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Machine	learning	
models:	

Enable	predic>ons	
from	brain	imaging	
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vs.	
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vs.	

Cogni>ve	state	#2	
	

Clinical	Score	
	

Pa<ern	Recogni>on	Concepts	



•  Pa<ern	recogni>on	aims	to	assign	a	label	to	a	given	example	(test	
example)	based	on	sta>s>cal	informa>on	extracted	from	the	previous	
seen	examples	(training	examples).		

•  The	examples	to	be	classified	are	usually	groups	of	measurements	or	
observa>ons	(e.g.	brain	image),	defining	points	in	an	appropriate	
mul>dimensional	vector	space.	

•  Types	of	learning	procedures:	
•  Supervised	learning	
•  Unsupervised	learning	
•  Semi-supervised	learning,	reinforcement	learning.	

Pa<ern	Recogni>on	Concepts	

Currently	implemented	in	
PRoNTo	



Samples	

Labels	

Pa<ern	Recogni>on	Concepts	

X

yf :X→ y
f : x*→ y*



Machine	
Learning		

Methodology	
	

Pa<ern	Recogni>on	Framework		

Input	(brain	scans)	 Output	(control/pa>ent)	
	
	

No	mathema>cal		
model	available	

	

Learning/Training	Phase	

Es>mate	a	predic>ve	func>on	f		
such	that	

							

Training	Examples:	
	

Computer-based	procedures	that	learn	a	func>on	from	a	series	of	examples	

x1
x2
x3

y1
y2
y3

{x1, y1},!,{xn, yn}
f : xi → yi

Tes-ng	Phase									

Predic>on	

Test	Example	
	 x* f (x*) = y*

f
Predic>ve	func>on	



Pa<ern	recogni>on:	classifica>on	model	

Training	

Class	1	

Predic>ve	func>on:	f	

Tes>ng	

New	subject	

Predic>on:	
Class	membership	

Label	=	pa>ent	Label	=	pa>ent	Label	=	pa>ent	Label	=	pa>ent	Label	=	pa>ent	

Class	2	

Label	=	controls	Label	=	controls	Label	=	controls	Label	=	controls	Label	=	controls	



Pa<ern	recogni>on:	regression	model	

Training	

Predic>ve	func>on:	f	

Tes>ng	

New	subject	

Predic>on:	
Score	=	28	

Score	=	25	
Score	=	20	
Score	=	10	
Score	=	20	
Score	=	23	
Score	=	20	
Score	=	30	



Standard	Sta>s>cal	Analysis	(mass-univa>ate)	

...	
Voxel-wise	
GLM	model	
es>ma>on	

Independent	
sta>s>cal	
test	at	each	

voxel		

Correc>on	
for		

mul>ple	
comparisons	 Univariate	Sta>s>cal	

Parametric	Map	

Input	
Output	

Time	

BO
LD

	si
gn
al
	

Volumes	from	task	1	

Volumes	from	task	2	

…	

…	
Mul>varate	Map	

(classifier’s	or	regression’s	weights)	

Pa<ern	Recogni>on	Analysis	(mul>variate)	

New	example	

Input	
Output	

Training	Phase	

Test	Phase	
Predic>ons	

y	=	{+1,	-1}	or	p(y = 1|X,θ)	
e.g.	+1	=	Pa>ents	and	-1	=	Healthy	controls	

Very	
different	
meaning!	



Advantages	of	Pa<ern	Recogni>on	Analysis	
Explore	the	mul-variate	nature	of	neuroimaging	data	

• MRI/fMRI	data	are	mul>variate	since	most	of	the	brain	func>ons	are	
distributed	processes	involving	a	network	of	brain	regions.	
	
• Pa<ern	recogni>on	analysis	can	yield	greater	sensi>vity	than	conven>onal	
analysis	due	to	its	mul>variate	proper>es.	

Can	be	used	to	make	predic-ons	for	new	examples	
	

• Enable	clinical	applica>ons:	previously	acquired	data	can	be	used	to	make	
diagnos>c	or	prognos>c	for	new	subjects.	



How	to	extract	features	from	MRI?		

Whole	brain	volume	

Feature	Vector		

Dimensionality	=		
number	of	voxels	

v	

fMRI	

General	
Linear	
Model	

Beta/Contrast	images	

Feature	Vector		

Dimensionality	=		
number	of	voxels	

Region	of	interest	(ROI)	
Feature	Vector		

Dimensionality	=		
number	of	voxels	within	the	ROI	



Pa<ern	Classifica>on	

Extract	
Features	

4	 2	

Feature	1	

Fe
at
ur
e	
2	

Image	2	
Image	4	

Image	3	

New	Image	
Image	1	

2	

4	

Class	1	

Class	2	

Linear	classifiers	
(hyperplanes)	are	
parameterized	by	a	
weight	vector	w	and	

a	bias	term	b.	

Test	example	



Pa<ern	Regression	

Score	=	10	
Score	=	10	
Score	=	10	
Score	=	10	
Score	=	10	
Score	=	10	

Linear	regression	
models	are	also		

parameterized	by	a	
weight	vector	w	and	

a	bias	term	b.	

Test	example	

p1	

p2	
p3	

p4	

Pr
ed
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te
d	
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	sc

or
e	

voxel	2	

3	

2	

Extract	Features	
3	 2	

New	Image	



Pa<ern	Recogni>on	Models	
•  Linear	predic>ve	models	(classifier	or	regression)	are	

parameterized	by	a	weight	vector	w	and	a	bias	term	b.	

•  The	weight	vector	w	can	be	expressed	as	a	linear	combina>on	
of	training	examples	xi	(N	=	number	of	training	examples).	

	

•  The	general	equa>on	for	making	predic>ons	for	a	test	
example	x*	is:	

	

f (x*) =w ⋅x* + b

w = αixi
i=1

N

∑



Weight	map	or	predic>ve	pa<ern	
•  The	weight	vector	w	has	the	same	dimensionality	of	the	input	

data/image	and	can	be	plo<ed	as	an	image.	

•  The	weight	vector	might	provide	poten>al	insights	into	brain	
func>on	or	structure	that	drives	the	predic>on,	but	the	
interpreta>on	should	be	done	with	care!	



Using	the	weights	for	predic>on	

5	 2	 -6	 -1	

New	example	(x*)	

Weight		map	(w)	

1	 2	 -2	 4	

f (x*) = (5×1)+ (2×2)+ (−6×−2)+ (−1× 4)+ 0
f (x*) = 5+ 4+12− 4 =17

Predic>ve	func>on	
f (x*) =w ⋅x* + b

f(x*)	is	the	predicted	score	for	regression	or	the	distance	to	
the	decision	boundary	for	classifica>on	models.	



How	to	interpret	the	weight	vector	w?	

ü  It	is	a	spa>al	representa>on	of	the	
predic>ve	func>on.	

	
ü  Shows	the	contribu>on	of	each	feature/

voxel	for	the	predic>on.	
	
ü  Mul>variate	pa<ern	->	All	voxels	with	

weights	different	from	zero	contribute	
to	the	final	predic>on	(no	arbitrary	
threshold	should	be	applied).	

ü  No	local	inferences	can	be	made!		



•  In	neuroimaging	applica>ons	oren	the	dimensionality	of	the	
data	is	greater	than	the	number	of	examples	(ill-condi>oned	
problems).	

•  Possible	solu>ons:	
–  Region	of	interest	(ROI)	
–  Feature	selec>on	strategies		
–  Searchlight	
–  Regulariza-on	+	Kernel	Methods		

Challenges	in	Neuroimaging	



min
w∈Rp E(w)+λJ(w){ }

   

Regulariza>on	

The	data	fit	term	is	a	error	func-on	E	 The	regularisa-on	term	J	

•  Many	machine	learning	algorithms	are	par>cular	choices	of	E	
and	J	(e.g.	Kernel	Ridge	Regression	(KRR),	Support	Vector	
Machine	(SVM))	.	

•  Regularized	methods	find	w	minimizing	an	objec>ve	func>on	
consis>ng	of	a	data	fit	term	E	and	a	penalty/regulariza>on	term	J	

Regulariza>on	hyper-parameter	

•  Regulariza-on	is	a	technique	used	in	an	a<empt	to	solve	ill-posed	
problems	and	to	prevent	overfiLng	in	sta>s>cal/machine	
learning	models.	



Kernel	Methods	
•  Kernel	methods	provide	a	powerful	and	unified	framework	

for	inves>ga>ng	general	types	of	rela>onships	in	the	data	
(e.g.	classifica>on	and	regression)	

•  Consists	of	two	parts:	
•  Computa>on	of	the	kernel	matrix	(mapping	into	the	
feature	space)	

•  A	learning	algorithm	based	on	the	kernel	matrix	

•  Main	advantage:	
•  Computa>onal	efficiency	



Kernel	Func>on	(“similarity”	measure)	

• 	Kernel	is	a	func>on	that,	given	x	and	x*,	returns	a	real	number	
characterizing	their	similarity;	

• 	A	simple	type	of	similarity	measure	between	two	vectors	is	a	dot	
product	(linear	kernel).	
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• 	There	are	more	general	“similarity	measures”,	i.e.	nonlinear	
kernels:	Gaussian	kernel,	Polynomial	kernel,	etc.	

• Nonlinear	kernels	are	used	to	map	the	data	to	a	higher	dimensional	
space	as	an	a<empt	to	make	it	linearly	separable.	

	
Original	Space	 Feature	Space	

Nonlinear	Kernels	



•  Neuroimaging	data	are	extremely	high-dimensional	and	the	
sample	sizes	are	very	small,	therefore	non-linear	kernels	oren	
don’t	bring	any	benefit.	

•  	Linear	models	reduce	the	risk	of	overfixng	the	data	and	allow	
direct	extrac>on	of	the	weight	vector	as	an	image	(i.e.	predic>ve	
map).		

Advantage	of	linear	models	



Learning	with	kernels	

•  Making	predic>ons	with	kernel	methods		

f (x*) =w ⋅x* + b Primal	
representa>on		

f (x*) = αixi ⋅x* + b
i=1

N

∑

Dual	
representa>on		f (x*) = αiK(xi,x*)+ b

i=1

N

∑



Kernel	methods	
	
•  Classifica-on:	

ü  Support	Vector	Machine	(SVM)	
ü Mul>ple	Kernel	Learning	(MKL)	Classifier	
ü  Binary	Gaussian	Process	Classifier	(GPC)	->	probabilis>c	
ü Mul>class	Gaussian	Process	Classifier	(GPC)	->	probabilis>c	

•  Regression:	
ü  	Kernel	Ridge	Regression	(KRR)	
ü  	Mul>ple	Kernel	Learning	(MKL)	Regression	
ü  	Relevance	Vector	Regression	(RVR)	->	probabilis>c	
ü  	Gaussian	Process	Regression	(GPR)	->	probabilis>c	

	

Algorithms	available	in	PRoNTo	



Support	Vector	Machine	(SVM)	

•  Sparse	solu>on	in	terms	of	examples	(support	vectors)	

•  Computa>onal	efficient	

•  Gives	good	results	for	most	problems	

Outline
Introduction

Relevance Vector Machines
Examples
Summary

Support Vector Machines

Support Vector Machines (SVM)

y = 1
y = 0

y = �1

margin

y = 1

y = 0

y = �1

Jukka Lankinen Relevance Vector Machines



Gaussian	Process	Classifier	–	Binary/Mul>class	

	

•  Explicit	probabilis>c	framework	

•  Natural	extension	to	direct	mul>-class	classifica>on	

•  Provide	mechanisms	for	automa>c	parameter	op>miza>on	

was 40.5%(sensitivity = 50%, specificity = 31%), and to intense
faces, was 66% (sensitivity = 88%, specificity = 44%).

Outcome. The predictive power of the GPCs for future Axis I
disorder in at-risk adolescents pertaining to neutral faces presented
during the happy face experiment was evaluated using post-
scanning clinical assessments in 13 at-risk adolescents. Of these, 6
subsequently met DSM-IV criteria for either major depression
(n = 3) or anxiety disorders (n = 3). GPC predictive probabilities
were significantly higher for these 6 at-risk adolescents than for at-
risk adolescents who remained healthy at follow-up (t(11) = 1,82,
p = 0.04) (Figure 3). Furthermore, 3/4 at-risk adolescents
misclassified as healthy controls at scanning remained healthy at
follow-up (for one of these 4 at-risk adolescents, we did not have
clinical follow-up information).

ROC Analyses. The area under the ROC curve (AUC) was
0.78 (p,0.05, permutation test) (Figure 4), indicating that the
score based on the classifier for at-risk adolescents versus healthy
controls could be used to predict those at-risk adolescents who
went on to develop, versus those who did not develop, a
psychiatric disorder during clinical follow-up (i.e. area under the
ROC curve exceed chance level which is 0.5). Using a
combination of machine learning and neuroimaging, we were
therefore able to find a measure (i.e. GPC predictive probabilities)
that could be used to identify which at-risk adolescents
subsequently developed an Axis I disorder.

Task performance on fMRI paradigm
Happy Face Task: Accuracy. There was no significant main

effect of group F(1,30) = 2.4, p= .14), or group by face condition
interaction (F(2,29) = 0.01, p= .99). There was, however, a
significant main effect of face condition (F(2,29) = 15.8, p,.001),
indicating that percent accuracy was significantly lower for neutral
faces relative to happy faces (mild, intense), p,.05. Reaction times:
There was no significant main effect of group, main effect of face,
or group by face condition interaction (all p..1).

Fearful Face Task: Accuracy. There was no significant main
effect of group (F(1, 30) = 0.99, p= .33), or group by face condition
interaction (F(2,29) = 0.50, p= .61). There was, however, a
significant main effect of face condition, (F(2,29) = 11.2, p,.001),
indicating that percent accuracy was significantly lower for neutral
faces relative to intense fearful faces (p,.05). The effect was at a
trend level for mild fearful versus neutral faces (p= .06). Reaction
times: There was no significant main effect of group, main effect of
face, or group by face condition interaction (all p..1) (see Table S1).

Task performance on post-scanning emotion labeling task
Accuracy. There were no significant group differences on

overall emotion labeling scores (t(23) = .92, p= .37). When
examining accuracy specifically to happy, fearful, and neutral
faces, however, there was a main effect of face condition
(F(2,22) = 11.10, p,.001). Post hoc comparisons indicated that

Figure 2. Summary of results from pattern recognition analyses. A. Decision boundary and individual predictive probabilities. B. GPC weights
overlaid on an anatomical template. The color code shows the relative weight of each voxel for the decision boundary (red scales: higher weights for
healthy bipolar offspring and blue scales: higher weights for healthy controls). The discriminating pattern included clusters with higher weights for
healthy bipolar offspring in the superior temporal sulcus (STS; x, y, z: -50, 11, -5) and in a posterior region of the ventromedial prefrontal cortex
(VMPFC(p); x, y, z,: 0, 29, -14) and a cluster with higher weights for healthy controls in the anterior region of the ventromedial prefrontal cortex
(VMPFC (a); x, y, z: -2, 51, -19) (x, y, z, are in Talairach coordinates).
doi:10.1371/journal.pone.0029482.g002

Pattern Recognition Discriminate Youth at Risk

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e29482

Probability	of	being	class	1	
0	 0.5	 1	



Kernel	Ridge	Regression	

Has>e,	Tibshirani	&	Friedman,	2009	

•  Dual	representa>on	of	ridge	regression,	also	known	as	the	
linear	least	square	regression	with	Tikhonov	regulariza>on	
(Chu	et	al.	2011).	



• 	Probabilis>c:	apply	a	Bayesian	treatment	to	SVM	

• 	Similarly	to	SVM	finds	a	sparse	solu>on	(relevance	vectors)		

• Risk	of	local	minima	during	op>miza>on	

Relevance	vector	machine	



Mul>ple	Kernel	Learning	(MKL)	
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•  MKL	has	been	proposed	as	an	approach	to	learn	a	decision	
func>on	based	on	a	predefined	set	of	kernels.	



X	

f (x*) =w ⋅x* + b

w	

Single	kernel	SVM	
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f (x*) = dm fm (x*)
i=1

m

∑

X1	

f1(x*)

w1	

…	X2	

w2	

Xm	

wm	

f2 (x*) fm (x*)…	

Mul>ple	kernel	SVM	

d1	 d2	 dm	

…	

…	
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Define	your	ques>on:	
	-	Classifica>on	or	regression?	
	-	Specify	the	subjects	and/or	condi>ons	

Healthy	 Pa>ents	

Considera>ons	for	Neuroimaging	



Considera>ons	for	fMRI	(BOLD)	



How	to	extract	features	from	MRI?		
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