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Revision

* Classification: learn a function that predicts C
discrete categories (class labels) from data

* Regression: learn a function that predicts a scalar
value (target) from data

 Our model is an approximation to “real function”



Measures of performance for classification

Confusion matrix: all folds
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Ll Total accuracy: 98.61%

Balanced accuracy (BA): 98.61%
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Measures of performance for Classification
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Accuracy statistics can be shown in a confusion matrix :
Class 1 accuracy = TP/(TP+FN)

Class 2 accuracy = TN/(TN+FP)

Total Accuracy = (TP+TN)/(TP+FP+FN+TN)

Balanced Accuracy (BA) = mean of class accuracy

Class 1 predictive value: TP/(TP+FP)

Class 2 predictive value: TN/(TN+FN)

Perfect: FN=FP=0. Be suspicious if this happens!
Random: TP=TN=FN=FP. Same as flipping a coin.



Measures of performance for Classification

Total accuracy vs. balanced accuracy

e |f classes don’t have the same number of examples

 Accuracy may seem to be above chance whereas the
minority classes are sacrificed and below chance

« A common strategy is to subsample the majority class,
but data is lost

e Subsample many times (computationally intensive)

* Reporting class accuracies (p,,..., Pc) is good practice

 Balanced accuracy is the average of class accuracies



Measures of performance for Classification

For a fixed classifier, increasing sensitivity can only come
at the cost of decreasing specificity, and vice-versa.
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Measures of performance for Classification
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Total accuracy: 99.07 %
Permutation test 100

Balanced accuracy (BA):  99.07 %

BA p-value: N. A.
Class accuracy (CA): 98.15 % 100.00 %
CA p-value: N. A.

Class predictive value: 100.00 % 98.18 %
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Measures of performance for Classification

The Receiver Operating Characteristic (ROC) curve is a good
way of seeing the sensitivity/specificity tradeoff over the
operating range of a classifier. ' '
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Measures of performance for Classification
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Measures of performance for regression

Correlation
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and predicted labels are meaningless!



Measures of performance for regression

Regression plots:
e Scatter plot

* Predictions (bar)
* Predictions (line)
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Parametric tests

* Binomial test
* Model decision in two-class problem
modeled as Bernoulli trials
* Probability of k successes out of n trials
follows binomial distribution

Not a good idea:

 Assumes IID samples
 Accuracy from cross-validated random data does not follow
the binomial distribution (Noirhomme et al. 2014)
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Permutation tests
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Train and test error
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Bias-Variance tradeoff
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Cross-validation (CV)

* Allows us to estimate test error of the model using available data

* Partition data into training and testing sets
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Cross-validation (CV)

e Validation set approach

Full dataset
123 n
7 22 13 91
Training set
Drawbacks:
e Uses few observations and tends to overestimate the
test error

* Test error estimates are highly variable



Leave-one-out (LOO)
Full dataset

123 n

123 n

123 N

123 n

123 n
Train

Leave each sample out for testing and use the rest for training. Repeat n times.



LOO-CV

e Better use of data than half-split approach for small
sample-sized data
 Almost unbiased test error estimate

 Computationally intensive
 Test error estimate has high variance



Leave-one-sample-per-group-out (LOSGO)

Full dataset

Group 1 Group 2
123 n 123 n
1 218 n 123 n
123 n 123 n
123 n 123 n
123 n 123 n
Train Train

If subjects/samples in each group are paired (e.g. repeated measures)



Cross-validation

K-fold cross validation

K folds

Full dataset

123

Train

Test



* K-fold CV

e Test error estimate has less variance than LOO-CV
 Computationally less intensive

* Higher bias of test error estimate than LOO-CV

Common k choices: 5 and 10



Problem: use CV to select best model and assess model performance (test

error)
Solution:

Run CV inside CV for model or feature selection / Bayesian Models

Full dataset
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Model selection

If hyper-parameter optimisation was performed using nested CV:

Balanced Accuracy (%)
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Cross-validation matrix
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Always separate data intro training and testing sets
Use cross-validation
Be careful with correlated data (e.g. fMRI)

Use nested cross-validation for model or feature
selection

Use permutation tests to assess significance of
performance measure
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