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Pattern recognition aims to find patterns in the data which can be used to extract meaningful information
to make predictions

Digit Recognition Face Recognition Finance

Advertising and Business 
Intelligence Recommendation Engines
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Types of learning procedures:

• Supervised learning

Currently implemented in PRoNTo

?

Height and weight
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Types of learning procedures:

• Supervised learning

• Unsupervised learning

?

Size and shape
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• Types of learning procedures:

• Supervised learning

• Unsupervised learning

• Reinforcement learning
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Standard Statistical Analysis (mass-univariate)
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Volumes from task 1

Volumes from task 2
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New example

Input
Output
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y = {+1, -1} or p(y = 1|X,θ)

e.g. +1 = Patients and -1 = Healthy controls
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• Explore the multivariate nature of neuroimaging data

• Can be used to make predictions for new examples
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Machine
Learning 

Methodology

Output (labels or targets)
No mathematical 
model available

Computer-based procedures that learn a function from a set of examples

x1

x2

x3

y1

y2

y3

Learning/Training Phase

Estimate a predictive function f
such that

f :xi® yi

Testing Phase

Prediction

Test Example

x* f (x*)= y*

f

Predictive function

Input (Examples)

Training Examples

Predicted value
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Machine learning 
models:

Enable predictions 
from brain imaging

Healthy
vs.

Disease

Cognitive state #1
vs.

Cognitive state #2

Clinical Score
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fMRI

General 
Linear 
Model

Beta/Contrast images

Feature Vector 

Dimensionality = 
number of voxels

Region of interest (ROI)
Feature Vector 

Dimensionality = 
number of voxels within the ROI

Whole brain volume

Feature Vector 

Dimensionality = 
number of voxels
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• Linear predictive functions (classifier or regression) are parameterized by a weight
vector w and a bias term b

• We learned w and b during the training phase by solving an optimisation problem

• The general equation for making predictions for a test example x* is:

f (x*)=w×x* +b
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5 2 -6 -1

New example (x*)

Estimated (w, b)

1 2 -2 4

f (x*)= (5´1)+ (2´2)+ (-6´-2)+ (-1´4)+0

f (x*)= 5+ 4+12- 4 =17

Predictive function

f (x*)=w×x* +b

f(x*) is the predicted score for regression or the distance to 
the decision boundary for classification models.

× × × ×
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Score = 10
Score = 15
Score = 30

Score = 22

Linear regression 
models are also  

parameterized by a 
weight vector w and 

a bias term b.

Test example

Extract Features 3 2
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• In neuroimaging applications often the dimensionality of the data (e.g. number of
voxels) is higher than the number of examples - ill-conditioned problems.

• Possible solutions:

–Regions of interest (ROIs)

–Feature selection strategies 

–Searchlight

–Regularisation + Kernel Methods 
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• Different machine learning algorithms solve different optimisation problems using
different constraints (e.g. Kernel Ridge Regression (KRR), Support Vector Machine (SVM))

• Regularised methods find w by adding an additional constraint to the optimisation
problem.

• Regularisation is a technique used in an attempt to solve ill-posed problems and to
prevent overfitting in statistical/machine learning models.
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How can we solve the high-dimensional problem efficiently?

Brain scan 1

Brain scan 2 0

“similarity” 
measure 

#samples × #features
#samples × #samples
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• Kernel methods provide a powerful and unified framework for investigating general types of
relationships in the data (e.g. classification and regression)

• Consists of two parts:

• Computation of the kernel matrix (compute all similarities)

• Apply a learning algorithm based on the kernel matrix

• Main advantage:

• Computational efficiency
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Kernel Function (“similarity” measure)

• Kernel is a function that, given x and x*, returns a real number characterizing their similarity

• A simple type of similarity measure between two vectors is a dot product (linear kernel)
Brain scan 2

Brain scan 4

-2  3

4 1

Dot product = (4×-2)+(1×3) = -5 
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• Non-linear kernels are used to map the data to a higher dimensional space as an
attempt to make it linearly separable.

Original Space Feature Space

• There are more general “similarity measures”, i.e. non-linear kernels: Gaussian kernel,
Polynomial kernel.
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• Neuroimaging data usually are high-dimensional and the sample sizes are usually
small, therefore non-linear kernels may not bring benefits.

• Linear models reduce the risk of overfitting the data and allow direct extraction of the
weight vector as an image (i.e. predictive map).

• Non-linear models usually have more hyperparameters that must be optimised which
increases the computational times.
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➢ Non-probablistic models:
➢ Support Vector Machine (SVM) (classification)
➢ Kernel Ridge Regression (KRR) (regression)
➢ Multiple Kernel Learning (MKL) (classification and regression) 

➢ Probablistic models:
➢ Relevance Vector Machine (RVM) (regression)
➢ Binary (Multiclass) Gaussian Process (GP) (classification and regression) 
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Support Vector Machine (SVM)

• Gives good results for most problems

• Sparse solution in terms of examples (support vectors)

• Provides hard predictions 
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Kernel Ridge Regression (KRR)

Hastie, Tibshirani & Friedman, 2009

• Ridge regression consists in solving the optimization problem of a linear least squares
regression by imposing a regularisation constraint.
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X

f (x*)=w×x* +b

w

Single kernel SVM
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Multiple kernel SVM

d1 d2 dm

…

…

Multiple Kernel Learning (MKL)
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Gaussian Process Classifier – Binary/Multiclass

• Provides probabilistic class predictions (soft predictions) 

• Natural extension to direct multi-class classification

• It does not find sparse solutions

was 40.5%(sensitivity = 50%, specificity = 31%), and to intense

faces, was 66% (sensitivity = 88%, specificity = 44%).

Outcome. Thepredictive power of theGPCsfor futureAxisI

disorder in at-risk adolescentspertaining to neutral facespresented

during the happy face experiment was evaluated using post-

scanning clinical assessments in 13 at-risk adolescents. Of these, 6

subsequently met DSM-IV criteria for either major depression

(n= 3) or anxiety disorders (n= 3). GPC predictive probabilities

were significantly higher for these 6 at-risk adolescents than for at-

risk adolescents who remained healthy at follow-up (t(11)= 1,82,

p= 0.04) (Figure 3). Furthermore, 3/ 4 at-risk adolescents

misclassified as healthy controls at scanning remained healthy at

follow-up (for one of these 4 at-risk adolescents, we did not have

clinical follow-up information).

ROC Analyses. The area under the ROC curve (AUC) was

0.78 (p, 0.05, permutation test) (Figure 4), indicating that the

score based on the classifier for at-risk adolescents versus healthy

controls could be used to predict those at-risk adolescents who

went on to develop, versus those who did not develop, a

psychiatric disorder during clinical follow-up (i.e. area under the

ROC curve exceed chance level which is 0.5). Using a

combination of machine learning and neuroimaging, we were

therefore able to find ameasure (i.e. GPC predictive probabilities)

that could be used to identify which at-risk adolescents

subsequently developed an Axis I disorder.

Task performance on fMRI paradigm
Happy Face Task: Accuracy. Therewasno significant main

effect of group F(1,30)= 2.4, p= .14), or group by face condition

interaction (F(2,29)= 0.01, p= .99). There was, however, a

significant main effect of face condition (F(2,29)= 15.8, p, .001),

indicating that percent accuracy wassignificantly lower for neutral

faces relative to happy faces (mild, intense), p, .05. Reaction times:
There wasno significant main effect of group, main effect of face,

or group by face condition interaction (all p. .1).

Fear ful Face Task: Accuracy. Therewasnosignificant main

effect of group (F(1, 30)= 0.99, p= .33), or group by face condition
interaction (F(2,29)= 0.50, p= .61). There was, however, a

significant main effect of face condition, (F(2,29)= 11.2, p, .001),

indicating that percent accuracy wassignificantly lower for neutral

faces relative to intense fearful faces (p, .05). The effect was at a

trend level for mild fearful versus neutral faces (p= .06). Reaction

times: There wasno significant main effect of group, main effect of

face, or groupby facecondition interaction (all p. .1) (seeTableS1).

Task performance on post-scanning emotion labeling task
Accuracy. There were no significant group differences on

overall emotion labeling scores (t(23)= .92, p= .37). When
examining accuracy specifically to happy, fearful, and neutral

faces, however, there was a main effect of face condition

(F(2,22)= 11.10, p, .001). Post hoc comparisons indicated that

Figure 2. Summary of results from pattern recognit ion analyses. A. Decision boundary and individual predictive probabilities. B.GPCweights
overlaid on an anatomical template. The color code shows the relative weight of each voxel for the decision boundary (red scales: higher weights for
healthy bipolar offspring and blue scales: higher weights for healthy controls). The discriminating pattern included clusters with higher weights for
healthy bipolar offspring in the superior temporal sulcus (STS; x, y, z: -50, 11, -5) and in a posterior region of the ventromedial prefrontal cortex
(VMPFC(p); x, y, z,: 0, 29, -14) and a cluster with higher weights for healthy controls in the anterior region of the ventromedial prefrontal cortex
(VMPFC (a); x, y, z: -2, 51, -19) (x, y, z, are in Talairach coordinates).
doi:10.1371/journal.pone.0029482.g002

Pattern Recognition Discriminate Youth at Risk

PLoSONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e29482
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Relevance Vector Machine (RVM)

• Probabilistic: apply a Bayesian treatment to SVM

• It finds sparser solutions (relevance vectors) than SVM

• For large datasets, the training times can be longer than SVM



Click to edit Master title styleTake home message

4/14/2018 F Ferreira - Course 2018 29

What is my question?

Localisation vs prediction?

Classification vs regression?

Which machine/model?
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