Pattern Recognition Methods: basics

Fábio Ferreira

Course 2018 May 14th- 15th UCL, London

Pattern Recognition

Concepts & Advantages

Supervised Learning

- > Framework
- Linear Predictive Function
- Classification & Regression
- Challenges in Neuroimaging
- Linear Models/Machines in PRoNTo

Pattern recognition aims to find patterns in the data which can be used to extract meaningful information to make predictions

Digit Recognition									
7	2	1	0	4	1	4	٩	5	9
								Э	
9	6	6	5	4	0	7	4	0	١
							1000	2	
1	7	4	2	3	5	١	2	4	4

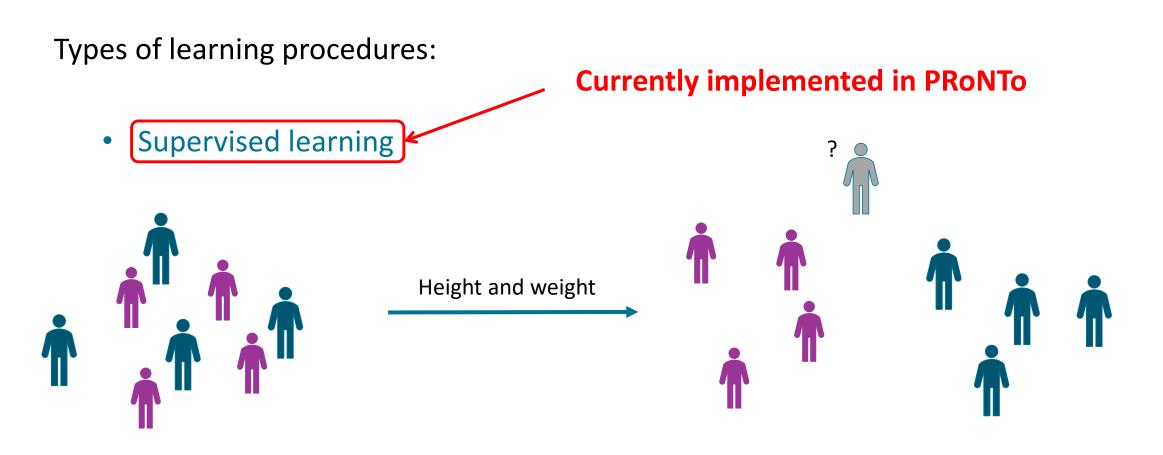
Face Recognition

Finance

Advertising and Business Intelligence

Google Ads

Recommendation Engines



Types of learning procedures:

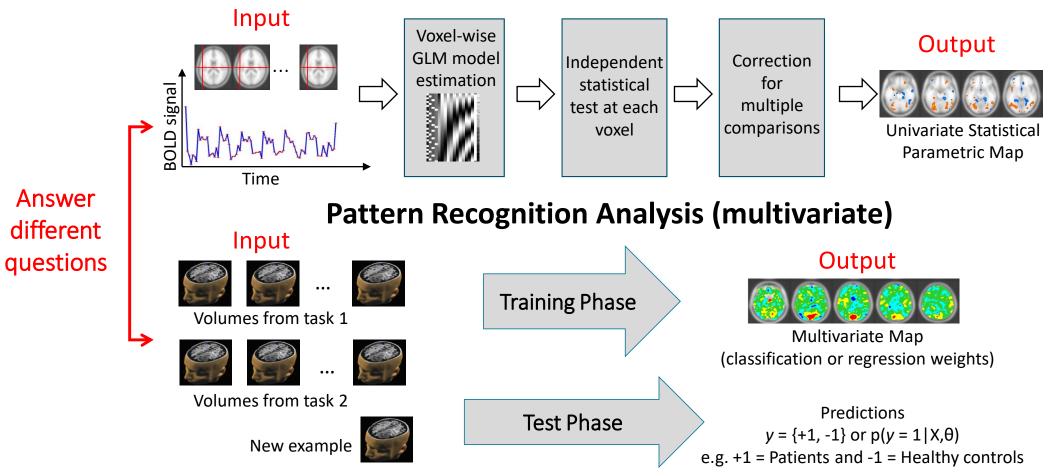
- Supervised learning
- Unsupervised learning

Size and shape

- Types of learning procedures:
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

Pattern Recognition Analysis

Standard Statistical Analysis (mass-univariate)

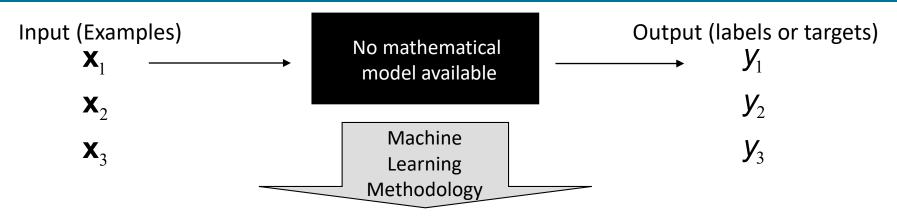


Pattern Recognition Analysis: advantages

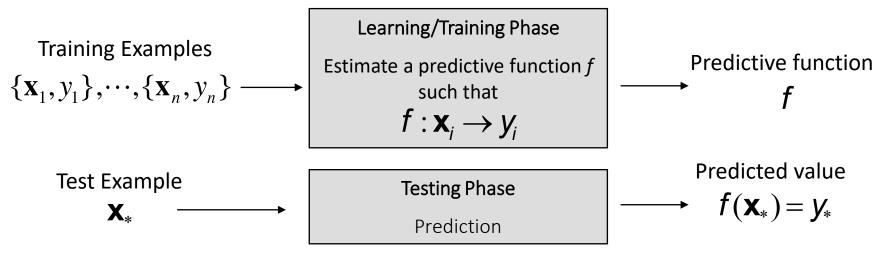
• Explore the multivariate nature of neuroimaging data

• Can be used to make predictions for new examples

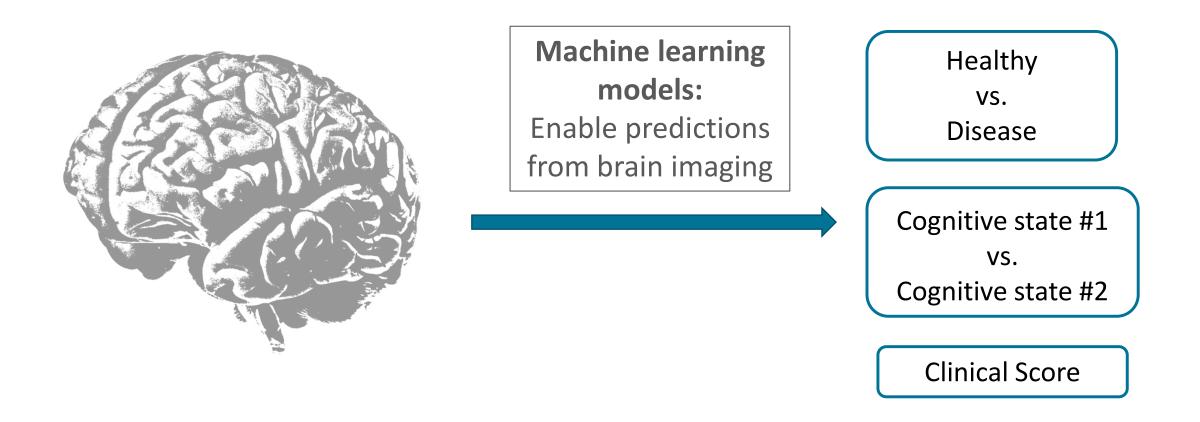
Supervised Learning: Framework



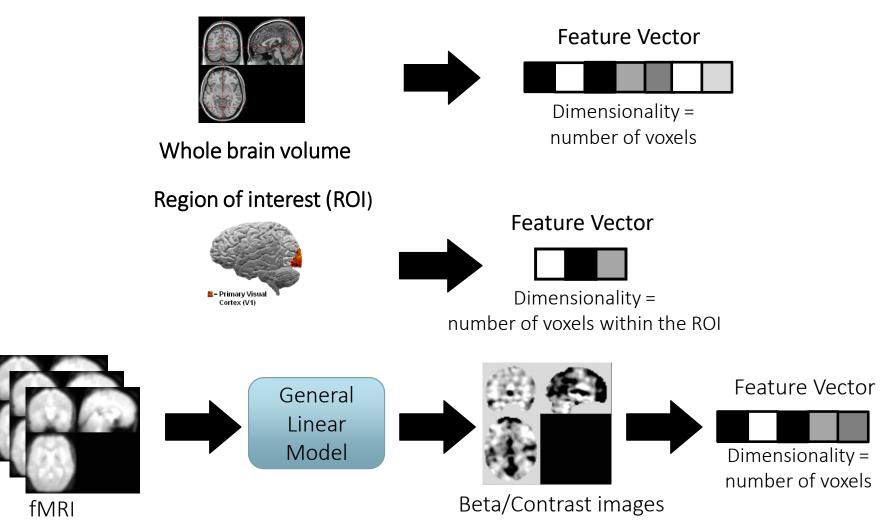
Computer-based procedures that learn a function from a set of examples



Supervised Learning in Neuroimaging



Feature extraction



Linear predictive function

- Linear predictive functions (classifier or regression) are parameterized by a weight vector w and a bias term b
- We learned w and b during the training phase by solving an optimisation problem
- The general equation for making predictions for a test example **x**_{*} is:

$$f(\mathbf{x}_*) = \mathbf{w} \mathbf{x}_* + b$$

Linear predictive function: prediction

Estimated (**w**, b)
$$\longrightarrow$$
 5 2 -6 -1
New example (**x***) $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{1}$ $\xrightarrow{2}$ 4

Predictive function $f(\mathbf{x}_*) = \mathbf{w} \mathbf{x}_* + b$

 $f(\mathbf{x}_*) = (5'1) + (2'2) + (-6'-2) + (-1'4) + 0$ $f(\mathbf{x}_*) = 5 + 4 + 12 - 4 = 17$

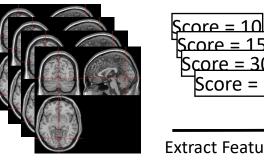
 $f(\mathbf{x}_*)$ is the predicted score for regression or the distance to the decision boundary for classification models.

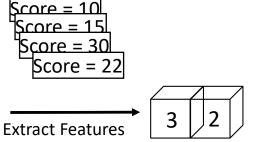
Classification problem

Class 1

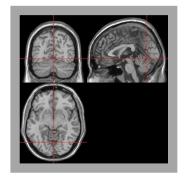


Regression problem

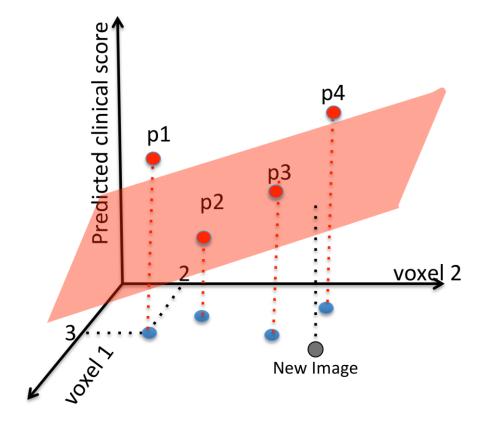




Test example



Linear regression models are also parameterized by a weight vector **w** and a bias term *b*.



Challenges in Neuroimaging

• In neuroimaging applications often the dimensionality of the data (e.g. number of voxels) is higher than the number of examples - **ill-conditioned problems**.

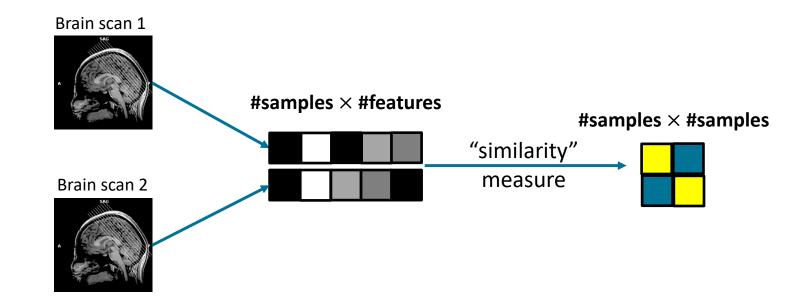
- Possible solutions:
 - -Regions of interest (ROIs)
 - –Feature selection strategies
 - -Searchlight
 - -Regularisation + Kernel Methods

• **Regularisation** is a technique used in an attempt to **solve ill-posed problems** and to **prevent overfitting** in statistical/machine learning models.

- Regularised methods find w by adding an additional constraint to the optimisation problem.
- Different machine learning algorithms solve different optimisation problems using different constraints (e.g. Kernel Ridge Regression (KRR), Support Vector Machine (SVM))

Challenges in Neuroimaging

How can we solve the high-dimensional problem efficiently?



Kernel methods

• **Kernel methods** provide a powerful and unified framework for investigating general types of relationships in the data (e.g. classification and regression)

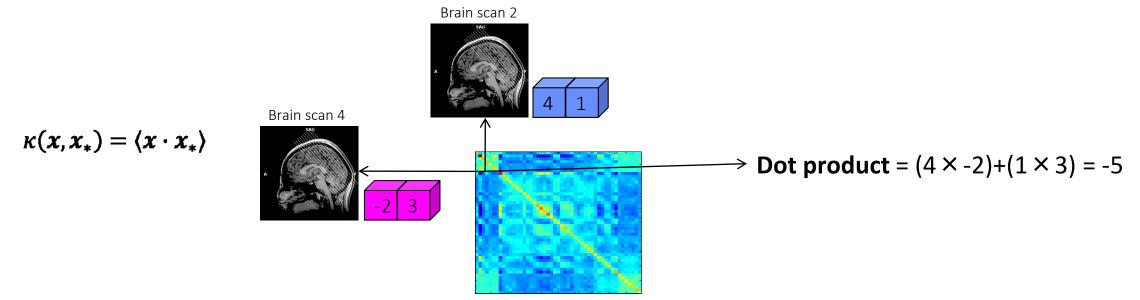
• Consists of two parts:

- Computation of the kernel matrix (compute all similarities)
- Apply a learning algorithm based on the kernel matrix
- Main advantage:
 - Computational efficiency

Linear Kernels

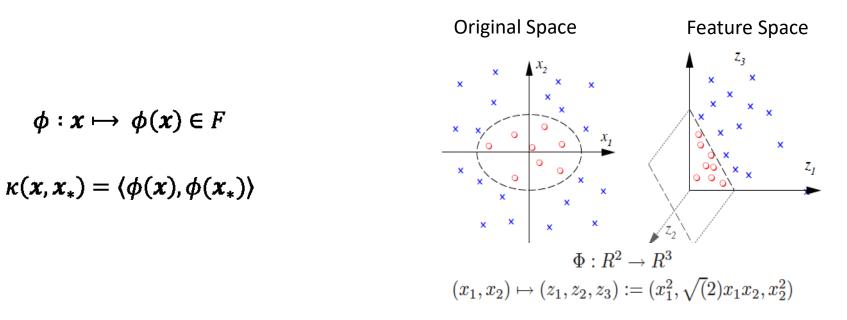
Kernel Function ("similarity" measure)

- Kernel is a function that, given **x** and **x**_{*}, returns a real number characterizing their similarity
- A simple type of similarity measure between two vectors is a dot product (linear kernel)



Non-linear Kernels

• There are more general "similarity measures", i.e. non-linear kernels: Gaussian kernel, Polynomial kernel.



• Non-linear kernels are used to map the data to a higher dimensional space as an attempt to make it linearly separable.

Advantages of linear models

• Neuroimaging data usually are high-dimensional and the sample sizes are usually small, therefore non-linear kernels may not bring benefits.

• Linear models reduce the risk of overfitting the data and allow direct extraction of the weight vector as an image (i.e. predictive map).

• Non-linear models usually have more hyperparameters that must be optimised which increases the computational times.

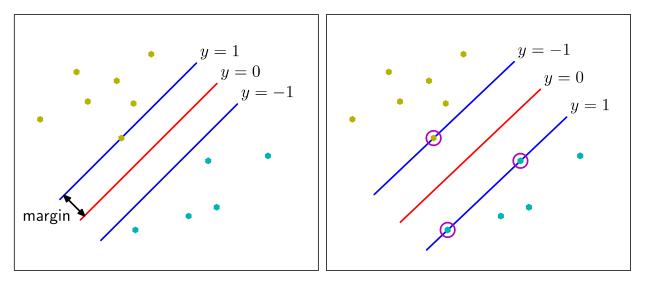
> Non-probablistic models:

- Support Vector Machine (SVM) (classification)
- Kernel Ridge Regression (KRR) (regression)
- > Multiple Kernel Learning (MKL) (classification and regression)

Probablistic models:

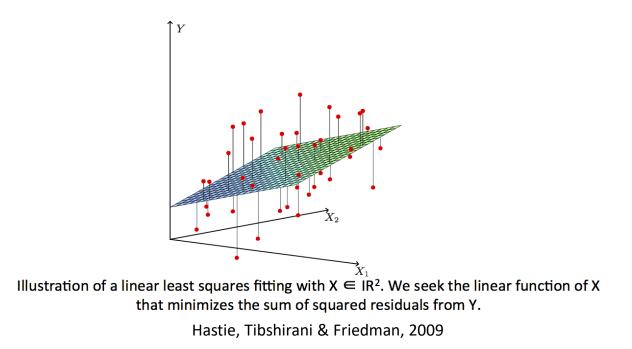
- Relevance Vector Machine (RVM) (regression)
- Binary (Multiclass) Gaussian Process (GP) (classification and regression)

Support Vector Machine (SVM)



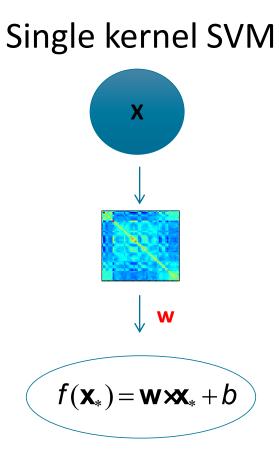
- Gives good results for most problems
- Sparse solution in terms of examples (support vectors)
- Provides hard predictions

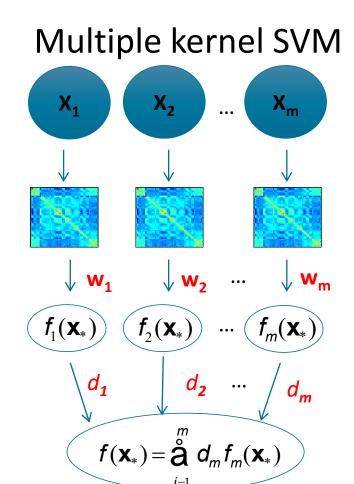
Kernel Ridge Regression (KRR)



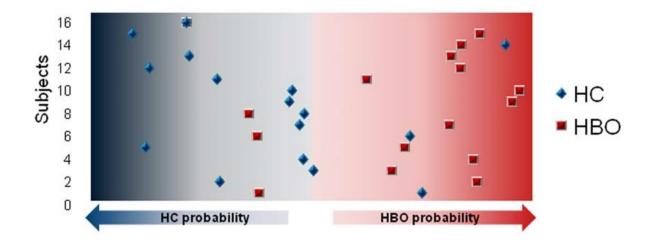
• Ridge regression consists in solving the optimization problem of a linear least squares regression by imposing a regularisation constraint.

Multiple Kernel Learning (MKL)



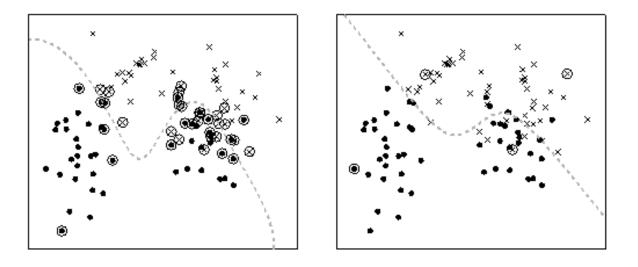


Gaussian Process Classifier – Binary/Multiclass



- Provides probabilistic class predictions (soft predictions)
- Natural extension to direct multi-class classification
- It does not find sparse solutions

Relevance Vector Machine (RVM)



- Probabilistic: apply a Bayesian treatment to SVM
- It finds sparser solutions (relevance vectors) than SVM
- For large datasets, the training times can be longer than SVM

Take home message

What is my question?

Localisation vs prediction?

Classification vs regression?

Which machine/model?

PRoNTo papers:

- Schrouff J*, Rosa MJ*, Rondina J, Marquand A, Chu C, Ashburner J, Phillips C, Richiardi J, Mourao-Miranda J. PRoNTo: Pattern Recognition for Neuroimaging Toolbox, Neuroinformatics, February 2013. *co-first authors
- Schrouff J*, Monteiro, JM*, Portugal L, Rosa MJ, Phillips C, Mourao-Miranda J. Embedding Anatomical or Functional Knowledge in Whole-Brain Multiple Kernel Learning Models Neuroinformatics, 2018

Reviews:

- Pereira, Mitchell, Botnivik (2009). Machine learning classifiers and fMRI: a tutorial overview. *Neuroimage*, 45, S199-S209
- Haynes (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives. *Neuron*, 87(2), 257-270

Books:

- Hastie, Tibishirani, Friedman (2009). Elements of Statistical Learning. Springer
- Bishop, Jordan, Kleinberg, Schölkopf (2006). Pattern Recognition and Machine learning. *Springer*
- Shawe-Taylor and Cristianini (2004). Kernel Methods for Pattern Analysis. *Cambridge University Press.*
- Schölkopf and Smola (2001). Learning with Kernels. *The MIT Press.*

Machines/Models:

- Burges (1998) A tutorial on support vector machines for pattern recognition. *Data Mining and Knowledge Discovery*, 2:121–167.
- Rasmussen, Williams (2006) Gaussian Processes for Machine Learning. *The MIT Press*
- Tipping (2001) Sparse Bayesian Learning and the Relevance Vector Machine Journal of Machine Learning Research, 1, 211-244
- Breiman (1996) Bagging Predictors Machine Learning, 24, 123-140
- Dietterich, Bakiri (1995) Solving multiclass learning problem via error-correcting output codes. Journal of Artificial Intelligence Research, 2: 263-286
- Rakotomamonjy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learning Research, 9, 2491-2521
- Marquand (2010) Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes.
 Neuroimage, 49(3), 2178-2189

Questions?

