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Overview of PR in Neuroimaging

PR involves learning a mapping between input and output:

PR techniques hold two main advantages over conventional
univariate analytic methods:

1. They can make predictions at the level of single subjects

2. They can make use of correlations between brain regions (i.e.
they are multivariate)



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Overview of PR in Neuroimaging

PR involves learning a mapping between input and output:

PR techniques hold two main advantages over conventional
univariate analytic methods:

1. They can make predictions at the level of single subjects

2. They can make use of correlations between brain regions (i.e.
they are multivariate)



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Overview of PR in Neuroimaging

PR involves learning a mapping between input and output:

PR techniques hold two main advantages over conventional
univariate analytic methods:

1. They can make predictions at the level of single subjects

2. They can make use of correlations between brain regions (i.e.
they are multivariate)



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Overview of PR in Neuroimaging

PR involves learning a mapping between input and output:

PR techniques hold two main advantages over conventional
univariate analytic methods:

1. They can make predictions at the level of single subjects

2. They can make use of correlations between brain regions (i.e.
they are multivariate)



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Overview of PR in Neuroimaging

PR involves learning a mapping between input and output:

PR techniques hold two main advantages over conventional
univariate analytic methods:

1. They can make predictions at the level of single subjects

2. They can make use of correlations between brain regions (i.e.
they are multivariate)



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Approaches to Pattern Recognition

There are many different algorithms used for PR, which often
overlap with conventional statistical methods

Algorithms

• Neural Networks

• Random Forests / Decision Trees

• LASSO / Elastic Net

• Linear Discriminant Analysis

• Kernel methods (e.g. Support Vector Machines, Gaussian
Processes, Relevance Vector Machines)

Some algorithms are inherently probabilistic (others aren’t)
Under the probabilistic approach we use probability distributions to
model quantities of interest
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Pattern Recognition Algorithms

• Neuroimaging applications most often employ the binary
support vector machine (SVM) classifier

• However, for binary classification predictive performance of
most algorithms is similar (Rasmussen et al., 2011)

• Other factors are more important than accuracy in deciding
which classifier is best suited to each application

• One example is whether the approach provides probabilistic
class predictions
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Probability Theory

• p(X ) is the marginal probability of X

• p(X ,Y ) is the joint probability of X and Y

• p(X |Y ) is the conditional probability of X given Y

Rules

• 0 < p(X ) < 1

• p(sure thing) = 1

• probabilities must sum to one:
∑

X p(X ) = 1

• Product rule: p(X ,Y ) = p(X |Y )p(Y ) = p(Y |X )p(X )

• Sum rule: p(X ) =
∑

Y p(X ,Y )

Bayes rule is derived from the product rule

p(X |Y ) =
p(Y |X )p(X )

p(Y )
posterior =

likelihood× prior

evidence
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Probabilistic (Supervised) Learning

Notation

• We have with a dataset consisting of input/output pairs:

D = {xi , yi}ni=1

X = [x1, ..., xn]T

y = [y1, ..., yn]T binary/regression

Y = [yT1 , ..., y
T
n ] multi-class

w = [w1, ...,wC ]T parameters (weights)

σ = [σ1, ..., σq]T likelihood hyperparameters

θ = [θ1, ..., θp]T prior hyperparameters
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Probabilistic Learning continued

• To define a probabilistic model, we start with choosing the
likelihood function which describes how the data were
produced

p(data|parameters) = p(y|w,X, σ)

Many possible choices depending on our problem eg. if we are
doing regression or classification.

• We also specify our prior beliefs about the weight vector

p(parameters|model) = p(w|θ)

You can think of this as similar to regularisation in
non-probabilistic approaches
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Probabilistic Learning continued

• Inference then amounts to computing the posterior
distribution (Bayes rule)

p(w|y,X, θ, σ) =
p(y|w,X, σ)p(w|θ)

p(y|X, θ, σ)

Likelihood Prior

Marginal LikelihoodPosterior

• Gives a distribution for the weight vector w given the data
We then can use this to perform predictions

• The Marginal Likelihood enables us to perform model selection
and choose the optimum values for the hyperparameters θ, σ.
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Model Selection

• The marginal likelihood (evidence) plays an important role in
probabilistic modeling

p(y|X, θ, σ) =

∫
p(y|X,w, σ)p(w|θ)dw

It embodies a tradeoff between data fit and model complexity
and can be used for:

• deciding which of several competing models is most probable

• automatic optimisation of hyperparameters θ, σ by evidence
maximisation
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Model Selection

• Choosing optimum values for θ, σ

Our Dataset

All Possible Datasets

P
(y

|X
,
θ
,
σ
)

 

 
θ=100,σ=1:  Too Simple
θ=1,σ=1:      Reasonable
θ=0.01,σ=1: Too Complex



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Outline

Introduction

Probabilistic Inference

Decision Theory

Probabilistic Algorithms

Conclusions



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Decision Theory

In probabilistic models, we commonly divide the learning process
into two phases:

1. Inference: computing the posterior distributions

2. Decision: make a prediction/decision based on the posterior

• Decision theory concerns the second step (e.g. given the class
probabilities, should we choose treatment A or B?)

• This framework is highly flexible: e.g. we can accommodate
asymmetric misclassification costs where a false negative may
be costly than a false positive (medical applications)

• In contrast many approaches combine these phases and learn
a function that directly maps inputs (x) onto class labels (y).
This is called a discriminant function approach (e.g. SVM)
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Decision Theory

• We can formalise the measurement of model performance
using some ”loss function” L(y , f (x))

• There are many different loss functions for classification (e.g.
classification error) and regression (e.g. MSE)

• The expected generalizability is then given by its ”Risk”:

R[f ] =

∫
L(y , f (x))p(y , x)dydx

• However, we usually don’t know p(y , x), so we approximate
this by the ”empirical risk”, defined over the training set

Remp[f ] =
1

n

n∑
i=1

L(y , f (x))
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Minimising the empirical risk

• Consider a linear model that aims to predict the output (y)
using a weighted combination of the inputs (x)

f (x,w) = xTw + b

• To estimate the weights we seek to minimise the empirical risk
which is penalised to restrict model flexibility

ŵ = minw

n∑
i=1

L(yi , xi ,w) + λJ(w)

• Many algorithms (e.g. SVM, Lasso, ridge regression) are
particular choices of L() and J()

• Probabilistic models can be viewed from a similar perspective

log p(w|y,X, θ, σ) ∝
n∑

i=1

log p(yi |w, xi , σ) + log p(w|θ)



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Probabilistic classification and regression

• The discriminant function approach is appealing and is often
very efficient

• However, separating inference and decision also provides
benefits, especially for classification

Advantages of probabilistic classification (Bishop, 2006)

• Minimizing risk (e.g. misclassification costs may change)

• Compensate for class priors (accommodate disease prevalence)

• ”Reject option” (only make a decision if sufficiently confident)

• Combining classifiers

• Easily interpretable (predictive confidence)
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Probabilistic prediction for clinical applications

Coherent handling of uncertainty is especially important in
medicine

Sources of uncertainty in clinical applications

• Diagnostic uncertainty (class labels may be noisy)

• Heterogeneity in disease severity and course

• Individual variability in response to treatment

In such applications predictive confidence is potentially highly
informative about individual variability

p(y |x) = 0.55: ambiguous p(y |x) = 0.99: confident
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Introduction to Gaussian process models

GPs are flexible probabilistic kernel methods with many
applications, e.g. classification and regression (Rasmussen and
Williams, 2006a)

Advantages:

• Explicit probabilistic framework (Likelihood-Prior-Posterior)

• Natural extension to direct multi-class classification

• Provide mechanisms for automatic parameter optimisation
(optimisation of Marginal Likelihood)
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Gaussian process models

• With the GP framework, we can specify a wide range of
likelihoods to measure data fit:

Regression : p(yi |xi ) = N (fi , σ
2) = f (xi ,w) + σ2

Binary Classification : p(yi = 1|xi ) =
1

1 + exp(−fi )

Multi-Class Classification : p(yi = c|xi ) =
exp(f ci )∑C
c=1 exp(f ci )

• GPs utilize a Gaussian prior to constrain the solution:

p(w|X, θ) = N (w|0,Σp)

• We then compute the posterior distribution via Bayes rule
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Weight space view

• There are two equivalent perspectives on GP models ”weight”
and ”function” space

• Under the weight space view we are primarily interested in the
posterior weight distribution:

p(w|y,X, θ, σ) =
p(y|w,X, σ)p(w|θ)

p(y|X, θ, σ)

Likelihood Prior

Marginal LikelihoodPosterior
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Function space view

• Here we apply a Gaussian prior to the function values
(fi = xTi w) instead of the weights

p(f|θ) = N (f|0,K)

where K is the covariance function of the prior.

• K = k(xi , xj) is also referred to as the ’Kernel Function’ and it
encodes relationships between the function values over the
input space

• We can use it to model linear and non-linear relationships.
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Function space view

• K can be thought of in a similar way to the kernels in eg.
SVM, ie. entry i , j is the similarity of two images
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• In GPs, the value of the similarity for two images defines the
prior knowledge of how similar the function values are

• As for other algorithms eg. Kernel Ridge Regression we tend
to use a linear kernel in neuroimaging to avoid overfitting
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Function space view: Regression
Say we want to predict a continuous measure such as age from our
brain scans.

• Likelihood for homogenous Gaussian Noise:

P(y | fi ) = N (fi , σ
2)

• We perform inference on the function values using the
likelihood and prior (Kernel Function) giving

f∗µ =kT
∗ (K + σ2I)−1y

f∗σ =k∗∗ − kT
∗ (K + σ2I)−1k∗

• f∗ is the function value at test point x∗, k∗ is the train-test
kernel, k∗∗ is the test-test kernel.

• We take the prediction at test point x∗ to be y∗µ = f∗µ (as
likelihood is Gaussian)

• Equivalent to Kernel Ridge Regression
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Hyperparameter Estimation: Regression

• Log Marginal Likelihood has closed-form

logP(y | X, θ, σ) = −1

2
yT (K(θ) + σ2I)−1y

−1

2
log
∣∣K(θ) + σ2I

∣∣− n

2
log 2π

• We maximise above to give hyperparameter estimates θ̂, σ̂

• Plug them into the predictive equation

f∗µ = kT
∗ (K(θ̂) + σ̂2I)−1y

• The optimisation of marginal likelihood distinguishes GP
regression from Kernel Ridge Regression in practice
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Multi-Class Classification using GPs
Say we want to predict clinical groups eg. Controls/Unipolar
Depression/Schizophrenia from our brain scans.

• For multi-class classification into C possible classes
y = 1, . . . ,C we use the following likelihood:

p(yi = c | xi ,w) =
exp(xTi wc)∑C
c=1 exp(xTi wc)

p(yi = c | fi) =
exp(f c)∑C
c=1 exp(f c)

Weight-Space

Function-Space

• Weight vector parameter w consists of C weight vectors (1
per class), and similarly for function values fi :

w = [w1,w2, . . . ,wC ]

fi = [xTi w1, xTi w2, . . . , xTi wC ]

= [f 1
i , f

2
i , . . . , f

C
i ]
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Multi-Class Classification using GPs

• The kernel function (prior) for the function values is now a
block-diagonal matrix K = [K1K2 . . .KC ]

• In general the kernels Kc for each class do not need to be
equal

• In PRoNTo we use linear kernels for each Kc



Introduction Probabilistic Inference Decision Theory Probabilistic Algorithms Conclusions References

Inference for Multi-Class Classification

• Unlike GP Regression, inference requires approximation
techniques

• The ’Laplace’ approximation gives

f∗µ = QT
∗ (y − π̂)

f∗Σ = diag(k(x∗, x∗))−QT
∗ (K + W−1)−1Q∗

where

Q =


k1(x∗) 0 . . . 0

0 k2(x∗) . . . 0
...

...
. . .

...

0 0 . . . kC (x∗)


• Here, W, π̂ are parameters associated/derived with Laplacian

inference
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Predictions for Multi-Class Classification

• We now have the distribution of function values
f∗ = [f 1

∗ , f
2
∗ , . . . , f

C
∗ ] for each possible class at a test point x∗

• A class probability vector π̄ for the testpoint can be given by
sampling: (Below taken from Rasmussen and Williams
(2006a))

1.	

2.	

3.	

f*µ, f*∑

• Results in a vector of class probabilities π̄∗
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Predictions for Multi-Class Classification

• For a given test point x∗, we now have a vector of
probabilities for each class e.g.

π̄∗ = [0.8, 0.05, 0.15]

In the above case, we might choose a ‘hard’ assignment to
class 1 eg. test subject is a ’Control’.

• We could have a situation like below:

π̄∗ = [0.31, 0.34, 0.35]

A hard assignment would choose class 3 eg. ’Schizophrenia’,
but it is not as convincing as the first case. We could ‘reject’
a hard assignment here and say we are undecided due to the
large degree of uncertainty.
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Hyperparameter Estimation for Multi-Class Classification

• We use the Laplace approximation for the Marginal Likelihood

logP(y | X, θ) =− 1

2
f̂K−1f̂ + yT f̂ −

n∑
i=1

log(
C∑

c=1

exp f̂ ci )

− 1

2
log

∣∣∣∣ICn + W
1
2KW

1

2

∣∣∣∣
• We optimise the above expression to determine kernel

parameters θ and plug them into predictive equations.
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Relevance Vector Machines

• The relevance vector machine is a type of sparse Bayesian
model for regression and classification (Tipping, 2001)

• For regression, the RVM uses the same Gaussian likelihood as
the GP and applies a prior over the weights of the form:

p(w|α) =
∏
i

N (wi |0, α−1
i )

• The αi are scaling parameters which determine the
”relevance” of each sample or voxel (MacKay, 2003). These
are given flat Gamma priors.

• The RVM forces the posterior probability for the weights to
concentrate on only a few of the samples/voxels.
Samples/voxels with a low weight are pruned from the model
(→ Sparsity)

• The RVM is not solvable in closed form and requires
numerical approximation(s) to the posterior distribution
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Conclusions

• Probabilistic approaches to pattern classification are
complementary to alternative methods

• They share many features with conventional approaches (e.g.
penalised linear models)

• They aim to be honest about uncertainty at all stages of
analysis (coherence)

• This provides a number of advantages, especially for clinical
applications, e.g.:

• Provide a natural way to include existing information (priors)
• To compensate for variable class frequencies
• To represent variabilities in illness severity

• However they also have disadvantages
• Estimating probability distributions requires more computation

than just estimating a decision function.
• Some methods may not scale as well to large datasets (O(n3))
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