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Pattern recognition aims to find patterns in the data which can be used to extract meaningful information
to make predictions
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Types of learning procedures:

* |Supervised learning /

Currently implemented in PRONTo
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Types of learning procedures:

e Supervised learning

e [Unsupervised learning
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e Types of learning procedures:

e Supervised learning
* Unsupervised learning

* | Reinforcement learning
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 Explore the multivariate nature of neuroimaging data

 Can be used to make predictions for new examples
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Computer-based procedures that learn a function from a set of examples
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Machine learning
models:
Enable predictions
from brain imaging
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Feature Vector

m) NN

Dimensionality =
number of voxels

Whole brain volume

Region of interest (ROI)
o Feature Vector

=) (W

Dimensionality =
number of voxels within the ROI

General Feature Vector

Linear

Dimensionality =
number of voxels

fMRI Beta/Contrast images
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* Linear predictive functions (classifier or regression) are parameterized by a weight
vector w and a bias term b

* We learned w and b during the training phase by solving an optimisation problem

 The general equation for making predictions for a test example X« is:

f(X.)=WIX.+b
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Linear predictive function: prediction

Predictive function
estimated (w, b) ——> [JS) 2 [GN * FX) =W X, +b

xl Xl xl Xl f(x.,)=50D+202)+(—610-2)+(-114)+0
f(X.)=5+4+12-4=17
1 | 2 |-2 | 4

New example (x*)

f(x+) is the predicted score for regression or the distance to
the decision boundary for classification models.
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Test example

Extract
Features

Linear classifiers are
parameterized by a
weight vector w and a
bias term b.
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* |n neuroimaging applications often the dimensionality of the data (e.g. number of
voxels) is higher than the number of examples - ill-conditioned problem:s.

* Possible solutions:
—Regions of interest (ROIs)
—Feature selection strategies
—Searchlight
—Regularisation + Kernel Methods
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Regularisation is a technique used in an attempt to solve ill-posed problems and to
prevent overfitting in statistical/machine learning models.

Regularised methods find w by adding an additional constraint to the optimisation
problem. 1 | |
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Different machine learning algorithms solve different optimisation problems using
different constraints (e.g. Kernel Ridge Regression (KRR), Support Vector Machine (SVM))
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Challenges in Neuroimaging

How can we solve the high-dimensional problem efficiently?

Brai

#samples X #features
#samples X #samples

“similarity”
measure

Brain scan 2
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4N .
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e Kernel methods provide a powerful and unified framework for investigating general types of
relationships in the data (e.g. classification and regression)

e Consists of two parts:
e Computation of the kernel matrix (compute all similarities)

e Apply a learning algorithm based on the kernel matrix

e Main advantage:
e Computational efficiency
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Kernel Function (“similarity” measure)

 Kernel is a function that, given x and x., returns a real number characterizing their similarity

* A simple type of similarity measure between two vectors is a dot product (linear kernel)

Brain scan 2

Brain scan 4

K(xl x*) = (x * x*)

—> Dot product = (4 X -2)+(1 X 3) =-
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* There are more general “similarity measures”, i.e. non-linear kernels: Gaussian kernel,

Polynomial kernel.
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* Non-linear kernels are used to map the data to a higher dimensional space as an
attempt to make it linearly separable.
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 Neuroimaging data usually are high-dimensional and the sample sizes are usually
small, therefore non-linear kernels may not bring benefits.

* Linear models reduce the risk of overfitting the data and allow direct extraction of the
weight vector as an image (i.e. predictive map).

* Non-linear models usually have more hyperparameters that must be optimised which
increases the computational times.
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g 4 Linear Models/Machines in PRoNTo

%
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» Non-probablistic models:
» Support Vector Machine (SVM) (classification)
» Kernel Ridge Regression (KRR) (regression)
» Multiple Kernel Learning (MKL) (classification and regression)

» Probablistic models:
» Relevance Vector Machine (RVM) (regression)
» Binary (Multiclass) Gaussian Process (GP) (classification and regression)
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* Gives good results for most problems
e Sparse solution in terms of examples (support vectors)

* Provides hard predictions
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Y

Xy
lllustration of a linear least squares fitting with X € IR2. We seek the linear function of X

that minimizes the sum of squared residuals from Y.

Hastie, Tibshirani & Friedman, 2009

* Ridge regression consists in solving the optimization problem of a linear least squares
regression by imposing a regularisation constraint.
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Multiple Kernel Learning (MKL)
Single kernel SVM Multiple kernel SVM
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* Provides probabilistic class predictions (soft predictions)
* Natural extension to direct multi-class classification

* |t does not find sparse solutions
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* Probabilistic: apply a Bayesian treatment to SVM
|t finds sparser solutions (relevance vectors) than SVM

* For large datasets, the training times can be longer than SVM
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What is my question?

Localisation vs prediction?
Classification vs regression?

Which machine/model?
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PRoNTo papers:

e Schrouff J*, Rosa MJ*, Rondina J, Marquand A, Chu C, Ashburner J, Phillips C, Richiardi J, Mourao-Miranda J. PRoNTo: Pattern
Recognition for Neuroimaging Toolbox, Neuroinformatics, February 2013. *co-first authors
* Schrouff J*, Monteiro, JM*, Portugal L, Rosa MJ, Phillips C, Mourao-Miranda J. Embedding Anatomical or Functional Knowledge in

Whole-Brain Multiple Kernel Learning Models Neuroinformatics, 2018

Reviews:
* Pereira, Mitchell, Botnivik (2009). Machine learning classifiers and fMRI: a tutorial overview. Neuroimage,45, S199-S209
* Haynes (2015). A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives. Neuron, 87(2), 257-270

Books:

* Hastie, Tibishirani, Friedman (2009). Elements of Statistical Learning. Springer

* Bishop, Jordan, Kleinberg, Scholkopf (2006). Pattern Recognition and Machine learning. Springer

* Shawe-Taylor and Cristianini (2004). Kernel Methods for Pattern Analysis. Cambridge University Press.
* Scholkopf and Smola (2001). Learning with Kernels. The MIT Press.
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Machines/Models:

Burges (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167.
Rasmussen, Williams (2006) Gaussian Processes for Machine Learning. The MIT Press

Tipping (2001) Sparse Bayesian Learning and the Relevance Vector Machine Journal of Machine Learning Research, 1, 211-244
Breiman (1996) Bagging Predictors Machine Learning, 24, 123-140

Dietterich, Bakiri (1995) Solving multiclass learning problem via error-correcting output codes. Journal of Artificial Intelligence
Research, 2: 263-286

Rakotomamonijy, A., Bach, F., Canu, S., & Grandvalet, Y. (2008). SimpleMKL. Journal of Machine Learning Research, 9, 2491-2521
Marquand (2010) Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes.

Neuroimage, 49(3), 2178-2189
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Questions?
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