
Bias: error caused by model assumption (under-fitting)
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Full dataset

Training set

Drawbacks:
• Uses few observations and tends to overestimate the 

test error
• Test error estimates are highly variable

Validation: validation set

Validation set
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Validation: cross-validation

Fold 1

Fold 2

Fold 3

Fold 4
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• Number of folds:
• = number of samples: Leave-One-Out (but see (Varoquaux, 2017))
• = user based: typically, leave 10 to 20% of data out

• Data in each fold:
• Regression: are samples sorted?
• Classification: Leave-per-Class-Out, keeping frequency distributions in each fold
• Structured data: correlated blocks in test set

• Results will depend on chosen cross-validation, no cherry picking! 

• Good practice to report model performance in average and std
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Standard approaches:
• LOSO
• LOBO
• LORO
• LOSCO
• k-fold CV

Validation: PRoNTo

Flexible CV schemes allowed
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Different models Prediction Error
Test

Train

Hyper-parameters
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• Problem: use CV to select best model and assess model performance (test error)

• Solution: Run CV inside CV for model or feature selection / Bayesian Models
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Full dataset

First fold

…

Second fold

TrainTest

Test Train

Nested CV:
Select model hyper-
parameters / feature 
selection

Nested cross-validation
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If hyper-parameter optimisation was performed using nested CV:

Model selection in PRoNTo
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Parametric tests
e.g. Binomial test

• Model decision in two-class problem 
modeled as Bernoulli trials

• Probability of k successes out of n trials 
follows binomial distribution

Not a good idea:
• Assumes IID samples
• Accuracy from cross-validated data does 

not follow the binomial distribution 
(Noirhomme et al. 2014)

Assessing significance

True Predicted

60%

=?

50%
=?
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p-value:

4/14/2018 J. Schrouff - Course 2018 22

Assessing significance

Permutation 1 Permutation 2 Permutation 3 Permutation M

Training set

Test set

100% 33% 66% 66%

… 𝑝 =
1

𝑀


𝑚=1

𝑀

(𝑎𝑐𝑐𝑚
𝑝𝑒𝑟𝑚

≥ 𝑎𝑐𝑐1)

Minimum: 𝑝 =
1

𝑀
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• No hypotheses on data distribution
• H0: “targets are non-informative”
• Test statistic: balanced and class accuracy / MSE / R2

• Estimate the distribution of the test statistic under H0 by randomly 
permuting targets M-1 times, and running the full CV experiment
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Assessing significance
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In PRoNTo:
User-input = M-1 
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Assessing significance
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• Always separate data into training and testing sets

• Use cross-validation

• Be careful with correlated data (e.g. fMRI)

• Use nested cross-validation for model or feature selection

• Use permutation tests to assess significance of performance measure

4/14/2018 J. Schrouff - Course 2018 25

Take-home on performance
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• Is my model good?
Measures of performance for classification 

Measures of performance for regression

Validation set and cross-validation 

Nested cross-validation

Assessing significance 

• What does my model look like?
Model interpretation
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• Linear predictive models (classifier or regression) 
are parameterized by a weight vector w and a 
bias term b.

• w has the same dimensionality of the input data 
and can be plotted as an image.
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• In machine learning:
• Identifying a subset of relevant features

• Feature selection or regularization

• In neuroscience:
• Why is a feature relevant?

• Comparing highest weights with literature or GLM results
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New example (x*)

Weight  map (w)
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Predictive function

f (x*) =w ×x* +b

f(x*) is the predicted score for regression 
or the distance to the decision boundary 

for classification models.
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Interpretation: decision function
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New example (x*)

Weight  map (w)

2 1 2 -1

Predictive function

f (x*) =w ×x* +b

f(x*) truncated does not correspond to 
f(x*)! 

5 0 -6 0
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• What do weights represent?
Assume:
- Signal in voxel 1: 𝑠 𝑛 + 𝑑 𝑛
- Signal in voxel 2: 𝑑(𝑛)

Weights:
- Voxel 1: 𝑤 = 1
- Voxel 2: 𝑤 = −1

• Not only (neural) signal can lead to high weight amplitude in a voxel!

• Also, weight=0 does not necessarily mean no signal (depends on 
regularization)!
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c1 c2

(Haufe et al., 2014)
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• A priori
1. Masking
2. Searchlight mapping

• During model estimation
3. Feature selection
4. Sparse algorithms
5. Atlas based Multiple Kernel Learning (MKL)
6. Using weight stability in model selection

• A posteriori
7. Atlas based weight summarization
8. Permutation test
9. Transforming weights into activation patterns
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• A priori
1. Masking
2. Searchlight mapping (with extra code)

• During model estimation
3. Feature selection
4. Sparse algorithms (v3)
5. Atlas based Multiple Kernel Learning (MKL)
6. Using weight stability in model selection

• A posteriori
7. Atlas based weight summarization
8. Permutation test (building weight maps for permutation, no second-level in PRoNTo)
9. Transforming weights into activation patterns
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 Spatial representation of the predictive function.

 Shows the contribution of each feature/voxel to the 
prediction.

 Multivariate pattern -> All voxels with weights different 
from zero contribute to the final prediction (no arbitrary 
threshold should be applied).

 Mixture of signal of interest and noise, but also depends on 
input neural signal SNR and sparsity.

 Strategies available to help, each with their pros and cons.
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• James et al., Introduction to Statistical Learning, Springer, 2014.
• Duda et al., Pattern Recognition, Wiley, 2001.
• Hastie et al., The elements of statistical learning, Springer, 2009.
• Pereira et al., Machine learning classifiers and fMRI: A tutorial overview, NeuroImage 45, 2009.
• Kriegeskorte et al.,  Circular analysis in systems neuroscience: the dangers of double dipping, Nature 

Neuroscience 12, 2009.
• Kohavi, A study of cross-validation and bootstrap for accuracy estimation and model selection, IJCAI, 

1995.
• Varoquaux, Cross-validation failure: Small sample sizes lead to large error bars, NeuroImage, 2017.

Recommended reading: performance
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Questions?
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