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• Examples (xi)

• Labels (yi)
• categorical value for classification (e.g. class 1 = patients, class 2 = healthy controls) 
• continuous value for regression (e.g. age or clinical scale).

• Matrix notation (one example per row)
X = [x1 x2 ... xN]T 

y = [y1 y2… yN]T

fMRI/sMRI
3D matrix of voxels

Feature Vector 

xi is a vector of size dx1 where 
d is the number of voxels



Click to edit Master title stylePattern Recognition Framework 

Machine
Learning 

Testing Phase

Prediction

Learning/Training Phase

Generate a function or classifier 
f such that

Training Examples:
(x1, y1), . . .,(xs, ys)

Test Example
xi

f(xi) -> yi

f(xi) = yi

f

Computer-based procedures that learn a function from a series of examples

Input
(brain scans)

x1
x2
x3

Output 
(control/patient)

y1
y2
y3

No mathematical 
model available
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• Linear predictive models (classifier or regression) are parameterized by a weight vector w and a bias 
term b.

where f (x*) is the predicted score for regression or the distance to the decision boundary for 
classification models.

• The weight vector can be expressed as a linear combination of training examples xi (where i = 1,…,N
and N is the number of training examples).

€ 

w = α ix i
i=1

N

∑

f (x*) =w ⋅x* + b
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Main difficulties:
• Very high dimensional data: computational issues
• Often the dimensionality of the data is greater than the number of examples: ill-conditioned problems

Potential Solutions:
• Feature Selection
• Region of Interest
• Searchlight
• Kernel Methods + Regularisation -> PRoNTo
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• The kernel methodology provides a powerful and unified framework for investigating general types of 
relationships in the data (e.g. classification, regression, etc).

• Kernel methods consist of two parts:
ü Computation of the kernel matrix (mapping into the feature space).
ü A learning algorithm based on the kernel matrix (designed to discover linear patterns in the 

feature space).

• Advantages:
ü Represent a computational shortcut which makes possible to represent linear patterns efficiently 

in high dimensional space.
ü Using the dual representation with proper regularization* enables efficient solution of ill-

conditioned problems.

* e.g. restricting the choice of functions to 
favor functions that have small norm.
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• Kernel is a function that, for given two pattern x and x*, returns a real number characterizing their 

similarity. 

•A simple type of similarity measure between two vectors is a dot product (linear kernel).

-2  3

4 1
Dot product = (4*-2)+(1*3) = -5 

Kernel Matrix (K)

Klinear =  XXT

Kernel Function (“similarity measure”)



Click to edit Master title styleNonlinear Kernels

• There are more general “similarity measures”, i.e. nonlinear kernels: Gaussian kernel, Polynomial kernel, 
etc.

• Nonlinear kernels are used to map the data to a higher dimensional space as an attempt to make it 
linearly separable.

• The kernel trick enables the computation of similarities in the feature space without having to compute 
the mapping explicitly.

Original Space Feature Space
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• Neuroimaging data are extremely high-dimensional and the sample sizes are very small, therefore 
non-linear kernels often don’t bring any benefit.

• Linear models reduce the risk of overfitting the data and allow direct extraction of the weight vector as 
an image (i.e. predictive map). 
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• Making predictions with kernel methods 

f (x*) =w ⋅x* + b Primal representation 

f (x*) = αixi ⋅x* + b
i=1

N

∑

Dual representation f (x*) = αiK(xi,x*)+ b
i=1

N

∑
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Testingv1 = 0.5 v2 = 0.2New example

f(x*) = (w1.v1+w2.v2)+b
= (+5.0.5-3.0.2)+0
= 1.9 

Positive value -> Class 1

Voxel 1 Voxel 2 Voxel 1 Voxel 2
…

…

Examples of class 1

Training

Model weight vector

Voxel 1 Voxel 2 Voxel 1 Voxel 2

Examples of class 2
w1 = +5 w2 = -3

Spatial representation of 
the decision functionMultivariate pattern ->

No local inferences should 
be made!
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•Support Vector Machines (SVM)
•Gaussian Processes (GP)
•Kernel Ridge Regression (KRR)
•Relevance Vector Regression (RVR)
•Multiple Kernel Learning (MKL)
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(1) Support Vector Machine
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• A classifier derived from statistical learning theory by Vapnik, et al. in 1992.

• SVM became famous when, using images as input, it gave accuracy comparable to neural-network in a 
handwriting recognition task.

• Currently, SVM is widely used in object detection & recognition, text recognition, biometrics, speech 
recognition, neuroimaging, etc.

• Also used for regression.
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• If the optimal hyperplane has margin r>r it will correctly separate the test points.

r

r

• Among all hyperplanes separating the data there is a unique optimal hyperplane,  the one which 
presents the largest margin (the distance of the closest points to the hyperplane).

• Let us consider that all test points are generated by adding bounded noise (r) to the training examples 
(test and training data are assumed to have been generate by the same underlying dependence).
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w

(w.xi + b) > 0(w.xi + b) < 0

(w.xi + b) =-1 (w.xi + b) =+1 

• Rescaling w and b such that the points closest to 
the hyperplane satisfy |(w.xi + b)| =1 we obtain 
the canonical form of the hyperplane satisfying 
yi(w.xi + b) > 0

• The distance of a point xi to a hyperplane Hw,b is 
given by ρx= |(w.xi + b)|/||w||

• The distance from the closest point to the 
canonical hyperplane is ρ= 1/||w||. 

• In this case, the margin, measured 
perpendicularly to the hyperplane, equals 
2/||w||.

• In order to maximize the margin we need to 
minimize ||w||/2.

• We assume that the data are linearly separable, 
that is, there exist w ∈ IRd and b ∈ IR such that  
yi(w.xi + b) > 0, i = 1,...,m. 
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min 1
2

||w ||2

s.t.  yi (w.xi + b) ≥1, i =1,..,m

• Constrained optimization problem

• The solution of this problem is equivalent to determine the saddle point of the Lagrangian function

where αi ≥ 0 are the Lagrange multipliers.

•We minimize L over (w,b) and maximize over α.

Quadratic problem: 
unique optimal solution

L(w,b;α) = 1
2
||w ||2 − αi yi (w.xi + b)−1{ }

i=1

N
∑

Linearly separable case (Hard Margin SVM)
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Differentiating L w.r.t. w and b we obtain:

Substituting w in L leads to the dual problem

where A is an N × N matrix and 

∂L
∂b

= − yiαi = 0i=1

N
∑

∂L
∂w

=w− αiyixi = 0i=1

N
∑ ⇒ w = αiyixii=1

N
∑

max  Q(α) := − 1
2
α TAα + αi

i
∑

s.t. yiαi = 0
i
∑

     αi ≥ 0,  i=1,...,N

A = (yiyjxi.x j : i, j =1,...,N )

Note that the complexity of 
this problem depends on N

(number of examples), not on 
the number of input 

components d (number of 
dimensions). 
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w = α i yixi
i=1

N
∑

α

Note that     is a linear combination of only the xi for which αi > 0. These xi are called support vectors (SVs).

Parameter b can be determined by b = yi – w.xi, where xi corresponds to a SV.  

A new point x* is classified as

w

f (x*) = sgn yiα ixi .x* + b
i=1

N
∑

"

#
$

%

&
'

The dot product is 
simple type of 

similarity 
measure

Linearly separable case (Hard Margin SVM)
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• The dot product can be replaced by a kernel function which corresponds to a dot product in the 
feature space.

• The kernel trick is a way of mapping observations from the original space into a feature space, without 
ever having to compute the mapping explicitly.

Original Space Feature Space
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• The fact that that the Optimal Separating Hyperplane is determined only by the support vectors is most 
remarkable. Usually, the support vectors are a small subset of the training data.

• All the information contained in the data set is summarized by the support vectors. The whole data 
set could be replaced by only these points and the same hyperplane would be found.
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• If the data is not linearly separable the previous analysis can be generalized by looking at the problem

• The idea is to introduce the slack variables ξi to relax the separation constraints (ξi > 0 ⇒ xi has margin 
less than 1).

x1

x2

min 1
2

||w ||2 +C ξi
i=1

N

∑

s.t.  yi (w.xi + b) ≥1−ξi
      ξi ≥ 0,       i =1,..,N
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• A saddle point analysis (similar to that above) leads to the dual problem

• This is like the previous dual problem except that now we have �box constraints� on αi. 

• Again we have

max  Q(α) := − 1
2
α TAα + αi

i
∑

s.t. yiαi = 0
i
∑

     0 ≤αi ≤C,            i =1,...,N

w = α i yixi
i=1

N
∑
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• The parameter C that controls the relative importance of minimizing the norm of w (which is equivalent 
to maximizing the margin) and satisfying the margin constraint for each data point.

•If C is close to 0, then we don't pay that much for points violating the margin constraint. This is 
equivalent to creating a very wide tube or safety margin around the decision boundary (but having many 
points violate this safety margin).

•If C is close to inf, then we pay a lot for points that violate the margin constraint, and we are close the 
hard-margin formulation we previously described - the difficulty here is that we may be sensitive to 
outlier points in the training data.

•C is often selected by cross-validation (nested cross-validation in PRoNTo). 
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•SVMs are prediction devices known to have good performance in high-dimensional settings.

• "The key features of SVMs are the use of kernels, the absence of local minima and the sparseness of the 
solution.� Shawe-Taylor and Cristianini (2004).
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(1) Multiple Kernel Learning (MKL)
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• Many practical learning problems involve multiple, heterogeneous data sources.

• It seems advantageous to combine different sources of information for prediction (e.g. multimodal 
imaging for diagnosis/prognosis).

• Need to learn with not only a single kernel but with multiple kernels.



Click to edit Master title styleMultiple Kernel Learning (MKL)

• Multiple Kernel Learning (MKL) has been proposed as an approach to simultaneously learn the kernel 
weights and the associated decision function in supervised learning settings.

• In MKL, the kernel K can be considered as a linear combination of M “basis kernels”

• The decision function of an MKL problem can be then expressed in the form:

K(x,x ') = dmKm (x,x ')
i=1

M

∑

with dm ≥ 0, dm =1
i=1

M

∑

f (x*) = wm ⋅x* + b
i=1

m

∑
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• One example of MKL approach based on SVM is the SimpleMKL (Rakotomamonjy, et al. 2008).

• SimpleMKL optimization problem

the L1 constrain on dm enforces sparsity on the kernels with a contribution to the model.

min 1
2

1
dmm=1

M

∑ ||wm ||2 +C ξi
i=1

N

∑

s.t.  yi ( wm.xi
m=1

M

∑ + b) ≥1−ξi,       i =1,..,N

      ξi ≥ 0,       i =1,..,N

      dm =1,
m=1

M

∑   dm ≥ 0,       m =1,..,M
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f (x*) = dm fm (x*)
i=1

m

∑

X

f (x*) =w ⋅x* + b

w

X1

f1(x*)

w1

…X2

w2

Xm

wm

f2 (x*) fm (x*)…

Single kernel SVM Multiple kernel SVM

d1 d2 dm

…

…
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(3) Kernel Ridge Regression
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• The general equation for making predictions with kernel methods is

where f (x*) is the predicted score for regression or the distance to the decision boundary for 
classification.

• αi is the dual weight vector and b is a constant offset, both of which are learnt from the training 
samples.

• We can simplify the equation for making predictions by adding a constant element to x*, so that x* = 
[x* 1]T and w=[w b]T

f (x*) =w ⋅x* + bf (x*) =w ⋅x* + b = αixi ⋅x* + b
i=1

N

∑

f (x*) =w ⋅x*

f (x*) =w ⋅x* + b = αixi ⋅x* + b
i=1

N

∑ = αiK(xi,x*)+ b
i=1

N

∑
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• Kernel ridge regression is the dual representation of ridge regression, which is sometimes known as the 
linear Least Square Regression (LSR) with Tikhonov regularization (Chu et al. 2011).

Hastie, Tibshirani & Friedman, 2009
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• In LSR we compute the weight vector w by minimizing the mean squared errors on all training 
examples:

Using a matrix notation where X = [x1 x2 .. xN]T is a matrix containing the training examples vectors as 
its row we can rewrite the cost function as 

• To find the optimum w we set the derivative of the cost function with respect to w to 0, which yields 
to the following equation:

w* = argminw
1
N

xi ⋅w− yi( )2
i=1

N

∑

w* = argminw Xw− y( )T Xw− y( )

XT (Xw− y) = 0
XTXw =XTy

w = XTX( )
−1
XTy
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• When the sample size is limited, i.e. in order to solve ill-posed problems or to prevent over-fitting 
some form of regularization is often introduced into the model

• The regularization parameter λ controls the amount of regularization.

• Setting the derivative of the cost function with respect to w to 0, which yields to the following 
equation:

w* = argminw
1
N

xi ⋅w− yi( )2
i=1

N

∑ +λ w 2

Error term/
Loss function

XT (Xw− y)+λw = 0
(XTX+λI)w =XTy

w = XTX+λI( )
−1
XTy

Regularization 
term
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• Consider the general equation for making predictions 

• To estimate the weights w we seek to minimize the empirical risk which is penalized to restrict model 
flexibility

f (x*) =w ⋅x*

w = αixi
i=1

N

∑

w* = argminw
1
N

L(yi,xi,w)
i=1

N

∑ +λJ(w)

   Loss function
Regularization 

term
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• Loss function: denotes the price we pay when we make mistakes in the predictions (e.g. squared loss, 
Hinge loss).

• Regularization term: favours certain properties and improves the generalisation over unseen examples 
(e.g. L2-norm, L1-norm).

• Many learning algorithms are particular choices of L and J (e.g. SVM, Kernel Ridge Regression) .

w* = argminw
1
N

xi ⋅w− yi( )2
i=1

N

∑ +λ w 2

w* = argminwC
1
N

max 1− yi xi ⋅w+ b( ), 0#$ %&
i=1

N

∑ +λ w 2

KRR

SVM

w* = argminw
1
N

L(yi,xi,w)
i=1

N

∑ +λJ(w)

   Loss function
Regularization 

term
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Baldassarre L, Pontil M, Mourao-Miranda J (2017)

• Weight maps for 
classifying fMRI images 
during visualization of 
pleasant vs. unpleasant 
pictures.

• All models used a square 
loss + regularization.

LASSO
86.31%

Elastic Net
88.02%

Total Variation (TV)
85.79%

Laplacian (LAP)
83.71%

Sparse TV
85.86% 

Sparse LAP
87.05%

Impact of regularization on w
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