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Pattern Recognition Concepts

e Pattern recognition aims to assign a label to a given example (test
example) based on statistical information extracted from the previous

seen examples (training examples).

e The examples to be classified are usually groups of measurements or
observations (e.g. brain image), defining points in an appropriate

multidimensional vector space.
Currently implemented in

 Types of learning procedures: PRoNTo

°[ Supervised learning ]
* Unsupervised learning
e Semi-supervised learning, reinforcement learning.




Pattern Recognition Concepts
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Pattern Recognition Framework

Input (brain scans) Output (control/patient)

No mathematical

X, model available Y
X

2 Machine %
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Computer-based procedures that learn a function from a series of examples

Learning/Training Phase

Training Examples: Predictive function

Estimate a predictive function f

{X1>y1}""’{xn’yn} — such that f
fix, =y,
Test Example Testing Phase
X* > f(X*) = y*

Prediction




L “RNOIN [0_

Pattern recognition: classification model
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Pattern recognition: regression model

Predictive function: f
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BOLD signal

Voxel-wise
GLM model
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Pattern Recognition Analysis (multivariate)
Input

Volumes from task 1

Volumes from task 2

{ "“)
New example

Training Phase

Test Phase

Very
different
meaning!

Predictions

Multlvarate Map
(classifier’s or regression’s weights)

y={+1, -1} or p(y = 1|X,0)
e.g. +1 = Patients and -1 = Healthy controls



Advantages of Pattern Recognition Analysis

Explore the multivariate nature of neuroimaging data

*MRI/fMRI data are multivariate since most of the brain functions are
distributed processes involving a network of brain regions.

ePattern recognition analysis can yield greater sensitivity than conventional
analysis due to its multivariate properties.

Can be used to make predictions for new examples

eEnable clinical applications: previously acquired data can be used to make
diagnostic or prognostic for new subjects.



How to extract features from MRI?
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" PRoNTo

Pattern Classification
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L RoNTo

Pattern Regression
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Pattern Recognition Models

Linear predictive models (classifier or regression) are
parameterized by a weight vector w and a bias term b.

The weight vector w can be expressed as a linear combination
of training examples x. (N = number of training examples).

The general equation for making predictions for a test

example x. is: Fx) "
X,)=W-X,+



Weight map or predictive pattern

 The weight vector w has the same dimensionality of the input
data/image and can be plotted as an image.

B
oM

e The weight vector might provide potential insights into brain
function or structure that drives the prediction, but the
interpretation should be done with care!




Using the weights for prediction

Predictive function
Weight map (w) f(x,)=w-X,+b

;
NN
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F(X)=(5x 1)+ (2x2)+(=6x=2)+(=1x 4)+0
F(X)=5+4+12-4=17

f(x.) is the predicted score for regression or the distance to
the decision boundary for classification models.




How to interpret the weight vector w?

v’ It is a spatial representation of the
predictive function.

v" Shows the contribution of each feature/
voxel for the prediction.

v Multivariate pattern -> All voxels with
weights different from zero contribute
to the final prediction (no arbitrary
threshold should be applied).

v" No local inferences can be made!



Challenges in Neuroimaging

e In neuroimaging applications often the dimensionality of the
data is greater than the number of examples (ill-conditioned
problems).

e Possible solutions:
— Region of interest (ROI)
— Feature selection strategies
— Searchlight
— Regularization + Kernel Methods



Regularization

* Regularization is a technique used in an attempt to solve ill-posed
problems and to prevent overfitting in statistical/machine

learning models.

 Regularized methods find w minimizing an objective function
consisting of a data fit term E and a penalty/regularization term J

min__,, {E(wW){ AJ(w)}

The data fit term is a error function E The regularisation term J

Regularization hyper-parameter

 Many machine learning algorithms are particular choices of E
and J (e.g. Kernel Ridge Regression (KRR), Support Vector

Machine (SVM)) .
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Kernel Methods

Kernel methods provide a powerful and unified framework
for investigating general types of relationships in the data
(e.g. classification and regression)

Consists of two parts:

e Computation of the kernel matrix (mapping into the
feature space)

e A learning algorithm based on the kernel matrix

Main advantage:
e Computational efficiency




Kernel Function (“similarity” measure)

Brain scan 2

Dot product = (4*-2)+(1*3) =-5

Brain scan 4

» Kernel is a function that, given x and x., returns a real number
characterizing their similarity;

* A simple type of similarity measure between two vectors is a dot
product (linear kernel).



Nonlinear Kernels

* There are more general “similarity measures”, i.e. nonlinear
kernels: Gaussian kernel, Polynomial kernel, etc.

*Nonlinear kernels are used to map the data to a higher dimensional
space as an attempt to make it linearly separable.
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Advantage of linear models

* Neuroimaging data are extremely high-dimensional and the
sample sizes are very small, therefore non-linear kernels often
don’t bring any benefit.

* Linear models reduce the risk of overfitting the data and allow
direct extraction of the weight vector as an image (i.e. predictive
map).
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Learning with kernels

* Making predictions with kernel methods

f(X)=W"X,+b > Primal

representation
N
f(x,)= Ea +b
i=1

f(x*)=2aiK(xi,x*)+b —

Dual
representation



Algorithms available in PRoNTo

Kernel methods

* Classification:
v’ Support Vector Machine (SVM)
v' Multiple Kernel Learning (MKL) Classifier
v’ Binary Gaussian Process Classifier (GPC) -> probabilistic
v Multiclass Gaussian Process Classifier (GPC) -> probabilistic

* Regression:
v' Kernel Ridge Regression (KRR)
v' Multiple Kernel Learning (MKL) Regression
v Relevance Vector Regression (RVR) -> probabilistic
v Gaussian Process Regression (GPR) -> probabilistic



Support Vector Machine (SVM)

margin

e Sparse solution in terms of examples (support vectors)
e Computational efficient

* Gives good results for most problems



Gaussian Process Classifier — Binary/Multiclass
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» Explicit probabilistic framework
 Natural extension to direct multi-class classification

* Provide mechanisms for automatic parameter optimization



AY

lllustration of a linear least squares fitting with X € IR2. We seek the linear function of X
that minimizes the sum of squared residuals from Y.

Hastie, Tibshirani & Friedman, 2009

* Dual representation of ridge regression, also known as the
linear least square regression with Tikhonov regularization
(Chu et al. 2011).
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Figure 3: SVM (left) and RVM (right) classifiers on 100 examples from Ripley’s Gaussian-
mixture data set. The decision boundary is shown dashed, and relevance/support
vectors are shown circled to emphasise the dramatic reduction in complexity of
the RVM model.

* Probabilistic: apply a Bayesian treatment to SVM
 Similarly to SVM finds a sparse solution (relevance vectors)

*Risk of local minima during optimization
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ultiple Kernel Learning (MKL)
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Label for test data

* MKL has been proposed as an approach to learn a decision
function based on a predefined set of kernels.



Single kernel SVM

Multiple kernel SVM
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Considerations for Neuroimaging

Define your question:
- Classification or regression?
- Specify the subjects and/or conditions

Healthy Patients




Considerations for fMRI (BOLD)
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How to extract features from MRI?
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