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Feature engineering

First-timers are often surprised by how little time in a machine
learning project is spent actually doing machine learning. But it
makes sense if you consider how time-consuming it is to gather data,
integrate it, clean it and pre-process it, and how much trial and error
can go into feature design. Also, machine learning is not a one-shot
process of building a data set and running a learner, but rather an
iterative process of running the learner, analyzing the results, modifying
the data and/or the learner, and repeating. Learning is often the quickest
part of this, but that’s because we’ve already mastered it pretty well!
Feature engineering is more difficult because it’s domain-specific,
while learners can be largely general-purpose. However, there is no
sharp frontier between the two, and this is another reason the most
useful learners are those that facilitate incorporating knowledge.

Domingos, Pedro. “A few useful things to know about machine learning.” Communications of the ACM 55, no. 10
(2012): 78-87.
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Accuracy

Proportion of guesses that are correct.

Assessed by cross-validation.

A very simple measure of generalisation.

Very noisy.

If 90% of subjects are controls and 10% are patients, then guessing that
everyone is a control will give 90% accuracy.

Other measures (sensitivity, specificity, etc) will be discussed later.
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Area Under the Curce (AUC)

Area under the Receiver
Operating Characteristic
(ROC) curve.
Assessed by cross-validation.
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Target Information

Using cross-validation with binary classification, the number of bits
of information obtained for each subject is:

I = 1
N

N∑
n=1

(tn log2 pn + (1− tn) log2(1− pn))

− (t̄ log2 t̄
∗ + (1− t̄ log2(1− t̄∗))

where tn is the label of the nth test subject (0 or 1)

pn is the predicted probability for the nth test subject

t̄∗ is the average of the labels of the training data.

A similar scheme may be used for regression, where information is
given in nats (used loge , rather than log2).
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Log Marginal Likelihood

Bayesian methods give a measure known as log marginal likelihood.

P(y|X) =

∫
w
P(y|X,w)p(w)dw

An established Bayesian model selection approach (see papers
by David MacKay and others).

Does not involve cross-validation.

Not trusted by some machine learning people.
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No Free Ducklings

No Free Lunch theorem says that
learning is impossible without prior
knowledge.
http://en.wikipedia.org/wiki/No_free_lunch_in_search_and_

optimization

Ugly Duckling theorem says that
things are all equivalently similar to
each other without prior knowledge.
http://en.wikipedia.org/wiki/Ugly_duckling_theorem

By
Ryan Ebert from Portland, US (Flickr) [CC BY 2.0],
via Wikimedia Commons.
https://creativecommons.org/licenses/by/2.0/

What prior knowledge do we have about the variability among
people that can be measured using MRI?
How do we use this knowledge?
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Incorporating Prior Knowledge into Kernels

Linear kernel matrices are often computed from the raw features:

K = XXT

A simple spatial feature selection may be considered as the
following, where Σ0 is a (scaled) diagonal matrix of ones and zeros:

K = XΣ0XT

Σ0 may be more complicated, for example encoding spatial
smoothing, high-pass filtering or any number of other things.
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Weighting suspected regions more heavily

The best way would be to augment the training data with
data from previous studies.

Lack of data-sharing means this is generally not possible,
so we need to extract information from publications.

The neuroimaging literature is mostly blobs.

These give pointers about how best to weight the data
(Σ0 = diag(s), si ∈ R+).
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Weighting suspected regions more heavily

Chu et al. “Does feature selection improve classification accuracy? Impact of sample size and feature selection on
classification using anatomical magnetic resonance images”. NeuroImage 60:59–70 (2012).
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Smoothing

If we know that
higher frequency
signal is more likely to
be noise.

K = XΣ0XT

Σ0 no longer
diagional.
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“Data-driven feature selection”

Two main approaches:

Non-embedded feature selection, where approaches such
as t- or F-tests, or recursive feature elimination are used to
switch off certain features. Not very principled, but can save
computation time.

We should only do feature selection if there is a cost associated with measuring features or
predicting with many features.
Note: Radford Neal won the NIPS feature selection competition using Bayesian methods
that used 100% of the features.

— Zoubin Ghahramani

Embedded feature selection, where features are weighted
differently as part of the machine learning model. Works best
when features are of different types so need different
weighting (a priori).
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Dimensionality 6= number of voxels

Lots of effort on data-driven feature selection methods.

Involves estimating
Σ0 = diag(s), si ∈ {0,w}, where w ∈ R+.
Lots of parameters needed to achieve this.

Many papers claim excellent results.

Little evidence to suggest that most voxel-based feature
selection methods help.

Little or no increase in predictive accuracy.
Commonly perceived as being more “interpretable”.
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“Data-driven Feature Selection”

“In our evaluation, two methods included a feature
selection step: Voxel-STAND and Voxel-COMPARE.
Overall, these methods did not perform substantially
better than simpler ones... ... A more robust way to
decrease the dimensionality of the features way would be
to use more prior knowledge of the disease.”

Cuingnet et al. “Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison
of ten methods using the ADNI database”. NeuroImage 56(2):766–781 (2011).
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“Data-driven feature selection”

Chu et al. “Does feature selection improve classification accuracy? Impact of sample size and feature selection on
classification using anatomical magnetic resonance images”. NeuroImage 60:59–70 (2012).
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Removing nonlinearities

Instead of using nonlinear pattern recognition methods, we can...

Capture nonlinearities by appropriate preprocessing.

Accurate nonlinear registration can remove much of the
nonlinearity.

Allows nonlinear effects to be modelled by a linear classifier.

Gives more interpretable characterisations of differences.

May lead to more accurate predictions – particularly with
smaller amounts of training data.
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Removing nonlinearities

Simulated images Principal components

A suitable model would reduce this variability to two dimensions.
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Raw pixel values

Raw pixel data could
be another option.
Data needs to be
“spatially normalised”
(and possibly
skull-stripped).
Results may not
generalise well to data
from other scanners.
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Region volumes

Label propagation or
other methods can be
used to subdivide
brain into regions.

John Ashburner Anatomical Feature Representation



Introduction
Feature Types

Data
Conclusions

Aligned Tissue Maps
Deformation Features
Scalar Momentum

Other features

Other features
include:

Cortical
thickness.

Shape features.

PCA/ICA
weights.

Lesion maps.

etc
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SPM12 Processing

Tissue class segmentation Alignment with Shoot
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“Unmodulated” GM, WM & BG

Pattern recognition run using: GM alone; WM alone; BG alone;
GM + WM; GM + WM + BG.
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“Modulated” GM, WM & BG

Pattern recognition run using: GM alone; WM alone; BG alone;
GM + WM; GM + WM + BG.
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Jacobian determinants

Encodes relative volumes before
and after warping.
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Logarithms of Jacobian determinants

There are sometimes simple
logarithmic relationships among
volumes.

Zhang and Sejnowski. “A universal scaling law between
gray matter and white matter of cerebral cortex.”
Proceedings of the National Academy of Sciences
97(10):5621–5626 (2000).
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Divergences of Velocity Fields

Very similar to logarithms of
Jacobians.
Not easy to explain.
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Scalar Momentum

a = |Dφ|(µ− c(φ))
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Scalar Momentum

a = |Dφ|(µ− c(φ)) SPM12 GUI for scalar
momentum.
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IXI: Dataset

580 T1w brain MRI from IXI
(Information eXtraction from
Images) dataset.
http://www.

brain-development.org/

Data from three different
hospitals in London:

Hammersmith Hospital
using a Philips 3T system

Guy’s Hospital using a
Philips 1.5T system

Institute of Psychiatry using
a GE 1.5T system

10-fold cross-validation.
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ABIDE: Dataset

The Autism Brain Imaging Data Exchange initiative.
http://fcon_1000.projects.nitrc.org/indi/abide/.

T1w brain MRI from 1,102 subjects.

531 with Autism Spectrum Disorder (Gender ratio: 64:467).

571 controls (Gender ratio: 99:472).

Data from 17 international sites.
The 20 greatest outliers were excluded.

5-fold cross-validation.
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COBRE: Dataset

Centre for Biomedical Research Excellence
http:

//fcon_1000.projects.nitrc.org/indi/retro/cobre.html.

T1w brain MRI from 146 subjects.

72 with schizophrenia (14 male : 58 female).

74 controls (23 male : 51 female).

All from a single scanner.

5-fold cross-validation, repeated 10 times.
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Conclusions

No feature set was best in all situations (no free lunch).

Scalar momentum appears to be a useful feature set, although
its effectiveness was not statistically significantly better than
other methods that also considered the BG class.

Jacobian-scaled warped GM alone, or with WM, is surprisingly
poor.

Amount of spatial smoothing makes a difference, with the
best results from smoothing of about 12mm FWHM.

Further dependencies on the details of the registration still
need exploring.

Thanks to help from Gemma Monté.
Much of this work has been submitted to NeuroImage.
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