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•  Examples	(xi)	

•  Labels	(yi)	

The	label	can	be	a	categorical	value	for	classifica5on	(e.g.	class	1	=	pa5ents,	class	2	
=	healthy	controls)	or	a	con5nuous	value	for	regression	(e.g.	age	or	clinical	scale).	

	
•  Matrix	nota5on	(one	example	per	row)	

X	=	[x1	x2	...	xN]T		
y	=	[y1	y2…	yN]T	

Nota5on	

fMRI/sMRI	
3D	matrix	of	voxels	

Feature	Vector		

xi	is	a	vector	of	size	dx1	where	
d	is	the	number	of	voxels	



Machine	
Learning		

Methodology	
	

Tes(ng	Phase									

Predic5on	

Learning/Training	Phase	

Generate	a	func5on	or	classifier	
f		such	that	

							

Training	Examples:	
(x1,	y1),	.	.	.,(xs,	ys)	

	

Test	Example	
xi	
	

f(xi)	->	yi	

f(xi)	=	yi	

f	

Computer-based	procedures	that	learn	a	func5on	from	a	series	of	examples	

Pa0ern	Recogni5on	Framework		
Input	

(brain	scans)	
x1	
x2	
x3	
	
	

Output		
(control/pa5ent)	

y1	
y2	
y3	
	
	

No	mathema5cal		
model	available	

	



Linear	models		
•  Linear	predic5ve	models	(classifier	or	regression)	are	parameterized	by	a	

weight	vector	w	and	a	bias	term	b.	

	
where	f	(x*)	is	the	predicted	score	for	regression	or	the	distance	to	the	
decision	boundary	for	classifica5on	models.	

	
•  The	weight	vector	can	be	expressed	as	a	linear	combina5on	of	training	

examples	xi	(where	i	=	1,…,N	and	N	is	the	number	of	training	examples).	

	

€ 

w = α ix i
i=1

N

∑

f (x*) =w ⋅x* + b



Pa0ern	Recogni5on	in	Neuroimaging	
Main	difficul(es:	
•  Very	high	dimensional	data:	computa5onal	issues	
•  O`en	the	dimensionality	of	the	data	is	greater	than	the	number	of	

examples:	ill-condi5oned	problems	

Poten(al	Solu(ons:	
•  Feature	Selec5on	
•  Region	of	Interest	
•  Searchlight	
•  Kernel	Methods	+	Regularisa(on	->	PRoNTo	



•  The	kernel	methodology	provides	a	powerful	and	unified	framework	for	
inves5ga5ng	general	types	of	rela5onships	in	the	data	(e.g.	classifica5on,	
regression,	etc).	

	
•  Kernel	methods	consist	of	two	parts:	

ü  Computa5on	of	the	kernel	matrix	(mapping	into	the	feature	space).	
ü  A	learning	algorithm	based	on	the	kernel	matrix	(designed	to	discover	

linear	pa0erns	in	the	feature	space).	
	

•  Advantages:	
ü  Represent	a	computa(onal	shortcut	which	makes	possible	to	represent	

linear	pa0erns	efficiently	in	high	dimensional	space.	
ü  Using	the	dual	representa5on	with	proper	regulariza(on*	enables	

efficient	solu5on	of	ill-condi5oned	problems.	

Kernel	Methods	

*	e.g.	restric5ng	the	choice	of	func5ons	to	favor	
func5ons	that	have	small	norm.	
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Kernel	Func5on	(“similarity”	measure)	
Brain	scan	2	

Brain	scan	4	

• 	Kernel	is	a	func5on	that,	for	given	two	pa0ern	x	and	x*,	returns	a	real	number	
characterizing	their	similarity.		

• A	simple	type	of	similarity	measure	between	two	vectors	is	a	dot	product	(linear	
kernel).	

-2			 3	

4	 1	 Dot	product	=	(4*-2)+(1*3)	=	-5		
	

Kernel	Matrix	(K)	
Klinear	=		XXT 	
	



Nonlinear	Kernels	

• 	There	are	more	general	“similarity	measures”,	i.e.	nonlinear	kernels:	Gaussian	
kernel,	Polynomial	kernel,	etc.	

• Nonlinear	kernels	are	used	to	map	the	data	to	a	higher	dimensional	space	as	an	
a0empt	to	make	it	linearly	separable.	

• 	The	kernel	trick	enables	the	computa5on	of	similari5es	in	the	feature	space	
without	having	to	compute	the	mapping	explicitly.	

Original	Space	 Feature	Space	



•  Neuroimaging	data	are	extremely	high-dimensional	and	the	sample	sizes	are	
very	small,	therefore	non-linear	kernels	o`en	don’t	bring	any	benefit.	

•  Linear	models	reduce	the	risk	of	overfikng	the	data	and	allow	direct	extrac5on	
of	the	weight	vector	as	an	image	(i.e.	predic5ve	map).		

Advantage	of	linear	models	



Learning	with	kernels	

•  Making	predic5ons	with	kernel	methods		

f (x*) =w ⋅x* + b Primal	representa5on		

f (x*) = αixi ⋅x* + b
i=1

N

∑

Dual	representa5on		f (x*) = αiK(xi,x*)+ b
i=1

N

∑



How	to	interpret	the	weight	vector	(w)?	

Tes5ng	v1	=	0.5	 v2	=	0.2	New	example	

f(x*)	=	(w1.v1+w2.v2)+b	
									=	(+5.0.5-3.0.2)+0	
									=	1.9		
Posi5ve	value	->	Class	1	

Voxel	1	 Voxel	2	 Voxel	1	 Voxel	2	
…	

…	

Examples	of	class	1	

Training	

Model	weight	vector	

Voxel	1	 Voxel	2	 Voxel	1	 Voxel	2	

Examples	of	class	2	
w1	=	+5	 w2	=	-3	

Spa5al	representa5on	of	
the	decision	func5on	Mul5variate	pa0ern	->	

No	local	inferences	should	
be	made!	



Examples	of	Kernel	Methods	

•  Support	Vector	Machines	(SVM)	
•  Gaussian	Processes	(GP)	
•  Kernel	Ridge	Regression	(KRR)	
•  Relevance	Vector	Regression	(RVR)	
•  Mul(ple	Kernel	Learning	(MKL)	
	



Example	of	Kernel	Methods	

(1)	Support	Vector	Machine	



Support	Vector	Machines	(SVMs)	

•  A	classifier	derived	from	sta5s5cal	learning	theory	by	Vapnik,	et	al.	in	
1992.	

•  SVM	became	famous	when,	using	images	as	input,	it	gave	accuracy	
comparable	to	neural-network	with	hand-designed	features	in	a	
handwri5ng	recogni5on	task.	

•  Currently,	SVM	is	widely	used	in	object	detec5on	&	recogni5on,	content-
based	image	retrieval,	text	recogni5on,	biometrics,	speech	recogni5on,	
neuroimaging,	etc.	

•  Also	used	for	regression.	



Largest	Margin	Classifier	

• 	If	the	op5mal	hyperplane	has	margin	ρ>r	it	will	correctly	separate	the	test	
points.	

r	

ρ	

• 	Among	all	hyperplanes	separa5ng	the	data	there	is	a	unique	op5mal	
hyperplane,		the	one	which	presents	the	largest	margin	(the	distance	of	the	
closest	points	to	the	hyperplane).	

• 	Let	us	consider	that	all	test	points	are	generated	by	adding	bounded	noise	(r)	to	
the	training	examples	(test	and	training	data	are	assumed	to	have	been	generate	
by	the	same	underlying	dependence).	



w	
(w.xi	+	b)	>	0	(w.xi	+	b)	<	0	

(w.xi	+	b)	=-1		 (w.xi	+	b)	=+1		

Linearly	separable	case	(Hard	Margin	SVM)	

• 	We	assume	that	the	data	are	linearly	separable,	that	is,	there	exist	w∈IRd	
and	b∈IR	such	that		yi(w.xi	+	b)	>	0,	i	=	1,...,m.		

• 	Rescaling	w	and	b	such	that	the	points	closest	to	the	hyperplane	sa5sfy		
|(w.xi	+	b)|	=1	we	obtain	the	canonical	form	of	the	hyperplane	sa5sfying		
yi(w.xi	+	b)	>	0.	
	
	



w	

ρ	

(w.xi+	b)	>	0	

(w.xi+	b)	=-1		 (w.xi+	b)	=+1		

(w.xi	+	b)	<	0	

Linearly	separable	case	(Hard	Margin	SVM)	

• The	distance	of	a	point	xi	to	a	hyperplane	Hw,b	is	given	by		ρx=	|(w.xi	+	b)|/||w||	

• 	The	distance	from	the	closest	point	to	the	canonical	hyperplane	is	ρ=	1/||w||.		

• In	this	case,	the	margin,	measured	perpendicularly	to	the	hyperplane,	equals	
2/||w||.	

• In	order	to	maximize	the	margin	we	need	to	minimize	||w||/2.	



min 1
2

||w ||2

s.t.  yi (w.xi + b) ≥1, i =1,..,m

• 	Constrained	op5miza5on	problem	

• 	The	solu5on	of	this	problem	is	equivalent	to	determine	the	saddle	point	
of	the	Lagrangian	func5on	

where	αi	≥	0	are	the	Lagrange	mul5pliers.	
	
• 	We	minimize	L	over	(w,b)	and	maximize	over	α.	

Quadra5c	problem:	
unique	op5mal	solu5on	

L(w,b;α) = 1
2
||w ||2 − αi yi (w.xi + b)−1{ }

i=1

N
∑



Differen5a5ng	L	w.r.t.	w	and	b	we	obtain:	

Subs5tu5ng	w	in	L	leads	to	the	dual	problem	

where	A	is	an	N	×	N	matrix	

∂L
∂b

= − yiαi = 0i=1

N
∑

∂L
∂w

=w− αiyixi = 0i=1

N
∑ ⇒ w = αiyixii=1

N
∑

max  Q(α) := − 1
2
α TAα + αi

i
∑

s.t. yiαi = 0
i
∑

     αi ≥ 0,  i=1,...,N

A = (yiyjxi.x j : i, j =1,...,N )

Note	that	the	complexity	of	
this	problem	depends	on	N	

(number	of	examples),	not	on	
the	number	of	input	

components	d	(number	of	
dimensions).		



w = α i yixi
i=1

N
∑

α

Note	that					is	a	linear	combina5on	of	only	the	xi	for	which	αi	>	0.	These	xi	are	
called	support	vectors	(SVs).	
	
Parameter	b	can	be	determined	by	b	=	yi	–	w.xi,	where	xi	corresponds	to	a	SV.			
	
A	new	point	x*	is	classified	as	
	

w

f (x*) = sgn yiα ixi .x* + b
i=1

N
∑

"

#
$

%

&
'

The	dot	product	is	
simple	type	of	

similarity	measure	



•  	The	dot	product	can	be	replaced	by	a	kernel	func5on	which	
corresponds	to	a	dot	product	in	the	feature	space.	

•  The	kernel	trick	is	a	way	of	mapping	observa5ons	from	the	original	space	
into	a	feature	space,	without	ever	having	to	compute	the	mapping	
explicitly.	

f (x) = sgn yiα ixi .x+ b
i=1

N
∑

"

#
$

%

&
' f (x) = sgn yiα iK(xi ,x)+ b

i=1

N
∑

"

#
$

%

&
'

Kernel	Trick	

Original	Space	 Feature	Space	



Some	remarks	
• 	The	fact	that	that	the	Op5mal	Separa5ng	Hyperplane	is	determined	only	by	the	
support	vectors	is	most	remarkable.	Usually,	the	support	vectors	are	a	small	
subset	of	the	training	data.	

• 	All	the	informa(on	contained	in	the	data	set	is	summarized	by	the	support	
vectors.	The	whole	data	set	could	be	replaced	by	only	these	points	and	the	same	
hyperplane	would	be	found.	

	



Linearly	non-separable	case	(So`	Margin	SVM)	
• 	If	the	data	is	not	linearly	separable	the	previous	analysis	can	be	generalized	
by	looking	at	the	problem	

• 	The	idea	is	to	introduce	the	slack	variables	ξi	to	relax	the	separa5on	
constraints	(ξi	>	0	⇒	xi	has	margin	less	than	1).	

ξ1 

ξ2 

min 1
2

||w ||2 +C ξi
i=1

N

∑

s.t.  yi (w.xi + b) ≥1−ξi
      ξi ≥ 0,       i =1,..,N



New	dual	problema	
• 	A	saddle	point	analysis	(similar	to	that	above)	leads	to	the	dual	problem	

•  This	is	like	the	previous	dual	problem	except	that	now	we	have	“box	
constraints”	on	αi.	If	the	data	is	linearly	separable,	by	choosing	C	large	
enough	we	obtain	the	Op5mal	Separa5ng	Hyperplane.	

•  	Again	we	have	

max  Q(α) := − 1
2
α TAα + αi

i
∑

s.t. yiαi = 0
i
∑

     0 ≤αi ≤C,            i =1,...,N

w = α i yixi
i=1

N
∑



The	role	of	the	parameter	C	
• 	The	parameter	C	that	controls	the	rela5ve	importance	of	minimizing	the	norm	
of	w	(which	is	equivalent	to	maximizing	the	margin)	and	sa5sfying	the	margin	
constraint	for	each	data	point.	

• If	C	is	close	to	0,	then	we	don't	pay	that	much	for	points	viola5ng	the	margin	
constraint.	This	is	equivalent	to	crea5ng	a	very	wide	tube	or	safety	margin	
around	the	decision	boundary	(but	having	many	points	violate	this	safety	
margin).	

• If	C	is	close	to	inf,	then	we	pay	a	lot	for	points	that	violate	the	margin	constraint,	
and	we	are	close	the	hard-margin	formula5on	we	previously	described	-	the	
difficulty	here	is	that	we	may	be	sensi5ve	to	outlier	points	in	the	training	data.	

• C	is	o`en	selected	by	cross-valida5on	(nested	cross-valida5on	in	PRoNTo).		



Summary	
• SVMs	are	predic5on	devices	known	to	have	good	performance	in	high-
dimensional	sekngs.	
	
• 	"The	key	features	of	SVMs	are	the	use	of	kernels,	the	absence	of	local	minima,	
the	sparseness	of	the	solu5on	and	the	capacity	control	obtained	by	op5mizing	the	
margin.” Shawe-Taylor	and	Cris5anini	(2004).	



Example	of	Kernel	Methods	

(2)	Mul5ple	Kernel	Learning	(MKL)	



•  Many	prac5cal	learning	problems	involve	mul5ple,	heterogeneous	data	
sources.	

•  It	seems	advantageous	to	combine	different	sources	of	informa5on	for	
predic5on	(e.g.	mul5modal	imaging	for	diagnosis/prognosis).	

•  Need	to	learn	with	not	only	a	single	kernel	but	with	mul5ple	kernels.	

Mo5va5on	for	MKL	



•  Mul5ple	Kernel	Learning	(MKL)	has	been	proposed	as	an	approach	to	
simultaneously	learn	the	kernel	weights	and	the	associated	decision	func5on	
in	supervised	learning	sekngs.	

•  In	MKL,	the	kernel	K	can	be	considered	as	a	linear	combina5on	of	M	“basis	
kernels”	

•  The	decision	func5on	of	an	MKL	problem	can	be	then	expressed	in	the	form:	

K(x,x ') = dmKm (x,x ')
i=1

M

∑

with dm ≥ 0, dm =1
i=1

M

∑

f (x*) = wm ⋅x* + b
i=1

m

∑



•  One	example	of	MKL	approach	based	on	SVM	is	the	SimpleMKL	
(Rakotomamonjy,	et	al.	2008).	

•  SimpleMKL	op5miza5on	problem	

	
the	L1	constrain	on	dm		enforces	sparsity	on	the	kernels	with	a	contribu5on	to	
the	model.	

min 1
2

1
dmm=1

M

∑ ||wm ||2 +C ξi
i=1

N

∑

s.t.  yi ( wm.xi
m=1

M

∑ + b) ≥1−ξi,       i =1,..,N

      ξi ≥ 0,       i =1,..,N

      dm =1,
m=1

M

∑   dm ≥ 0,       m =1,..,M



•  For	the	SimpleMKL	the	weights	wm	can	be	expressed	as:	

•  Both	dm	and	wm	have	to	be	learned	simultaneously,	where	dm	represents	the	
contribu5on	of	each	kernel	Km	to	the	model.	

•  The	predic5ve	func5on	can	be	wri0en	as:	

wm = dm yiαixi
i=1

N

∑

f (x*) = wm ⋅x* + b
i=1

m

∑

f (x*) = dm yiαixi
i=1

N

∑ ⋅x* + b
i=1

m

∑ = dm yiαiK(xi
i=1

N

∑ ,x*)+ b
i=1

m

∑

f (x*) = dm fm (x*)
i=1

m

∑



f (x*) = dm fm (x*)
i=1

m

∑

X	

f (x*) =w ⋅x* + b

w	

X1	

f1(x*)

w1	

…	X2	

w2	

Xm	

wm	

f2 (x*) fm (x*)…	

Single	kernel	SVM	 Mul(ple	kernel	SVM	

d1	 d2	 dm	

…	

…	



Example	of	Kernel	Methods	

(3)	Kernel	Ridge	Regression	



•  The	general	equa5on	for	making	predic5ons	with	kernel	methods	is 		

	
where	f	(x*)	is	the	predicted	score	for	regression	or	the	distance	to	the	
decision	boundary	for	classifica5on.	

	
•  αi	is	the	dual	weight	vector	and	b	is	a	constant	offset,	both	of	which	are	learnt	

from	the	training	samples.	

•  We	can	simplify	the	equa5on	for	making	predic5ons	by	adding	a	constant	
element	to	x*,	so	that	x*	=	[x*	1]T	and	w=[w	b]T	

Kernel	Methods	

f (x*) =w ⋅x* + bf (x*) =w ⋅x* + b = αixi ⋅x* + b
i=1

N

∑

f (x*) =w ⋅x*

f (x*) =w ⋅x* + b = αixi ⋅x* + b
i=1

N

∑ = αiK(xi,x*)+ b
i=1

N

∑



Kernel	Ridge	Regression	
•  Kernel	ridge	regression	is	the	dual	representa5on	of	ridge	regression,	

which	is	some5mes	known	as	the	linear	least	square	regression	with	
Tikhonov	regulariza5on	(Chu	et	al.	2011).	

Has5e,	Tibshirani	&	Friedman,	2009	



•  In	LSR	we	compute	the	weight	vector	w	by	minimizing	the	mean	squared	
errors	on	all	training	examples:	

	
Using	a	matrix	nota5on	where	X	=	[x1	x2	..	xN]T	is	a	matrix	containing	the	
training	examples	vectors	as	its	row	we	can	rewrite	the	cost	func5on	as		

	
	
	
•  To	find	the	op5mum	w	we	set	the	deriva5ve	of	the	cost	func5on	with	respect	

to	w	to	0,	which	yields	to	the	following	equa5on:	

Least	Squares	Regression	(LSR)	

w* = argminw
1
N

xi ⋅w− yi( )2
i=1

N

∑

w* = argminw Xw− y( )T Xw− y( )

XT (Xw− y) = 0
XTXw =XTy

w = XTX( )
−1
XTy



•  When	the	sample	size	is	limited,	i.e.	in	order	to	solve	ill-posed	problems	or	to	
prevent	over-fikng	some	form	of	regulariza5on	is	o`en	introduced	into	the	
model	

	
The	regulariza5on	parameter	λ	controls	the	amount	of	regulariza5on.	

	
•  Sekng	the	deriva5ve	of	the	cost	func5on	with	respect	to	w	to	0,	which	yields	

to	the	following	equa5on:	

w* = argminw
1
N

xi ⋅w− yi( )2
i=1

N

∑ +λ w 2

Error	
	term/Loss	

Regularized	Least	Squares	Regression	(LSR)	

XT (Xw− y)+λw = 0
(XTX+λI)w =XTy

w = XTX+λI( )
−1
XTy

Regulariza5on	
term	



•  Consider	the	general	equa5on	for	making	predic5ons		

	
	
	

•  To	es5mate	the	weights	w	we	seek	to	minimize	the	empirical	risk	which	is	
penalized	to	restrict	model	flexibility	

	
	
	
	

Sta5s5cal	Learning	–	General	Framework	

f (x*) =w ⋅x*

w = αixi
i=1

N

∑

w* = argminw
1
N

L(yi,xi,w)
i=1

N

∑ +λJ(w)

   Loss	func5on	
Regulariza5on	

term	



•  Loss	func5on:	denotes	the	price	we	pay	when	we	make	mistakes	in	the	
predic5ons	(e.g.	squared	loss,	Hinge	loss).	

•  Regulariza5on	term:	favours	certain	proper5es	and	improves	the	
generalisa5on	over	unseen	examples	(e.g.	L2-norm,	L1-norm).	

•  Many	learning	algorithms	are	par5cular	choices	of	L	and	J	(e.g.	SVM,	Kernel	
Ridge	Regression)	.	

	
	
	
	

Sta5s5cal	Learning	–	General	Framework	

w* = argminw
1
N

xi ⋅w− yi( )2
i=1

N

∑ +λ w 2

w* = argminwC
1
N

max 1− yi xi ⋅w+ b( ), 0#$ %&
i=1

N

∑ +λ w 2

KRR	

SVM	
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